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The contribution of neutrophils to asthma pathogenesis has been mainly studied in the context 

of non-allergic neutrophilic asthma. However, neutrophils can also be rapidly recruited and are 

largely present in the airways of allergic eosinophilic asthmatic patients. Under these 

circumstances, they possess specific phenotypic features distinguishing them from resting blood 

neutrophils and are endowed with particular functions. The exact contribution of neutrophils to 

allergic asthma pathogenesis is still unclear, but growing experimental evidence supports the 

ability of neutrophils or neutrophil-derived products to influence the underlying allergic type 2 

immune response and cardinal features of allergic asthma, thus shedding new light on 

neutrophil biology and functions in an allergic context. 

Introduction 

Neutrophils represent the most abundant immune cell type in the blood and are generated in the 

bone marrow under the control of key transcriptor factors such as C/ EBPα, PU.1, Gfi-1 and 

C/EBPε [1]. They have long been known as short-lived (half-life: 6-12 hours [2]) innate immune 

cells specialized in pathogen killing through their high phagocytic potential and the secretion of 
cytotoxic granules once recruited in the tissues [1]. Today, a more complex picture of the 

neutrophil is emerging, with immunoregulatory properties and implications in various non-

infectious disorders [3]. Of note, unlike previously appreciated, neutrophils are now thought to 

encompass distinct phenotypic and functional subsets in humans [4,5] and mice [6,7], some of 

them exhibiting an extended half-life in certain inflammatory conditions [3]. Furthermore, in 

2004, Brinkmann and colleagues have discovered the ability of neutrophils to form neutrophil 

extracellular traps (NETs), whose roles in health and disease are currently under close scrutiny 

(Box 1), and which has arguably contributed to the renewed interest in neutrophils [8]. 

Asthma constitutes a heterogeneous group of respiratory inflammatory disorders characterized 

by a similar clinical pattern of cough, wheeze and reversible airway obstruction [9]. Asthma 

phenotypes can be categorized according to clinical symptoms, specific triggers, inflammatory or 

immune status, or treatment response [10,11]. If one refers to an inflammatory phenotype 

classification [12,13], allergic asthma belongs to the 'eosinophilic' phenotype (Table 1). Notably, 
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while patients with more than 3% sputum eosinophils are considered 'eosinophilic', up to 60% 

sputum neutrophils can also be present [10,12,13]. Immunologically, allergic asthma is 

characterized by the development of an aberrant immune response with a predominant 

adaptive type 2 T helper cell (Th2) profile directed against inhaled allergens [9]. Such Th2 

response, via the secretion of cytokines such as interleukin(IL)-4, IL-5, IL-13, orchestrates many 

cardinal features of allergic asthma, such as eosinophilic inflammation, mucus hypersecretion, 

airway hyper-responsiveness and increased serum levels of type E immunoglobulins (IgE) [14]. 

Neutrophil recruitment in allergic asthmatic lungs 

While neutrophils are not steadily present in the airways of allergic asthmatic patients, they are 

one of the first innate immune cells recruited into the lungs during specific asthma-related 

events such as allergenic challenges [15-17], virus-induced asthma exacerbations [18•• ,19,20] or 

nocturnal crises [21]. In mice, airway exposure to clinically relevant allergens that promote 

features of allergic asthma is also associated with the airway recruitment of neutrophils 

[18",22",23∙,24]. 

Like in other tissues, the recruitment of neutrophils into the respiratory tract comprises several 

steps that are initiated by the endothelial expression of adhesion molecules [25] and followed by 

extravasation and migration according to a chemokine gradient. In a mouse model of ragweed 

pollen extract challenge, Hosoki and colleagues demonstrated that lung neutrophil recruitment 

was substantially lower in mice lacking the LPS receptor Toll like receptor (TLR)-4 [22"]. 

Similarly, inhibition of CXCR2, the receptor for CXCL1, CXCL2 and CXCL5 in mice, inhibited 

allergen-induced innate recruitment of neutrophils [22"], and the production of CXCL1, CXCL2 

and CXCL5 was shown to be dependent on TLR-4 and its co-receptor MD2 in response to cat 

dander and other relevant pollens [22••,23•]. Epithelial cells might be the source of such 

chemokines, as they have been shown, in humans, to secrete CXCL8 (i.e. IL-8, the human 

analogue of CXCL1, CXCL2 and CXCL5) following allergenic challenges [23•,26]. In addition, 

alveolar macrophages may also deliver CXCL1 and CXCL2 in response to allergen-induced and 

antibody-mediated activation of FCγ III receptors [27]. In humans, sputum levels of CXCL8 have 

been shown to be increased during acute allergic asthma exacerbations [19] and following 

allergenic challenge [15], which was associated with increased sputum neutrophils and blood 

neutrophil chemotaxis [15].  

Oyoshi and colleagues demonstrated, in a model of skin allergy, that neutrophil-intrinsic 

leukotriene B4 (LTB4) synthesis and its receptor, BLT1, were involved in neutrophil 

recruitment [28]. Interestingly, LTB4 levels were increased in the BALF of asthmatic patients 

suffering from nocturnal asthma [29] and in exhaled breath condensate of asthmatic children 

[30] and adults [31]. In addition, the use of a LTB4 inhibitor in asthmatic patients triggered a 

substantial decrease in BALF neutrophils [32]. 

The Th2-associated cytokine IL-4 may control neutrophil recruitment during allergic asthma. 

Indeed, a recent study has demonstrated that IL-4 could dampen neutrophil expansion and 

migration through neutrophil-intrinsic IL-4 receptor signaling in mice [33••]. Ex vivo treatment 

of bone marrow neutrophils with IL-4 inhibited neutrophil migration in response to CXCL1 and 
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CXCL2 by IL-4 receptor-dependent mechanisms [33••]. In a model of airpouch, CXCR2-dependent 

neutrophil recruitment was also inhibited when IL-4 biological half-life was prolonged [30]. The 

potential contribution of the IL-4/IL-4 receptor axis to the regulation of neutrophil numbers in 

the airways of allergic asthmatic patients or experimental animals will however require further 

investigations. Mast cells, whose allergen-dependent and IgE-dependent degranulation is 

thought to contribute to the acute allergic reaction [34], may also negatively regulate neutrophil 

influx in allergic asthmatics airways. Indeed, levels of mast cell-specific tryptase were found 

elevated in BALF of eosinophilic asthmatic patients [35], and such tryptase has been shown to be 

a strong chemorepellent for neutrophils in vitro [36]. 

Box 1 Neutrophil extracellular traps. 

Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear or 

mitochondrial chromatin associated to modified (e.g. citrullinated) histone proteins and 

decorated with 20-50 different proteins, such as neutrophil elastase, myeloperoxidase (MPO), 

LL37, cathepsin G, proteinase 3 or high mobility group protein B1. NETs can be released in the 

extracellular space in response to various microbial (e.g. bacteria, viruses, parasites, 

lipopolysacchar-ide [LPS]) and non-microbial (e.g. phorbol 12-myristate 13-acetate (PMA), 

crystals) stimuli. The molecular mechanisms of NET formation are not yet fully understood and 

may differ according to the stimuli (reviewed in [48]). Reactive oxygen species (ROS) formation, 

activation of the MEK/ERK pathway downstream of membrane receptors (PSGL1, RAGE, 

TLR2/4, Dectin 2, Fc-/R, Siglec 14), activation of autophagy (through the inhibition of mTOR 

pathway or the activation of the PI3K pathway) and induction of necroptosis have all been 

implicated in NET formation. If NETs were originally discovered for their role in bacterial killing 

[8], they have been more recently associated with non-infectious disorders like thrombosis, 

vasculitis, systemic lupus erythematosus, diabetes, cancer, asthma or chronic obstructive 

pulmonary disease (COPD) [60]. 

Table 1. Asthma inflammatory phenotypes 

Phenotype Inflammatory cells 

present in the airways 

Immunological and 

inflammatory biomarkers 

Severity Triggers Immune 

profile 

Eosinophili

c 

Sputum eosinophils 

(>3%) 

Specific IgE Mild to 

severe 

Allergens 

(75%) 

Th2>»Th17 

 Sputum neutrophils 

(<76%) 

Th2-associated cytokines 

(IL-4, IL-5, IL-13) [61,62] 

 Exercise 

Occupation

al (15%) 

Aspirin 

 

Neutrophili

c 

Sputum IL-8 Severe Obesity Th17>»Th2 

 Neutrophils (>76%) Neutrophil elastase 

IL-1β 

TNF-α 

micro RNA-629-3p, 223-3p 

 Tobacco 

smoke 

Exposition 

to irritants 
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and 142-3p [62] 

Paucigranul

ocytic 

Levels of sputum 

eosinophils <3% and 

neutrophils <76% 

? Moderate Not defined ? 

Mixed 

granulocyti

c 

High levels of sputum 

eosinophils (>3%) and 

neutrophils (>76%) 

? Severe Not defined Th2/Th17? 

Source: Adapted from [9,12,13]. 

Phenotypic and functional features of neutrophils in allergic 

asthma 

Several pieces of evidence support that neutrophils undergo profound changes in the blood and 

lungs of allergic asthmatic individuals. A recent clinical study compared the innate immune 

responses of two populations of children (i.e. Amish and Hutterite) sharing same ancestry, 

lifestyles but exposed to different levels of endotoxins [37••]. Briefly, Hutterite children, who are 

raised in an environment poor in endotoxins, are susceptible to allergic asthma, whereas Amish 

children live in endotoxin-rich homes and are protected against allergic asthma development 

[37••]. Notably, blood neutrophils from asthma-prone Hutterite children expressed higher levels 

of CXCR4 and CDllb, as well as lower levels of CD11c, as compared to the ones isolated from 

Amish children [37••]. Blood and nasal lavage neutrophils of atopic asthmatic patients have also 

been shown to express higher surface levels of CD49d than neutrophils of healthy subjects [5]. 

CD49d expression is further increased six hours after allergen challenge [5], suggesting a 

possible interaction between neutrophils and the specific allergens. Such interaction could be 

achieved by allergen-induced crosslinking of the high affinity IgE receptor (FcεRI), whose 

expression is higher in blood neutrophils from asthmatic patients [38] and increased during the 

pollen season [39]. Interestingly, the interaction between specific allergens and IgE/FcεRI on the 

neutrophil surface has been shown to enhance functional responses by increasing secretion of 

neutrophil products in asthmatic patients, like matrix metalloproteinase 9 (MMP-9) [40], 

neutrophil elastase (NE) [41], myeloperoxidase [42], IL-8 [43], eosinophil cationic protein [44] 

and reactive oxygen species (ROS) [45]. Moreover, as compared to neutrophils from healthy 

individuals, neutrophils from asthmatic patients exhibited boosted functional responses in vitro, 

such as an enhanced migratory capacity, a higher digestion phase in phagocytosis assays [46] 

and increased secretion of tumor necrosis factor (TNF)α, GM-CSF or interferon γ [47]. 

Recently, Toussaint and colleagues have shown, in a human experimental model of rhinovirus-

induced allergic asthma exacerbations, that rhinoviruses promoted the release of host double-

stranded DNA (dsDNA) and NE, two major NET components [48], supporting that NET-prone 

neutrophils were specifically recruited during asthma exacerbations. 
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Contribution of neutrophils to allergic asthma pathogenesis 

Given their large presence, their specific phenotype and their ability to secrete a wide range of 

products during allergic asthma, neutrophils are appealing candidates that may contribute to 

disease pathogenesis (Figure 1). 

Using a model of airway allergy, Hosoki and colleagues showed that impaired neutrophil 

recruitment in TLR-4-deficient mice or in wild-type mice treated with a CXCR2 inhibitor was 

associated with decreased eosinophilic inflammation, IgE, Th2 cytokines and mucus secretion 

[22••]. Transfer of wild-type neutrophils in the trachea of TLR-4-deficient mice was sufficient to 

restore the Th2 immune response and features of airway allergy in this model, supporting that 

neutrophils could facilitate allergic sensitization and inflammation [22••]. Surprisingly, in a 

clinical study including Japanese children with primary autoimmune neutropenia, the incidence 

of asthma in 'neutrophil-deficient' children was found to be substantially lower as compared to a 

group of control children, and returned to the control levels with the resolution of neutropenia 

[49], supporting that neutrophils may promote asthma onset in humans, too. 

Among the large range of neutrophil products, some of them have been identified to be present 

at higher levels in allergic asthmatic airways and to contribute in disease pathogenesis (Figure 

1). Upon ex vivo stimulation with a relevant allergen, MMP-9 release and respiratory burst (i. e. 

associated with the production of ROS) were found to be higher in neutrophils of allergic 

asthmatic patients as compared to control neutrophils [40,45]. To address the role of MMP-9 

and ROS in vivo, transgenic mice in which MMP-9 expression is lacking or ROS production is 

impaired have been subjected to a model of allergic asthma based on administration of 

ovalbumin (OVA) and the Th2 adjuvant alum [50-52]. Upon allergenic challenge, mice deficient 

in MMP-9 had an impaired recruitment of inflammatory cells, which was accompanied by a 

lower bronchial hyperreactivity, less IL-13 and fewer OVA-specific IgE [50,52]. Furthermore, 

Vermaelen and colleagues observed that the migration and maturation of dendritic cells, the 

main antigen-presenting cells responsible for Th2 sensitization, were compromised in the lungs 

of MMP-9-deficient mice, which could explain the altered development of the Th2 immune-

mediated airway allergy [52]. Similarly, ROS-impaired mice failed to develop eosinophilic 

inflammation, mucus secretion and IL-13 secretion [51], and the ability of splenocytes to secrete 

IL-13 upon stimulation was also impaired in those animals, supporting that the Th2 response 

was facilitated by ROS [51]. 

Neutrophils were found to be a major source of oncostatin M, an important player in mucosal 

barrier dysfunction [53], in allergic asthmatic patients [54]. The exact contribution of oncostatin 

M to allergic asthma is still unclear, but endotracheal treatment of mice with adenovirus 

expressing mouse oncostatin-M has been shown to be sufficient to promote features of allergic 

asthma [55]. 

During the challenge phase of a OVA/alum model, NE inhibition was associated with decreased 

mucus cell numbers, eosinophil recruitment, bronchial hyperreactivity and Th2 immune 

responses [56]. In addition, mice chronically exposed to NE developed mucus cell metaplasia 

and lung eosinophilic inflammation [57]. iln vitro, NE has been shown to induce expression of 

the mucin protein MUC5AC by human epithelial cells [58,59]. 
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In a recent study, NETs have been shown to be essential in mediating allergic asthma 

exacerbations elicited by rhinoviruses [18••] (Figure 1). Indeed, NETs were massively released 

in the lungs of rhinovirus-infected mice, and inhibition of NETs formation or degradation of 

NETs strongly diminished all the cardinal features of asthma exacerbations [18••]. Furthermore, 

in this model, injection of mouse dsDNA, a major NET component, was sufficient to recapitulate 

most of the hallmarks of exacerbation. Mechanistically, NETs were found to promote the 

recruitment of inflammatory dendritic cells to the lung, which mediate allergic response to 

house dust mites in mice. During rhinovirus-induced asthma exacerbations in humans, dsDNA 

levels strikingly correlated with NE BALF levels, with the levels of type 2 cytokines detected in 

nasal lavages and BALF, and with the clinical severity of the exacerbation [18••]. 

Figure 1 Putative contributions of neutrophils to allergic asthma 
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(a) Upon allergenic challenges, neutrophils are one of the first innate immune cells recruited to the airways. They are 

able to secrete matrix metalloproteinase 9 (MMP-9), reactive oxygen species (ROS), oncostatin-M, and neutrophil 

elastase (NE), among others via IgE-dependent mechanisms. MMP-9 induces the recruitment and maturation of lung 

dendritic cells, which mediate Th2 sensitization. ROS can interact with the activation of Th2 cells. Oncostatin-M has a 

global facilitating effect on asthma hallmarks. NE can stimulate mucus cell metaplasia, (b) During allergic asthma 

exacerbations provoked by respiratory viral infections, neutrophils can release NETs, which attract monocyte-derived 

dendritic cells (moDCs) into the lung and promote type 2-mediated exacerbations. 

Conclusions and perspectives 

Clinical evidence supports that neutrophils are recruited to the lungs of allergic asthmatic 

patients, especially during asthma symptomatic manifestations. In this context, the few studies 

that have looked at their potential implication in allergic asthma pathogenesis have underscored 

a potential pro-inflammatory, deleterious role, which facilitates type 2-mediated disease 

development. However, the contribution of neutrophils to allergic asthma and type 2 responses 

may have been understudied so far. Indeed, historically, they have been merely considered as 

first-line innate responders and effector cells in the context of type 17 host defence responses. 

Today, it is increasingly clear that neutrophils encompass distinct subsets and are endowed with 

many immunoregulatory properties. The use of high dimensional unbiased technologies, 

combined with novel transgenic tools that target specific neutrophil subsets should help 

uncovering their complex contributions to health, host defence and diseases in general, and to 

allergic disorders in particular 
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