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Abstract
Plasmodium falciparum is transmitted by mosquitoes from the Anopheles gambiae sensu lato (s.l) species complex and is 
responsible for severe forms of malaria. The composition of the mosquitoes’ microbiota plays a role in P. falciparum trans-
mission, so we studied midgut bacterial communities of An. gambiae s.l from Burkina Faso. DNA was extracted from 17 
pools of midgut of mosquitoes from the Anopheles gambiae complex from six localities in three climatic areas, including 
cotton-growing and cotton-free localities to include potential differences in insecticide selection pressure. The v3–v4 region 
of the 16S rRNA gene was targeted and sequenced using Illumina Miseq (2 × 250 nt). Diversity analysis was performed 
using QIIME and R software programs. The major bacterial phylum was Proteobacteria (97.2%) in all samples. The most 
abundant genera were Enterobacter (32.8%) and Aeromonas (29.8%), followed by Pseudomonas (11.8%), Acinetobacter 
(5.9%) and Thorsellia (2.2%). No statistical difference in operational taxonomic units (OTUs) was found (Kruskal–Wallis 
FDR—p > 0.05) among the different areas, fields or localities. Richness and diversity indexes (observed OTUs, Chao1, 
Simpson and Shannon indexes) showed significant differences in the cotton-growing fields and in the agroclimatic zones, 
mainly in the Sudano-Sahelian area. OTUs from seven bacterial species that mediate refractoriness to Plasmodium infec-
tion in An. gambiae s.l were detected. The beta diversity analysis did not show any significant difference. Therefore, a same 
control strategy of using bacterial species refractoriness to Plasmodium to target mosquito midgut bacterial community and 
affect their fitness in malaria transmission may be valuable tool for future malaria control efforts in Burkina Faso.
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Introduction

Anopheles gambiae s.l is a major vector of malaria in sub-
Saharan Africa because it transmits Plasmodium falciparum 
parasites to humans, with ensuing severe forms of malaria 
[1]. In 2017, an estimated 219 million cases of malaria 
occurred worldwide, mostly in Africa (92%), followed by 
South-East Asia (5%) and the eastern Mediterranean region 
(2%) [1]. In the absence of a vaccine, malaria prevention 
heavily relies on vector control by insecticide-treated bed 
nets (LLINs) and indoor residual spraying (IRS) [2]. Nev-
ertheless, in Africa this control is threatened by the rise of 
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insecticide resistance in Anopheles mosquitoes [3], so that 
new strategies for malaria control are required [4]. The gut 
microbiota of mosquitoes plays an essential role in their 
susceptibility to Plasmodium falciparum, as demonstrated 
by previous studies [5]: the presence of antibiotics in the 
blood of malaria-infected people enhances the susceptibil-
ity of An. gambiae s.l to P. falciparum infection by disturb-
ing their gut microbiota [6, 7]. Therefore, the use of drugs 
or particular bacteria to disturb the microbiota of specific 
mosquitoes and affect their vector competence or fitness 
is a new concept that deserves further investigations [8]. 
Furthermore, the An. gambiae gut could be often a selec-
tive eco-environment (Proteobacteria and Bacteroidetes) 
[9]. Symbiotic control (paratransgenesis) is an alternative 
method for human disease vector control [10], and consists 
of genetic engineering of a symbiotic microorganism to alter 
the capacity of the mosquito to transmit malaria [11]. This 
control approach aims to limit or stop the development of 
the parasite in the mosquito vector [12] based on an under-
standing of the interactions between the vector, its environ-
ment, and the pathogen [13]. This approach provides anti-
disease strategies inside the mosquito hosts by harnessing 
their symbiotic microbes [14]. Mosquitoes are indeed con-
tinuously exposed to a variety of microorganisms, mainly 
bacteria from their ecosystem [15]. The microbial commu-
nities -also called microbiota-hosted by mosquitoes have 
been characterized by conventional culture methods [16, 
17], by flow cytometry analysis [18], by shotgun metagen-
omic sequencing [19], or by amplicon sequencing of 16S 
rRNA [8, 20, 21]. These methods showed that the micro-
biota can modulate the immune response of mosquitoes 
and their ability to influence human pathogen transmission 
[5, 15, 22]. Changes in the microbiota limit the develop-
ment of the malaria parasite in Anopheles [23, 24]. A recent 
study showed that the Enterobacter genus directly blocked 
the development of the malaria parasite by producing free 
radicals harmful to Plasmodium sp. in the mosquito gut. 
This resulted in 99% resistance of An. gambiae s.l to infec-
tion by P. falciparum [23]. The suppression of the major-
ity of midgut bacteria increased the susceptibility of An. 
gambiae s.l and Aedes aegypti to infection by P. falciparum 
and the dengue fever virus, respectively [15]. This suggests 
that interactions between microbes and parasites reduce 
Plasmodium sp. transmission [25]. Decreasing the vector’s 
transmission efficacy by modifying its microbiota is a very 
active and novel field of research [8, 26]. For instance, some 
bacteria such as Pantoea spp. and Asaia spp. are currently 
emerging as promising candidates for paratransgenesis [8, 
27, 28]. These two genera have a high vertical transmission 
potential through multiple mechanisms. They are capable of 
horizontal infection through feeding and through mating in 
adult mosquitoes, indicating that they could quickly spread 
among natural mosquito populations [14]. The investigation 

of the An. gambiae s.l midgut microbiota may therefore be a 
promising way for further developing novel, safe, and effec-
tive strategies to manipulate the vectorial capacity [21, 26] 
and could promote new control methods [29, 30]. For exam-
ple, the recent evolution of mosquito control involves mos-
quitoes genetically modified by gene drive [30]. This gene 
drive can generate a new phenotype which could modulate 
a midgut bacterial community to be hostile to Plasmodium 
transmission. However, any release of laboratory-modified 
mosquitoes in the wild will first require characterizing local 
mosquito populations. Burkina Faso is divided into three 
agroclimatic zones with different malaria epidemiological 
characteristics, i.e., the Sahelian area (short transmission 
period lasting 2 to 3 months), the Sudano-Sahelian area (sea-
sonal transmission lasting 4 to 6 months) and the Sudanian 
area (perennial transmission) [31, 32]. We investigated bac-
terial diversity in the microbiota of the An. gambiae complex 
in different locations of the country according to different 
ecological settings.

Materials and methods

Mosquito collection and identification

All mosquitoes were collected from human residential areas 
(indoors and outdoors) using a Prokopack aspirator (craft 
manufacturing) between August and October 2017. Three 
agroclimatic areas were surveyed: Sahelian, Sudano-Sahe-
lian and Sudanian, with two localities per climatic area, one 
in a cotton-growing field (highly exposed to insecticides) 
and one away from cotton fields (unexposed to insecticides). 
For each locality, three sites were sampled except in the 
Sudanian area where only two sites were sampled from the 
cotton fields (Table 1).

The Sudanian climatic area (yearly rainfall > 900 mm; 
average annual temperature 31 °C) has malaria transmission 
all year round. In the Sudano-Sahelian area (yearly rain-
fall between 600 and 900 mm; average annual temperature 
33 °C), and the Sahelian area (yearly rainfall < 600 mm; 
average annual temperature 35 °C), malaria transmission 
is seasonal, with time periods of 4 to 6 months and 2 to 
3 months, respectively [33]. From indoors and outdoors of 
houses, a total of 340 females of the An. gambiae complex 
with no blood in their midgut were selected and dissected 
under a light binocular microscope (Leica EZ4, magnifica-
tion: × 10) and grouped in 17 pools (one pool per site). Each 
pool included 20 individual females per site for each local-
ity, field and zone (Table 1).
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Mosquito dissection

All mosquitoes samples were identified morphologically as 
the Anopheles gambiae sensu lato (s.l) complex according to 
the identification keys of Gillies et al. [34, 35]. Living mos-
quitoes were anesthetized with chloroform, and dissected 
under sterile conditions. Three hundred and forty non-blood-
engorged females were selected for dissection. The mos-
quitoes were surface sterilized twice prior to dissection by 
washing with 70% ethanol for 5 min and rinsing in a sterile 
saline phosphate buffer (PBS 1 ×, pH 7.8) [36]. Dissections 
were performed under a light binocular microscope (Leica 
EZ4, magnification: × 10). Each mosquito gut was pulled out 
into a drop of sterile PBS 1 ×, pH 7.8 on a sterilized micro-
scope slide. The guts were pooled (20 individual guts per 
site) into a sterile 1.5 mL Eppendorf tube containing 500 µL 
of RNAlater (QIAGEN, USA), and stored at − 20 °C. The 
samples were brought to Gembloux Agro-Bio Tech, Func-
tional & Evolutionary Entomology laboratory (Gembloux, 
Belgium) and stored at − 80 °C till DNA extraction.

DNA extraction and Illumina PCR amplicons

Midgut DNA was extracted with a QIAamp DNA Micro Kit 
(QIAGEN, Valencia, CA) according to the manufacturer’s 
instructions. Briefly, the samples were crushed individually 
with plastic pestles in 1.5-mL tubes containing 180 μL of 
ATL buffer, and 20 μL of proteinase K were added. The 
mixtures were vortexed thoroughly and incubated overnight 
in a thermomixer (56 °C, 450 rpm). After processing and 
washing with the adequate products provided in the kit, the 
final DNA product was eluted using 20 μL of AE elution 
buffer and stored at − 20 °C until PCR analysis. Surfaces 
were cleaned with 70% ethanol, and all extractions were per-
formed under a localized aseptic microenvironment provided 
by flame from a Bunsen burner.

DNA concentrations were normalized at 5–6 ng/µL with 
a Nanodrop spectrophotometer ND1000 V3.8.1 (Nanodrop, 
Wilmington, DE, United States) and stored at − 20 °C before 

Illumina Miseq (2 × 250 nt) library preparation. 16 S rRNA 
gene libraries were generated by targeting the v3–v4 uni-
versal region of the 16S rRNA gene using the Illumina 
Miseq metagenomic sequencing library protocols and the 
16S rRNA primers: 16S Amplicon PCR Forward Primer: 5′ 
TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT 
ACGGGNGGC WGC AG and 16S Amplicon PCR Reverse 
Primer: 5′ GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG 
ACA GGA CTACHVGGG TAT CTA ATC . The total volume 
of the PCR mix was 25 µL, containing 12.5 µL of 2 × KAPA 
HiFi HotStart ReadyMix, 5 µM of each primer and 2.5 µL of 
mosquito DNA templates. The PCR reaction was performed 
with the following temperatures: 95 °C for 3 min, 25 cycles 
of 95 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s; a final 
elongation step at 72 °C for 5 min, and a storage tempera-
ture of 4 °C. Five µL of PCR amplicons were loaded in 1% 
electrophoresis gel and visualized under UV light to check if 
the expected 450-bp band was obtained. The PCR products 
were then sent to DNAVision sequencing center (Gosselies, 
Belgium) for sequencing.

Bioinformatics

Demultiplexed quality-filtered reads obtained by Illumi-
naSeq from the sequencing center (forward and reverse) 
were processed using QIIME (Quantitative Insights Into 
Microbial Ecology) 1.9.0 version [37]. Each sample read 
was paired using the multiple_join_paired_ends.py script. 
Then paired fastq files were converted into fasta form with 
the script convert_fastaqual_fastq.py, and Qiime labels were 
added to these fasta files using the add_qiime_labels.py 
script with a valid metadata file.

Operational taxonomic units (OTUs) were picked with 
pick_open_reference_otus.py script using SILVA database 
(release 132) [38, 39] at 97% similarity. The OTU table was 
cleaned by removing sequences corresponding to cytoplas-
mic (mitochondrial) contamination with the filter_taxa_
from_otu_table.py script. Then, the compute_core_diver-
sity.py script was launched at 19,495 rarefaction depth for 

Table 1  Location and sites surveyed for An. gambiae s.l mosquito samples

No. Fields Localities Sites Geo-coordinates of the localities

Sahelian area
 1 Cotton-growing Kongoussi Keilla, Rollo, Toessin 13° 19′ 31.063″ N − 1° 31′ 32.535″ W
 2 Cotton-free Ouahigouya Bissiguin, Yipala, Namsiguima 13° 34′ 0.573″ N − 2° 24′ 39.566″ W

Sudano-Sahelian area
 3 Cotton-growing Kombissiri Kosmasson, Zemtoega, Gomsi 12° 4′ 27.57″ N − 1° 20′ 31.571″ W
 4 Cotton-free Réo Seboun, Réo Sect. 7, Vour 12° 19′ 5.32″ N − 2° 27′ 55.295″ W

Sudanian area
 5 Cotton-growing Houndé Kohofabio, Yabiro, Kohobié 11° 29′ 21.926″ N − 3° 31′ 23.131″ W
 6 Cotton-free Bobo Koumi, Samagan/Logofrousso 11°9′53.719″N − 4°18′18.555″W
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diversity analysis and sample comparison (beta diversity, 
OTU taxonomy summary and Kruskal–Wallis test). Alpha 
diversity indexes and their comparison were computed in R, 
using Phyloseq package [40]. Heatmap trees of OTUs differ-
ential abundances and Wilcoxon Rank Sum were generated 
with the Metacoder R package [41].

Results

Analysis of bacterial diversity at the phylum level

A total of 718,556 sequences were generated from 17 sam-
ples (one site = one sample). The average number of raw 
sequence reads per sample was 42,268 ± 64,695 (between 
19,495 and 300,529 reads). The generated sequences were 
assigned to 1676 OTUs. A plot of rarefication curves was 
estimated for each sample. The rarefaction depth of 19,495 
sequences per sample was sufficient to obtain good estimates 
of OTU richness (Supplementary Material, Figs. A1 and 
A2).

A total of 17 bacterial phyla was found among all sam-
ples. The most dominant one was Proteobacteria (97.2%), 
followed by Firmicutes (1.0%), Bacteroidetes (1.0%), and 
Actinobacteria (0.2%). Altogether these 4 phyla accounted 
for 94–99% of the total OTUs (Fig. 1), while the other 13 
phyla ranged between 1 and 6%. By order of abundance, 
these minor phyla included Spirochaetes, Chloroflexi, 
Acidobacteria, Patescibacteria, Deinococcus-Thermus, 
Cyanobacteria, Armatimonadetes, Chlamydiae, Epsi-
lonbacteraeota, Gemmatimonadetes, Halanaerobiaeota, 
Planctomycetes, and Verrucomicrobia. The numbers of 
phyla were distributed according to the climatic areas 
or cotton fields as follows: the Sahelian group contained 
10 phyla (Kongoussi and Ouahigouya harbored 10 and 7 
phyla, respectively), the Sudano-Sahelian group contained 

14 phyla (Kombissiri and Réo harbored 7 and 14 phyla, 
respectively), the Sudanian group contained 8 phyla (Bobo 
and Houndé harbored 5 and 7 phyla, respectively), the 
cotton-growing field harbored 12 phyla, and the cotton-
free field harbored 16 phyla.

Description of the core microbiome at the genus 
level

Out of the assigned 1676 OTUs, 14 represented 19.51% of 
the reads (total sequences), 22 represented 76.74% of the 
sequences, and 125 represented 87.65% of the sequences. 
These 14, 22 and 125 OTUs were found in 100%, 90% and 
50% of the samples, respectively. The bacteria found in all 
samples belonged to 33 classes, 73 orders, 125 families and 
224 genera. The most 20 bacterial genera (98.44% of total 
OTUs at the genus level) are presented in Fig. 2. The most 
dominant genus was Enterobacter (32.8% of OTUs), fol-
lowed by Aeromonas (29.8%), Pseudomonas (11.8%), Aci-
netobacter (5.9%) and Thorsellia (2.2%).

A Venn diagram analysis of overlapping genera per area 
showed that 166, 155 and 128 genera were found in the 
Sahelian, Sudanian and Sudano-Sahelian areas, respectively, 
while 208 and 231 genera were detected in the cotton-grow-
ing and cotton-free fields respectively (Fig. 3). As regards 
climatic areas, 91 (30.4%) genera were common to all three 
areas, 22 (7.4%) were in common between the Sudano-
Sahelian and Sahelian areas, 10 (3.3%) were in common 
between the Sahelian and Sudanian areas, and 26 (8.7%) 
were in common between the Sudanian and Sudano-Sahelian 
areas. In the cotton-related fields, 140 (46.8%) were in com-
mon between the cotton-growing and cotton-free fields. This 
suggests that 30.4% of the bacteria belonged to the three 
climatic zones, while 46.8% were in common between the 
cotton-growing and cotton-free areas.

Differential abundance of the taxonomic profiles

The Kruskal–Wallis test showed no significant difference 
(FDR—p > 0.05) in the distribution at the genus level 
according to the climate or cotton areas. However, the Wil-
coxon Rank Sum test highlighted differential abundances in 
the OTUs assigned at the genus level across our samples. 
The site of Réo (a cotton-free field) harbored OTUs with 
higher abundances (Fig. 4a). A similar trend was observed 
when comparing the differential abundances among the 
climatic zones or between the cotton-growing fields in the 
Sudano-Sahelian area (Fig. 4b) and the cotton-free field 
(Fig. 4c), which displayed the highest median abundances 
of OTUs at the genus level.
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Fig. 1  Relative proportions of OTUs at the phylum level in all 17 
samples (sites). Each bar represents one site, and each color stands for 
one phylum. Only the 4 major phyla (94–99% of the total sequences) 
are presented for the sake of clarity. (Color figure online)
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Bacterial community richness and diversity

Richness estimators (observed OTUs and Chao1) and 
diversity indexes (Shannon and Simpson) were cal-
culated. Observed OTUs, Chao1, Simpson and Shan-
non indexes indicated a significant difference (p < 0.05) 
between cotton-growing and cotton-free fields per site in 

the Sudano-Sahelian climatic area (Fig. 5). In fact, in that 
area, the cotton-free field of Réo was the richest and most 
diverse site as compared to the cotton-growing field of 
Kombissiri. The comparison of the alpha diversity indexes 
of the three climatic areas in each category of cotton field 
did not evidence any significant difference (Supplementary 
material A4).

Fig. 2  Pie chart of the pre-
dominant genera (98.44% of 
total OTUs) of Anopheles 
gambiae Anopheles gambiae s.l 
gut microbiota diversity at the 
genus level. Each color repre-
sents one genus, and the most 
abundant ones are represented 
from top to bottom. (Color 
figure online)

Fig. 3  Venn diagrams of the 
analysis of shared genera. a 
Climatic areas, b cotton-related 
fields
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Fig. 4  a Heatmap tree of the median relative abundance tree per 
site. b Heatmap tree of the median relative abundance tree per cli-
matic area. c Heatmap tree of the median relative abundance tree per 
cotton-growing or cotton-free field. Pairwise comparisons were made 
between the samples in the columns (brown) and the samples in the 
rows (blue) for all figures; each node shows one OTU, and its size 
is proportional to the number of reads; the node colors represent the 
differences in the median proportions of the log2 ratios of the reads; 

the brown color shows a greater abundance of OTUs in the samples 
represented in the columns, and the blue color shows a greater abun-
dance of OTUs in the samples represented in the rows. The deeper 
the color, the higher the OTU abundance. In figure c, samples from 
the cotton-growing field are highlighted in blue and samples from the 
cotton-free field are highlighted in brown. For figures a and b, the 
trees in tan color are annotated trees of the shared OTUs across all 
samples. (Color figure online)
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Beta‑diversity analysis: microbial community 
structure in the midgut of mosquitoes 
from the Anopheles gambiae s.l

Our weighted UniFrac distances plotted in PCoA (Fig. 6) 
showed no cluster of samples, suggesting that the bacterial 
microbiota of the midgut of An. gambiae s.l was similar 
(Adonis PERMANOVA test, p > 0.05) across Burkina Faso.

Midgut microbiota of Anopheles gambiae s.l 
and interactions with Plasmodium infection

Based on the core microbiota description, we analyzed eight 
(8) genera that negatively interacted with Plasmodium spp. 
infection in An. gambiae s.l [8, 42]. The most abundant genus 
was Aeromonas, followed by Enterobacter, Pseudomonas, 
Klebsiella, Pantoea, Asaia, Serratia and Comamonas, what-
ever the climatic area or the presence or absence of cotton 
fields (Table 2). No significant difference was evidenced 
among these genera (FDR—p > 0.05). Nevertheless, con-
trasted differential abundances of some genera were observed, 
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mostly for Aeromonas, e.g., in the Sudano-Sahelian area as 
compared to the Sahelian area. Rarefied abundances of these 
species and the situation of malaria in the areas surveyed in 
this study is shown in Table 2.

Discussion

Our study characterizes the microbiota of An. gambiae s.l 
females from different ecological areas that vary according 
to climatic conditions and to the presence or absence of 
cotton fields. The phylum Proteobacteria was predominant 
(97.2% of total sequences) followed by Firmicutes, Bacte-
roidetes and Actinobacteria. Other studies carried out at 
the phylum level found that Proteobacteria were often the 
most diverse and common among An. gambiae s.l [15, 21]. 
In Vietnam, seven phyla from the Anopheles microbiota 

mostly belonged to Proteobacteria, Firmicutes and Actino-
bacteria [43]. In Kenya, Proteobacteria and Bacteroidetes 
dominated in An. gambiae s.l guts, with core taxa of Enter-
obacteriaceae and Flavobacteriaceae [9]. In our study, 
Enterobacteriaceae and Aeromonadaceae were the most 
abundant OTUs, while in another study the abundance of 
Enterobacteriaceae in the mosquito midgut significantly 
correlated negatively with the Plasmodium infection status 
[36]. In addition, other similar studies of other mosquito 
species such as Culex quinquefasciatus, Aedes albopictus 
and Aedes aegypti showed that Proteobacteria appeared to 
be the most dominant phylum [21, 30, 40, 42, 43].

Furthermore, at the genus level, Enterobacter was the 
most dominant genus in our samples, followed by Aero-
monas, Pseudomonas, Acinetobacter, Thorsellia, down to 
Asaia. Among the five most common genera, Thorsellia 
was the only one found only in vector mosquitoes. This 
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Fig. 5  Comparison of the richness and diversity of the bacterial communities harbored by Anopheles gambiae s.l in Burkina Faso according to 
climatic areas; ns: not significant; *statistically significant (p < 0.05)

Fig. 6  2D principal coordinate analysis (PCoA) plots of the weighted 
UniFrac distances of Anopheles gambiae s.l midgut bacterial diver-
sity according to a climatic areas and b the presence or absence of 

cotton fields. Each dot on the graph represents one sample. PC prin-
cipal coordinates
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bacterium was first isolated from the midgut of An. arabi-
ensis in 2006 [45], and has also been reported as predomi-
nant in the midgut of adult An. gambiae s.l. mosquitoes 
captured in dwellings in central Kenya [46] in temperate 
climate area. Table 2 shows also that Thorsellia was rela-
tively more abundant in the Sudano-Sahelian area than in 
the other climatic areas (Sudanian and Sahelian).

Previous studies found Enterobacter and Serratia in 
Anopheles adults collected in the field [15, 21]. The Asaia 
genus was isolated in the midgut, salivary glands and repro-
ductive organs of different wild and laboratory colonies of 
An. gambiae s.l from Burkina Faso [47]. Pantoea and Enter-
obacter were the most common genera identified in field 
An. gambiae s.l from Kenya and Mali [48]. In Cameroon, 
the midgut microbiota of An. gambiae s.l was composed of 
members of only one phylum, i.e., Proteobacteria, and dom-
inated by Comanomas, Serratia, Pseudomonas, Burkolde-
ria and Brevundimonas [49]. In Mali, the bacteria identified 
from An. gambiae s.l. were Escherichia, Salmonella, Kleb-
siella, Pseudomonas, Staphylococcus, and Shigella [50]. 
Furthermore, other studies outside Sub-Saharan Africa have 
shown similar results. For example, in Belgium, Acinetobac-
ter, Pseudomonas, and Asaia were found in most mosqui-
toes, with a high prevalence of Pseudomonas in Anopheles 
[51], whereas in Vietnam the most prevalent genera were 
Staphylococcus, Clostridium, and Bacillus among Firmi-
cutes [43]. The same study found that the Anopheles micro-
biota was greatly influenced by the local environment [43]. 
An. gambiae s.l collected in the field was also found to har-
bor low bacterial diversity, but significant differences were 
found in the core microbiota depending on the collection 
sites [35, 46]. Nevertheless, our results showed no signifi-
cant difference in the core microbiota (abundance) among 
climatic areas and between cotton-growing or cotton-free 
fields. In contrast, richness indexes (observed, Chao1) and 
diversity indexes (Simpson and Shannon indexes) evidenced 
a significant difference in OTU richness and diversity at the 
genus level. The mosquitoes from the Sudano-Sahelian area 
hosted the highest numbers of OTUs, and so did the cotton-
free fields (highest richness and diversity). This result could 
be explained by a greater richness of the microbiota in the 
Réo site than in the Kombissiri site. Moreover, Réo is a 
cotton-free field (Sudano-Sahelian area). Therefore, we can 
hypothesize a negative effect of cotton inputs such as insec-
ticides on the bacterial richness and diversity of An. gambiae 
s.l midgut. The different environments are known to give 
each An. gambiae s.l specific bacterial profiles that provide 
precise and predictive information on the spatial dynamics 
of the population [53]. But no clustering was found from 
our UniFrac distance metrics plotted in the PCoA analysis, 
suggesting that Anopheles females share a similar bacterial 
community throughout Burkina Faso. The difference may 
be explained by the fact that the study by Buck et al. was Ta
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performed on single whole mosquitoes of An. coluzzii, while 
our study was performed on pooled An. gambiae s.l of one 
body part (the midgut) in the whole of Burkina Faso.

We did not find any phylogenetic structuring of the 
Anopheles midgut bacterial community according to the 
climatic zone or to the presence or absence of cotton fields. 
This result provides the basis for a more in-depth study in 
which a paratransgenesis application on An. gambiae s.l 
should be experienced in Burkina Faso. In addition, we 
found greater relative richness and diversity of the micro-
biota in the cotton-growing fields than in the cotton-free 
fields. The role of the midgut microbiota in conferring insec-
ticide resistance in mosquitoes is unclear, while the link with 
insecticide resistance in agricultural pests is established [54]. 
A recent study reported for the first time a link between the 
microbiota (Bacillus anthracis, B. cereus, B. thuringiensis) 
and phenotypic resistance to the insecticide fenitrothion in 
An. albimanus, suggesting that bacterial taxonomic richness 
confers mosquitoes a competitive advantage in response to 
insecticide selection pressure [55]. We found higher relative 
bacterial abundance in the cotton-free fields more than in the 
cotton-growing field. Assuming that the microbiota diversity 
in An. gambiae l.s may have a link with the susceptibility 
of insecticide, this result suggests that cotton-growing field 
mosquitoes have a less bacterial diversity, then, they should 
be more resistant to insecticides. In Burkina Faso, the active 
ingredients of formulations for cotton crop protection belong 
to four insecticide classes: pyrethroids, organochlorines, 
organophosphates and carbamates, all used by spraying [56]. 
Furthermore, resistance to these molecules used to control 
Anopheles has emerged in the country [57]. In Burkina Faso, 
pyrethroid resistance has increased in recent years [58] as 
the frequencies of the 1014F kdr mutation and high ace-1R 
in 15 sites in 3 climatic areas [60]. Also, in rice-growing 
fields that use insecticide as in cotton-growing, it is noticed a 
high level of frequency of kdr L1014F mutation and Ace-1R 
mutation in An. gambiae s.l [61].

At the level of malaria transmission, P. falciparum is 
the most prevalent malaria parasite in 99.7% of cases in the 
African continent [1]. Knowing that some bacteria strongly 
influence malaria transmission, we hypothesized that the 
midgut microbiota of An. gambiae s.l reflected the bacte-
rial community of the environment in which it lived and 
that this correlation could be one explanation for the envi-
ronment-related epidemiological characteristics of malaria. 
Among the 224 bacterial genera detected, 8 of them genera 
had an An. gambiae s.l-Plasmodium interaction by reducing 
transmission to humans [8]. The most frequent genus was 
Pseudomonas, followed by Aeromonas, Asaia, Comamonas, 
Enterobacter, Klebsiella, Pantoea and Serratia [18, 44]. 
Table 2 shows greater abundance of OTUs from the gen-
era Pantoea, Klebsiella, Aeromonas and Comamonas in the 
Sahelian area, of Asaia and Pseudomonas in the Sudanian 

area, and of Enterobacter in the Sudano-Sahelian area. All 
these genera (OTUs) were also more abundant in cotton-
growing localities. Other studies showed that the abundance 
of the genera Serratia or Asaia was significantly correlated 
negatively with P. falciparum infection both in the mid-
gut and salivary glands of malaria-vector mosquitoes [44, 
50, 51]. Asaia, Enterobacter, Pantoea, Serratia and Pseu-
domonas have been proposed as promising symbiotic control 
agents of malaria vectors such as An. gambiae s.l by para-
transgenesis [52, 53, 62]. Asaia is transmitted vertically from 
mother to progeny, indicating that it could quickly spread 
[14]. This great OTU abundance of natural microbes (Pan-
toea, Klebsiella, Aeromonas and Comamonas) which medi-
ate refractoriness to Plasmodium infection in An. gambiae s.l 
[43], has been noticed in the Sahelian area where less pluvi-
ometry is recorded in Burkina Faso and thus could explain 
the low transmission rate [32]. These data (low malaria 
transmission region) are correlated with the statistics of the 
2017–2018 report about National Malaria Indicators [63]. 
We found Wolbachia in An. gambiae s.l. It was also recently 
discovered in Burkina Faso, and the authors described it as 
a novel Wolbachia strain related to but distinct from strains 
infecting other arthropods [64]. Infection by this recent Wol-
bachia strain was negatively correlated with the presence 
of Plasmodium parasites [55, 56]. Wolbachia can manipu-
late mosquito reproduction and immunity and thus limit the 
spread of arthropod human pathogens [54, 57]. Wolbachia 
are obligate in filaria and are inherited intracellular bacterial 
endosymbionts colonizing around half of the insect species 
including several Culex and Aedes mosquito species [58, 
59], but rarely found in Anopheles species [65]. Neverthe-
less, Wolbachia has also been found in An. gambiae s.l and 
An. moucheti from Guinea, the Democratic Republic of 
Congo, Ghana, Uganda, and Madagascar [66]. This evidence 
of Wolbachia presence promotes further investigations on 
the possible use of natural Wolbachia–Anopheles associa-
tions to limit malaria transmission [8].

Conclusion

This study explored the midgut bacterial community of An. 
gambiae s.l, a malaria vector from Burkina Faso. No statis-
tical difference in OTU abundances was found among the 
different areas, fields or localities. Therefore, the same con-
trol strategy to target mosquito midgut bacterial community 
and affect their fitness by bacterial refractoriness species 
to Plasmodium may be a valuable way for future malaria 
control efforts in Burkina Faso. Richness and diversity 
indexes showed significant differences in the cotton-growing 
fields and in the agroclimatic zones, mainly in the Sudano-
Sahelian area. Potential bacterial species refractoriness to 
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Plasmodium were detected, with a particular great abun-
dance in the Sahelian area where low rate of malaria has 
been recorded.
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