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ABSTRACT 

 

 

    The finite element method can be used to compute electromagnetic fields induced in the 

human body by environmental non-ionizing radiations. Such computations can be affected by 

uncertainty in electrical characteristics of the human body, as well as by their variability with 

respect to age and other physiological parameters. In this work, within a probabilistic framework, 

we account for the uncertainties in the electrical characteristics of the human tissues and 

propagate them to predictions. By restricting our attention to nonintrusive methods that can be 

implemented as wrappers around the finite element method (Black box), no modification of the 

finite element source code is required. After verifying the convergence of the method, we 

compute various statistical descriptors for the induced electromagnetic fields, in the brain tissues, 

under exposure to high frequency (microwave) and extremely low frequency (ELF) 

electromagnetic fields. Finally we include a sensitivity analysis of uncertainties to gain some 

insight into the manner in which uncertainties in the electrical characteristics of the human 

tissues induce uncertainties in the electromagnetic fields.  
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Preface 

 

 

 

 

 

This dissertation deals with the application of spectral methods to problems of uncertainty 

propagation and quantification in computational electromagnetism based on finite element 

methods. It specially focuses on the computation of electromagnetic fields induced in the human 

body by environmental non-ionizing radiations. Spectral methods are probabilistic in nature, and 

they are consequently rooted in the rich mathematical foundation associated with probability and 

measure theory. However, in this dissertation, the discussion only alludes to those theoretical 

aspects as they are needed to set the stage for the subsequent applications. This dissertation is 

composed of 5 chapters. Chapter 1 discusses existing challenges in the computation of induced 

electromagnetic fields in the human body. This is followed by brief comments on various 

approaches used to deal with uncertainties. Chapter 2 focuses on numerical methods for 

Maxwell’s equations, and it also discusses fundamentals of uncertainly quantification, 

propagation and sensitivity analysis. Chapter 3 discusses so called non-intrusive methods of 

uncertainty propagation and their application to our problem. Chapter 4 illustrates the use of the 

approaches introduced in Chapter 3 by focusing on extremely low frequency (ELF) and radio 

frequency (RF). Chapter 5 provides a brief conclusion of the dissertation.  
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Chapter 1 

Introduction 

 

1.1 Computation of induced fields into the human body 

 

 Biological effects 

People have been subject to electromagnetic (EM) radiation since the beginning of humankind. 

Once EM radiation came only from natural sources such as the sun and thunderstorms. Today we 

are subject to additional EM radiation from artificial sources. At the low end of the frequency 

spectrum (60 or 50 Hz) are the EM fields generated by electric power lines and small and large 

appliances. At the high end is nuclear radiation consisting of gamma rays and X rays. In between 

are the so-called radio-frequency (RF) EM waves that carry everything from AM and FM radio 

and television broadcasts, ham and citizen band radios, cordless and cellular phones, and 

personal communication devices. The term RF is layperson’s language used to describe the 

frequency range between a few kilohertz to several hundred gigahertz [1]. Therefore, radars for 

air traffic controls or for automobile speed checks, microwave ovens, computer, and other 

electronic products are also radiating or leaking RF EM waves, although they are not associated 

with radios. Very high energy electromagnetic waves, such as gamma rays or X rays, are called 

ionizing radiation because they ionize molecules in their paths. Uncontrolled exposure to large 

amounts of these waves is known to cause sickness and even death in humans [2]. The biological 

effects of non-ionizing RF electromagnetic waves are not well understood at this time, despite 

numerous of studies on the subject. There is no proof that exposure to low frequency EM fields 

from power -lines will cause sickness in humans. However, some studies have found a weak 

statistical correlation between occurrence of leukemia and length of exposure time to electric 

power-lines [3].  

 Safety limits 

Most research on possible dangers from non-ionized electromagnetic radiation was researched 

by former Soviet Union and Eastern European Bloc countries and was quite limited until the 

beginning of 1970’s.Research [2]. The west also started research on the same subject, namely, 

the effects of EM or study of positive and negative reactions of electromagnetic fields on live 

organism, upon the first troubling indication. Finally, as for human exposure to RF 

electromagnetic fields, several organizations such as the Institute of Electrical and Electronics 

Engineers  (IEEE) and the International Council on Non-Ionizing Radiation Protection (ICNIRP), 

have conducted several studies and proposed different safety limits. 

 IEEE safety limits 

The IEEE has proposed safety limits based on more than eight years of studies by more than 100 

of engineers, biophysicist, and cancer researchers. These limits are shown in the figure 1.1 [4]. 

At frequencies higher than 100 MHz, the human exposure limits are in terms of power density, 

or magnitude of the time-averaged Poynting vector. At lower frequencies, the limits are 
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expressed separately in terms of the E and H field, because each field has different biological 

effects. 

 

 

              Figure 1.1:  IEEE safety limits for human exposure to RF and ELF fields 

 

Although the IEEE standards shown in the Figure 1.1 is the accepted exposure limit at the 

present time, some experts recommend practicing “prudent avoidance” [1]. That is, avoid 

exposure to electromagnetic radiation if it can be accomplished with small investment of money 

or effort. 

 ICNIRP safety limits 

The ICNIRP standard is used in most European countries and is gaining acceptance in many 

other countries throughout the world outside of North America. This standard provides a two-tier 

set of RF exposure limits. The higher tier is referred to as Occupational while the more 

restrictive tier is referred to as General Population. Exposure limits are given from DC to 300 

GHz. Exposure limits for the magnetic field are relaxed below 100 MHz since the exposure 

limits at lower frequencies are based more on electro-stimulation than body heating and both 

induced and contact currents are related to the strength of the electric field. There are also limits 

for induced currents and contact currents [10]. An example of ICNIRP safety limits is shown in 

figure 1.2. 
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Figure 1.2: ICNIRP Exposure Limits 

 

 Computational electromagnetism  

The application of computational electromagnetism (CEM) to problems involving 

electromagnetic fields and the human body dates back to the early 1970s. The goal was to 

quantify the fields penetrating in to the human body from an EM source. The techniques used in 

those days were mostly analytical or semi-analytical and applied to simplified object, like 

homogenous or layered spheres, cylinders and ellipsoids, representing the human body [5]. Later 

on, numerical techniques, such as the finite element methods were used with simplified models 

representing the tissues. In the past decade, computational hardware resource have advanced to 

such an extent that it is now feasible to use numerical technique to simulate and predict the 

inducted fields, with high degree of accuracy, in and around complex object such as a 

heterogeneous, anatomically realistic, human head [2]. Despite the improvements of the 

computer systems technology and numerous developments in techniques over the years, the 

results of such computations can be affected by uncertainty in electrical characteristics of the 

human body because of the electric properties of tissues are not precisely known and may vary 

depending on the individual, his/her age and other physiological parameters [11]. 

 Problem setting 

In this dissertation, first we try to use the finite element method (FEM) to compute 

electromagnetic fields induced in the human body by environmental non-ionizing radiations. 

Then within a probabilistic framework we account for the uncertainties in the electrical 

characteristics of the human tissues and propagate them to predictions, by restricting our 

attention to nonintrusive methods that can be implemented as wrappers around the finite element 

method (Black box). Then, we compute the probability for the electromagnetic fields to exceed 

thresholds defined by the international guidelines (ICNIRP), in the human tissues, under 

exposure to high frequency (Microwave) and extremely low frequency (ELF) electromagnetic 

fields. Finally we include sensitivity analysis of uncertainties to gain some insight into the 

manner in which uncertainties induced in the electrical characteristics of the human tissues 
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induce uncertainties in the induced fields. Despite existence of many frameworks and methods to 

propagate the uncertainties to predictions, here we focus on non-intrusive methods, such as 

stochastic expansion methods and Monte Carlo. The most attractive feature of non-intrusive 

methods comes with the approximations of the quantity of interest, which requires a 

deterministic solver only, and so needs no particular adaptation of existing codes to generate the 

outputs. However, the numerical cost of non-intrusive methods essentially scales with the 

number of deterministic model resolutions one has to perform to construct the approximation. 

This number of model resolutions can be large. In particular, stochastic expansion methods 

suffer from the curse of dimensionality (the number of model resolutions increases exponentially 

with the number of independent random variables in the parameterization) [7].  
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Chapter 2 

Literature Review 

 

2.1 Uncertainty Quantification and Propagation 

 

 Notation  

In this dissertation, we use the following system of notation 

 A lowercase letter, for example, x, is a real deterministic variable. 

 A boldface lowercase letter, for example, x =(x1, . . . ,xm), is a real deterministic vector. 

 An uppercase letter, for example, X, is a real random variable.  

 A boldface uppercase letter, for example, X=(X1,  .  .   , Xm), is a real random vector. 

 An uppercase letter enclosed between square brackets, for example, [A], is a real 

deterministic matrix. 

 A boldface uppercase letter enclosed between square brackets, for example, [A], is a real 

random matrix. 

 

 Propagation of the uncertainties 

We think of a computational model as a mapping of a set of input variables into a quantity of 

interest. We consider the nonlinear mapping 

 
   (        )                                                   (     )       

where   is the computational model, x =(x1, . . . , xm) the input variables, and the y the quantity of 

the interest. Once the uncertain input variables are characterized as a random variable X with 

values in   , the transformation of X trough the computational model   provides the 

characterization of the quantity of interest as the random variable Y  with values in    such that 

 

 

             (        )                                             (2.1.2) 

 

 

The definition of Y as the transformation of X trough   implies that the probability distribution 

PY of Y is the image of the probability distribution PX of X under   . For example in 

electromagnetic modeling of tissues, uncertain input variables could be electric conductivity or 

electric permittivity of the different tissues. Note that, when a vector valued quantity of interest 

is considered, an analysis that treats all its component simultaneously can be more informative 

[6]. 
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2.1.2 Non-intrusive methods 
 

The so-called non-intrusive methods rely on a set of deterministic model resolutions, 

corresponding to some specific values or realizations of X, to construct approximations  ( )  
Along this line, a deterministic simulation code can be used as a black-box (here we used the 

GetDP finite element solver). 

 

 Advantages 

The most attractive feature of non-intrusive methods comes with the approximation of  ( ), 

which requires a deterministic solver only, and so needs no particular adaptation of existing 

codes to generate the outputs.  Using the computer code as a black-box also presents the 

advantage of making non-intrusive methods applicable to models of virtually any complexity 

(multi-physics, coupled problems, highly nonlinear models. . .) [7].  The numerical cost of non-

intrusive methods essentially scales with the number of deterministic model resolutions one has 

to perform to construct the approximation. This number of model resolutions can be large. In 

particular, stochastic expansion methods suffer from the curse of dimensionality (the number of 

model resolutions increases exponentially with the number of independent random variables in 

the parameterization). This drawback makes non-intrusive methods computationally intensive 

and costly if the underlying deterministic model is expensive to solve. 

 

2.1.2.1 Monte Carlo sampling methods 

 
This methods is certainly quite popular, and also the simplest to implement. Monte Carlo 

sampling method begins by generating an ensemble of   independent and identically distributed 

(i.i.d) samples from the probability distribution PX, written as follows: 

 

                                                                        {        }.                                  (2.1.3) 

  

The computational model is then used to map each sample from PX into the corresponding 

samples from PY that is, 

                                                                    (  )                                        (2.1.4) 

 

to obtain the corresponding ensemble of i.i.d. samples from PY, written as follows: 

 

                                                                     {        }                                       (2.1.5)      

 

Various statistical descriptors can be approximated by using methods from mathematical statics:     

 

                              
  

 

 
∑    

 
              

  (  
 )  

 

 
∑ (     

 )  
            (2.1.6) 

 

 

where,   is the number of samples,    and   
  are the mean and variance of the quantity of 

interest respectively,   
  and   

  are approximated values of mean and variance with respect to  . 
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 Effectiveness and Limitations 

The Monte Carlo sampling method is most computationally efficient for problems of very high 

dimension, that is, for computational models with a very large number of uncertain input 

variables. One of the principal limitations of Monte Carlo (MC) methods concerns their 

convergence rate [7]. From a theoretical point of view, the law of large numbers and central limit 

theorem (refer to the [12]) can be used to analyze the convergence of approximations of 

statistical descriptors of quantity of interest such as those in (2.1.6) with respect to the number of 

samples. Under certain conditions, the central limit theorem ensures that accuracy improves with 

the square root of the number of samples [6] which is relatively low as the convergence rate.  

Numerous sampling methods have been proposed in order to accelerate the statistical 

convergence of estimators (importance sampling, variance reduction, Latin hypercube,..) but 

these are generally insufficient to provide accurate characterization of uncertain systems [7]. 

 

2.1.2.2 Stochastic expansion methods 

 
Stochastic expansion methods most often involve two steps. First a surrogate model is fitted to 

the computational model; then, the characterization of the uncertain input variable is mapped 

through the surrogate model (instead of through the computational model) in to the 

characterization of the quantity of interest. A surrogate model is any model that mimics the 

relationship that a computational model establishes between the uncertain input variables and the 

quantity of interest and yet is computationally less expensive. Here, we focus on polynomial 

surrogate models. 

 

Let elements   (                  ) of    be referred to as multi-indices and let a (multivariate) 

monomial     associated with a multi-index   be a function from           defined by 

     
              

  . Let the number | |                 be referred to as the modulus of   

and also the order of   . Let a multivariate polynomial be a function from            that maps 

any x to a finite sum ∑     
 

  with real coefficient    . Then    of order p in an m-vitiate 

polynomial that approximates the computational model in the PX –weighted least-square sense: 

 

 

     ∑    
                                   

 

 
 ∫ | ( )  ∑    

  
⌈ ⌉  |

 
       

 
⌈ ⌉    

(2.1.7) 

 

where     and, µ is the number of monomials in {         | |   } and    {     | |  
 } collects the coefficients [6]. This procedure is pretty similar to the mathematical procedure for 

finding the best-fitting curve to a given set of points by minimizing the sum of the squares of the 

offsets (the residuals) of the points from the curve. The sum of the squares of the offsets is used 

instead of the offset absolute values because this allows the residuals to be treated as a 

continuous differentiable quantity and also the fitting technique can be easily generalized from a 

best-fit line to a best-fit polynomial when sums of vertical distances are used. However in this 
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case, points are distributed in the space with respect to the certain probability distribution 

function (PDF). 

 Polynomial chaos expansion 

Let {      |  |   } be a set of polynomials    that span the set of all polynomials of order 

at most p are PX –orthonormal, that is, 

                                   ∫   ( )  ( )                                ⌈ ⌉ | |                         (       )       

where PX is probability distribution of X ,      if     and       otherwise. Then 

polynomial chaos could be defined such that: 

     ∑   
 
⌈ ⌉                        ∫  ( )

     ( )              | |            (2.1.8) 

                                                    ( )  ∑     ( ) 
⌈ ⌉   ,                                (2.1.9) 

where the coefficients    are referred to as polynomial chaos coefficients and the PX-

orthonormal polynomials    as polynomial chaos. Stochastic expansion methods refer to this 

characterization of the quantity of interest,    ∑     ( ) 
⌈ ⌉  , as a polynomial chaos 

expansion [6]. 

  Nonintrusive projection methods 

Despite existence of several types of implementation to obtain surrogate model (such as 

embedded projection or interpolatory collection method), here we describe only nonintrusive 

projection method. Nonintrusive projection methods approximate integrals (see equation: (2.1.8), 

(2.1.7)) with respect to the probability distribution PX using a quadrature rule. 

 Quadrature rule 

A quadrature rule for integration with respect to PX is a set {(  
    

 )      } of nodes   
  

and associated weight   
  that allow the integral of any continuous, integrable function f from 

          with respect to PX to be approximated by a weighted sum of integrand evaluations as, 

 

                                              ∫  ( )
       ∑   

  (  
 ) 

   ,     (2.1.9.1) 

 

where ∫  ( )
       is referred to integration with respect to the probability distribution PX .The 

Gauss quadrature rule with   nodes that has only positive weights and is exact for all 

polynomials up to order       so if we set       , then we can integrate exactly 

polynomials up to order 2P+1 [6]. 

 First nonintrusive projection method 

A first nonintrusive projection method exploits the fact that for certain “labeled” probability 

distribution PX, recurrence relations that can be used to produce sets {     | |   } of PX-

orthonormal polynomials    are explicitly known and can be read from tables in the literature
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[6]. When such a set of PX-orthonormal polynomials is explicitly known in advance, the first 

nonintrusive projection method provides the surrogate model as follows: 

 

       ∑   
                    

  ∑  
  (  

 )

 

   

 

| |  

  (  
 )         | |    

 

(2.1.10) 

 

That is, it provides the surrogate model by approximating the integral with respect to PX involved 

in the definition of the coefficients in (2.1.9) using the quadrature rule for integration with 

respect to PX. 

 Second nonintrusive projection method 

A second nonintrusive projection method, which does not require a set of PX-orthonormal 

polynomials to be explicitly known in advance, is obtained by approximation the integral with 

respect to PX involved in the definition of the objective function in (2.1.7) using the quadrature 

rule for integration with respect to PX. This second nonintrusive projection method provides the 

surrogate model as a solution of the following weighted least-square problem: 

   ̃    ∑   
 

 

| |  

                           
 

 
 (  [ ] ) [ ](  [ ] )       

(2.1.11) 

where   is the               vector, with      (  
 ) , [M] the (   )              

matrix with     (  
 ) , and [W] the               diagonal matrix with       

  .We 

recall that µ is the number of monomials in {         | |   } and   is the number of nodes in 

the quadrature for integration with respect to PX  [6]. 

Notice: if [M] or [W] is rank-deficient or ill-conditioned, the use of an inadequate method may 

cause a disastrous loss of numerical accuracy [6, 7] 

 Effectiveness  

When a stochastic expansion method is used, an accurate surrogate model can usually be 

obtained in a computationally efficient manner if the computational model has only small or 

moderate number of uncertain input variables and is sufficiently smooth; once available, the 

propagation of uncertainties through this surrogate model usually entails virtually no overhead 

beyond the computational cost of its construction (low computational cost).  

 Limitations 

Nonintrusive-projection-based implementations that use nonprobabilistic integration methods 

suffer from a so-called “curse-of-dimensionality” because as the number of uncertain input 

variables increases, nonprobabilistic integration methods lose their ability to form accurate 

quadrature rules with only a small number of nodes [6, 7]. 
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2.2 Stochastic Sensitivity Analysis and applications 

 
Once the characterization and propagation steps are complete, the objective of the sensitivity 

analysis of uncertainties is to gain some insight into the manner in which uncertainties 

introduced in the input variables induce uncertainties in the quantity of interest. Despite 

existence of several methods such as differentiation-based methods, in this section we focus only 

on variance-based methods. 

 Statistical independency 

Statistically independent subsets of uncertain input variables are those between which no 

physical, causal relationship exists, or no logical relationship is indicated by the available 

information. 

 Significance descriptor 

As the main tool for gauging the significance of a subset of uncertain input variables in inducing 

uncertainties in the quantity of interest, say, of the j-th subset, variance-based methods provide 

the following significance descriptor: 

    ∫ (∫ ( (      )    ( 
  ))

 

 
   

       )                              (2.2.1) 

                                         ( 
  )  ∫  (      )

 
                                     (2.2.2) 

where     denotes the random variable that collects all those components of the random variable   

X that are not components of random variable    [6]. 

 Interpretation  

An intuitive interpretation is obtained by recognizing ∫ ( (      )    ( 
  ))

 

 
       , as 

the variance of (      ). A significance descriptor that reflects the significance of the j-th subset 

of uncertain input variables in inducing uncertainties in the quantity of interest. Once all 

significance descriptor are available, the corresponding subsets of uncertain input variables can 

be arranged in order of significance.  

 

2.3 Numerical Methods for Maxwell’s Equations 

In this section we formulate the Maxwell’s equations, and discuss the finite element method to 

solve them. Hereafter in this section, boldface letter for example, E, is a vector. 

 

 

2.3.1 The Maxwell’s equations 

 

The fundamental theory of the electromagnetic fields is based on Maxwell’s equations. These 

equations govern the electromagnetic fields E, D, H and B:  
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Faraday’s law of induction:                   
  

  
                                   (2.3.1)   

Ampere-Maxwell’s law:                      
  

  
                                  (2.3.2) 

Electric Gauss’ law:                                                                       (2.3.3) 

Magnetic Gauss’ law                                                                     (2.3.4) 

Where 

 

E = electric field strength                (Volt per meter) 

D = electric flux density                  (Coulombs per square meter) 

H = magnetic field strength             (Amperes per meter) 

B = magnetic flux density               (Webers per square meter) or (tesla) 

J = electric current density              (Ampere per square meter) 

  = electric charge density              (Coulombs per cubic meter) 

 Constitutive relations 

Physically, the constitutive relations provide information about the environment in which 

electromagnetic fields occur (for example, free space, water, or plasma media)  

                        (2.3.5) 

                       (2.3.6) 

                         (2.3.7) 

Where 

µ = magnetic permeability (H/m) 

  = dielectric permittivity (F/m) 

  = electric conductivity (S/m) 

 

2.3.2 Maxwell equation in weak form 

This section focuses only on the weak formulations of Radio Frequency and Extremely Low 

Frequency domains.  

2.3.2.1 Extremely low frequency domain 

In the quasi-static approximation, Maxwell’s equations (2.3.1-4) for Magnetodynamics problem 

are: 

                                       
  

  
      ,                     ,                             (2.3.10-a, b, c) 

                                                                                                          (2.3.11) 

Due to the large average conductivity of tissues, the conduction currents are dominant with 

regard to the displacement currents and, the latter can be neglected. Besides, At ELF with such 
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conductivity (      
 

  
), the skin depth is of hundreds of meters which allows to neglect the 

effect of reaction field as well : 

 

                                                                        ,                                    (2.3.12) 

 

where Bs is an imposed source flux density to which the body exposed, a is magnetic vector 

potential ( 
   

 
)  Then, using (2.3.12) and (2.3.10-a),      formulation can be obtained such 

that: 

                                        
  

  
        

   

  
       ,                              (2.3.13) 

 

where, a and   are magnetic vector potential ( 
   

 
)  and electric scalar potential (V) respectively 

(index s, referred to the imposed source). The computational domain ( ) can thus be restricted to 

the human body with an imposed boundary (  ) condition at its surface given by: 

 

                                                  |                                                                 (2.3.15) 

                                                                |     ,                                                         (2.3.14) 

where n is the normal vector and reference point could be any point on the surface. 

 The E-conform      formulation 

Let a be a known magnetic vector potential such that: 

 

                                                                        .                                                     (2.3.15.1) 

Using Faraday’s law (2.3.10-a), we can obtain (2.3.15.2): 

                                                           
   

  
                                                      (2.3.15.2) 

where,   is an unknown electric scalar potential. The weak forms of Ampere’s law (2.3.10-b), 

Find     (       ) such that: 

                ∫ ( ( (
  

  
)       ))  (       )

 
                (       ) ,            (2.3.16) 

where    is a test function,   is the computational domain, and    (      )  {  

  ( )  ∫ ‖    ( ( ))‖
 
    

 
} . The time harmonic representation (      ) of the 

(2.3.16) is as follows: 

                                     ∫  (        ( ))     (  )   
 

                                          (2.3.17) 

     (       ), 



13 
 

where    is a test function,   is the computational domain, and    (      )  {  

  ( )  ∫ ‖    ( ( ))‖
 
    

 
} . 

2.3.2.2 Simulation in infinite spatial domains 

The behavior of waves as     requires the numerical treatment of boundary conditions. 

Several methods exist, such as Absorbing Boundary Conditions (ABC), Perfectly Matched Layer 

(PML), Boundary Integral Equation (BIE), etc. in this section we describe only PML. 

 Perfectly matched layer (PML) 

A perfectly matched layer (PML) is an artificial absorbing layer for wave equations, commonly 

used to truncate computational regions in numerical methods to simulate problems with open 

boundaries. 

               

     Figure 2.3: 3D view of the PML cage. 

The main idea is quite simple, wherever an X (space) derivative 
 

  
 appears in the wave equation, 

it could be replace by, 

 

  
 

 

  
  ( )
 

 
 

  
    

where   is the angular frequency and   is absorption function (          ). 

 Absorption function 

Several types of absorption function exist: 

 ( )       (
 

 
)      (Quadratic function), 

 ( )  
 

   
               (Hyperbolic function), 

 ( )  
 

 

 

   
            (Shifted-hyperbolic function), 

where,   is layer thickness.  
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 Action Mechanism 

Wherever   is positive (inside PML domain), propagating waves are attenuated because: 

    
 

 
∫  (  )   

 

 

Then 

  (     )    (     )   
 
 ∫  (  )   

  

Notice:   should be equal to zero inside the computational domain  . 

 

2.3.2.3 Radio frequency domain 

Maxwell's equations can directly give wave equation for the electric field E. Substituting Gauss' 

law for electricity (2.3.3), into the curl of Faraday's law of induction (2.3.1), and using the curl of 

the curl identity   (   )   (   )      , gives the wave equation for the electric field E: 

 

  

   

   
       (

 

 
    

  

  
)  

(2.3.18) 

where  
 

     . Then we assumed,    , because there is no charge density in the free space. 

Substituting ohm’s low (    ) in (2.3.18), gives the wave equation for the electric field such 

that: 

 

  

   

   
       

  

  
    

(2.3.19) 

Time-harmonic representation (     ) of (2.3.19), is as follows: 

                    

 (2.3.20) 

 Weak formulation 

Find  {       (      )} such that: 

∫  (   ( ))(   (  ))  
 

 ∫   (   )    
  

 ∫         
 

 ∫          
 

    

         (     )  
(2.3.23.5) 
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where   
 

 
  , and boundary conditions have written for the figure 2.3: 

1) If              ,                     (2.3.23.6) 

2) If         {
    

    
  ,                      (2.3.23.7) 

where           and µ     .   operate such that: 

      (
    

  
 
    

  
 
    

  
)  

(2.3.23.8) 

where,      
 ( )

  
,      

 ( )

  
 ,      

 ( )

  
  and   is a damping function.  
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Chapter 3 

Methodology 

 

 
 

3.1 Problem setting 

 

 

 Head model 

The human head is a highly complicated structure in term of material electric properties. The 

simplest model which can simulate the head is a box or a sphere. The sphere can either consist of 

a single material or comprise a central sphere of the brain white matter, which is surrounded by 

spherical shells of other tissues such as the brain gray matter and bone cortical also it’s possible 

to decrees computational cost using 2D models [3]. In this case, the head is modeled by a central 

ellipse of white matter which is surrounded by ellipsoidal shells of other tissues, such as the gray 

matter and bon cortical. You can see the realistic geometrical parameters for a normal head in the 

following figure,  

 
 

Figure 3.1: Geometrical parameters for a normal head. 

 

Also different anatomical regions are shown in the figure 3.2. 

 
 

                                                               Figure 3.2: Gray and White matter of the brain. 
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As the first step, we model the head by a central ellipse of the white matter which is surrounded 

by ellipsoidal shells of the gray matter and bone cortical. The geometrical parameters of each 

region are shown in the following figures. 

 

 

 
 

                                                                          Figure 3.3: 2D model of the head. 

 

 

 

 

 Uncertain input variables and the quantity of interest 

 

In general, the quantity of interest should be chosen with respect to the frequency domain as well 

as the anatomical region of study. Regard to the ICNIRP safety limits (for the central nervous 

system CNS) [8], in ELF domain, the mean absolute value of the electric current density in gray 

matter is chosen as the quantity of interest. However, in RF domain, mean square absolute value 

of the electric field in gray matter is chosen as the quantity of interest. Indeed, the impacts of 

uncertainties in the electric characteristics of the brain tissues on the quantity of interest depend 

on the frequency domain. As mentioned before, in ELF domain, we assume that the relative 

magnetic permeability of the brain tissues is as the same as the air(    ), so in such cases, 

only the impacts of uncertainties in the electric conductivity ( ) of tissues should be studied. 

However in RF domain, the impacts of uncertainties in the electric permittivity(  ) should be 

studied as well as the impacts of uncertainties in electric conductivity of tissues. 
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3.2 Characterization of uncertainties 

 

 

 Probability Distribution Function (PDF) 

As the second step, we focus on finding the PDF of uncertain input variables. We assumed the 

electric conductivities of different tissues as the uncertain input variables. According to the 

principle of maximum entropy, if nothing is known about a distribution except that it belongs to 

a certain class, then the distribution with the largest entropy should be chosen as the default. In 

ELF domain, for electric conductivities, only two (or even only one) values per frequency point 

could be found among different references [9]. So, the uniform distribution is the best choice 

among all other labeled probability distributions. Because of The uniform distribution on the 

interval [a,b] is the maximum entropy distribution among all continuous distributions which are 

supported in the interval [a,b] (which means that the probability density is 0 outside of the 

interval). The probability distribution functions of electric conductivity in each anatomical region 

are shown in the following figures. 

 

 

 
                                                                                              

                                                                         Figure 3.4: PDF of the     in 50 Hz. 
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                                                                            Figure 3.5: PDF of the     in 50 Hz. 

 

 

 
                                                                                       

   Figure 3.6: PDF of the     in 50 Hz. 
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3.3 Propagation of uncertainties 

 

 Monte Carlo 

The Monte Carlo sampling method begins by generating an ensemble of   independent and 

identically distributed samples from the probability distribution    . In this problem, three cases 

could be imagined. If electric conductivity only in one region was uncertain or electric 

conductivities were uncertain in two or even three different regions, such cases called 1D, 2D 

and 3D respectively. The computational model is then used to map each samples from its 

probability distribution    into the corresponding sample form   . For example, we may 

characterize a 3D case as follows: 

 

 

                                                     Figure 3.7: FEM as a mapping of               into the     . 

 

                                             {(   
     

     
 )        } ,                  (3.3.1) 

                                               
   (   

     
     

 )             .       (3.3.2) 

 

Now, it’s possible to obtain, corresponding ensemble of i.i.d samples from  , written as follows: 

 

                                                          {   
       } .           (3.3.3) 

 

Once these i.i.d samples from    are available, various statistical descriptors can be 

approximated using methods from mathematical statistics. For example, the mean    and 

variance   
  (if they exist) can be approximated as: 

 

                      
     

  
 

 
∑    

  
    ,            

  (    

 )
 
  

 

 
∑ (   

      

 )  
    .     (3.3.4) 

 

This implementation is nonintrusive because it requires only the repeated solution of the 

computational model for different values assigned to its uncertain input variables. 
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 Polynomial based surrogate model 

 

Regard to relations which explained in detail in section 2.1.4, polynomial based surrogate models 

for each case (1D, 2D or 3D) could be obtained using second non-intrusive projection based 

method. This section discusses about 3D cases: 

 

 

 

                                             Figure 3.8: Surrogate model as a mapping of              into the     . 

 

            (           )    (           )  ∑ ∑ ∑        
    

 
   

  
   

 
   

 
    ,    (3.3.5) 

 

To find      we used the second non-intrusive projection method (explained in page 9) also to 

prevent ill-conditioning in matrix [M] (for higher order of P), uncertain input variables should be 

normalized for constructing of the surrogate model. So the equation 3.3.5 should be written as 

follows:  

 

 (           )    (           )   

 

∑∑∑    (
        

    

) (
        

    

) (
        

    

) 
 

   

 

   

 

   

  

  (3.3.6) 

 

where,  ( )  is the mean value and  ( )  means standard deviation (STD). Some statistical 

descriptors could be obtained directly from the surrogate model. Let  {(   
( )

  ( ))      } , 

{(   
( )

  ( ))      } and {(   
( )

  ( ))      } be ensembles of Gauss-Legendre nod 
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and weights in each dimension, then the mean and variance of the inducted current density in the 

gray matter could be obtained by the following relations (integration of surrogate polynomial 

with respect to the PDF): 

 

        
      

  ∑∑∑  (   
( )

    
( )

    
( )

)

 

 

 

 

 

 

 ( ) ( ) ( )                           (     ) 

    

  (    

 )  ∑∑∑(  (   
( )

    
( )

    
( )

)      

 ) 
 

 

 

 

 

 

 ( ) ( ) ( )          (     ) 

 

These values converge to     
,     

  by increasing the order of polynomial (P). 

 
 

 

3.4 Sensitivity analysis of uncertainties 

 

 Intuitive method 

 

Once the characterization and propagation steps are complete, then the next step would be 

sensitivity analysis. The objective of the sensitivity analysis of uncertainties is to gain some 

insight into the manner in which uncertainties introduced in the input variables induce 

uncertainty in the quantity of interest. This section focuses on intuitive method, based on 

comparison of uncertainty percentages. Intuitive method includes the following steps: 

 

Step 1: Compute the uncertainty percentages, for all of the uncertain input variables using the 

following formula, 

 

 

                                                           ( )  
  

  
             (     ) 

 

 

Step 2: Set all of the uncertain input variables except one (for example:    ) to their mean values 

then using MC to compute uncertainty percentage of output. 

 
      Figure 3.9: FEM as a mapping of     into the      

 

Step 3: Repeat step 2, for the rest of the uncertain input variables.  

 

Step 4: Interpretation of the results. 
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 Variance based method 

 

Regard to the relations (2.2.1) and (2.2.2) which described in detail in the chapter 2, in 3D cases, 

significance descriptor or Sobol coefficient of the gray matter (   )  obtained using the 

following relations (same methods for     and    ): 

 

  
               (        )            

(      ) 
 

    ∬ (∫ (  (           )
   

     
(       ))

 

    
(   )     )     

(   )    
(   )         

, (3.3.11) 

 

    
(       )  ∫  (           )

 

    
(   )       

 (3.3.12) 

    ∬ (∫ (  (           )
   

     
(       ))

 

    
(   )     )     

(   )    
(   )         

, (3.3.13) 

 

    
(       )  ∫  (           )

 

    
(   )       

 

 (3.3.14) 

    ∬ (∫ (  (           )
   

     
(       ))

 

    
(   )     )     

(   )    
(   )         

, (3.3.15) 

 

    
(       )  ∫  (           )

 

    
(   )       

 (3.3.16) 

 

As mentioned before, once all of the descriptors are available, the corresponding uncertain input 

variables can be arranged in order of significance. The higher    means more significance of the 

uncertain input variable of   in inducing uncertainties in the inducted current density in the gray 

matter. 
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CHAPTER 4 

RESULTS 

 

 

 
4.1 Case A: under exposure to ELF (2D) 

 

 

 Finite Element method 

We assumed that, the magnetic field and frequency are equal to, 4 (µT) and 50 (Hz) respectively, 

also in this section (Finite Element Method), we set                  to the mean values 

(   =0.007 (S/m),    =0.26 (S/m) ,    = 0.16 (S/m) ). The results are shown in the following 

figures (where the magnetic field is perpendicular to the surface).  

 

 

 
 

Imaginary part of electric current density    (
 

  ) , 

 where the real part is equal to zero. 

 

Figure 4.1 
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 Imaginary part of electric field    (
 

 
) , 

where the real part is equal to zero. 

Figure 4.2 

 

 
 

Equipotential lines   ( ) , 
 where the real part is equal to zero. 

                                                                                             Figure 4.3 
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As you can see, in the figure 4.1,   has the higher value in the gray matter rather the other 

anatomical regions, due to the higher value of    . 
 

 

 

 Monte Carlo method 

 

Case 1D:  

Let       , be the only uncertain input variables (see page 21) using MC, we obtained the 

following results: 

 

                                         

                                                                          Figure 4.4: FEM as a mapping of     into the     . 

 

 

                                                        Figure 4.5: Convergence study of      rather number of samples (MC-1D). 
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      Figure 4.6: Convergence study of    rather number of samples (MC-1D). 

Case 2D: 

 

 Three different situations could be imagined: 

 

Case A: 

                                     
Figure 4.7: FEM as a mapping of          into the     .                                                                

Case B: 

                                                  
Figure 4.8: FEM as a mapping of           into the     . 

Case C: 

 
Figure 4.9: FEM as a mapping of           into the     . 
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Case A: 
 

 
 

(100 random realizations) 

                                                                                                 Figure 4.10 

 

 

 

 
 

                                               Figure 4.11: Variation of               rather     and     using FEM. 
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Case B: 

 

 
 

(100 random realizations) 

                                                                                                 Figure 4.12 

 

 

 
         

 Figure 4.13: Variation of               rather     and     using FEM 
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Case C: 

 
 

(100 random realizations) 

                                                                                                 Figure 4.14 

 

 

 
 

Figure 4.15: Variation of              rather     and     using FEM 
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Case 3D: 

 
Let    ,     and     be uncertain:  
 

 

 
 

  Figure 4.16: FEM as a mapping of               into the    . 

 

 

 

 

 

 

 

 
(100 random realizations) 

                                                                                                 Figure 4.17 
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        Figure 4.18: Convergence study of     rather number of samples (MC-3D). 

 

 

 

 
           Figure 4.19: Convergence study of    rather number of samples (MC-3D). 
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        Figure 4.20: PDF convergence study (MC-3D). 

 

 

 Surrogate Model 

 

Case 1D: 

Let       , be the only uncertain input variables (see page 21) using surrogate model, we 

obtained the following results: 

 

 

      GetDp is replaced by Surrogate model. 

         Figure 4.21 

 



34 
 

           

             Figure 4.21: FEM and Surrogate model (1D). 

 

 
                          Figure 4.22:                   
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                     Figure 4.22:    (  
     

) . 

 

 

 

Case 2D: 

 

Case A: Let         be uncertain (here we explained only (Case A), other cases could be 

obtained using the same method). 

 

         Figure 4.23: Surrogate model as a mapping of           into the    . 
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                             Figure 4.24: Variation of              rather      and     using FEM and Surrogate model. 

 

        

                  Figure 4.25:     
     

. 
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                  Figure 4.26:    (  
     

) . 

 

Case 3D:  

Let        and      be uncertain, using the following algorithm we can compare results. 

Beside these it’s possible to obtain statistical descriptors from the polynomial directly. 

 

 

                  Figure 4.27: Comparison between surrogate model and FEM (Case 3D) 
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    Figure 4.28: Mean convergence study for the Case 3D using surrogate model and FEM. 

 

 

      Figure 4.29: STD convergence study for the Case 3D using FEM and surrogate model. 
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                       Figure 4.30:     
     

 

 Sensitivity analysis of uncertainties 

Intuitive method: 

 

Step1: Compute the uncertainty percentages, for all of the uncertain input variables 

 

 

Uncertain Input Variable 

 

STD  (S/m) 

 

Mean (S/m) 

 

            ( )  
  

  
     

 

               

 

       

 

       

 

       

 

             

 

       

 

       

 

       

 

              

 

       

 

       

 

       

 

              Table 4.1: Uncertain input variables with their uncertainties (see: section 3.4) 
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Step 2 &3: 

Uncertain Input Variable STD   (A/m
2
) Mean  (A/m

2
)   

            ( )  
  

  
     

            

Uncertain Constant Constant                                   

Constant Uncertain Constant                         

Constant Constant Uncertain                               

 

  Table 4.2: uncertainty percentages of      in different situations (see: section 3.4). 

 

Step4: 

As you can see, one percent uncertainty in     led to, about once percent uncertainty in    . 

However, effects of uncertainties in     and    could be ignored. 

Variance based method: 

Regard to the section 3.4, relations (3.3.10-12), we obtained the significance descriptors as the 

follows: 

    
              (

 

  )
           

               (
 

  )
  ,       

                (
 

  )
 . 

 

 
               Figure 4.31: Significance Descriptors (            )  
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4.2 Case B: under exposure to RF (2D) 

 

 Finite Element Method 

Regard to section 2.3.4, positions in the PML cage, head, dipole and their geometrical 

parameters have shown in the following figure: 

 

 

    Figure 4.32: Head and the PML cage 

 

We assumed that, the frequency is equal to 1.8 GHz also by fixing   and   to their mean values, 

we obtained the following results (by restricting our attention to the head). 
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 Imaginary part of electric current density    (
 

  
) . 

      Figure 4.33 

 

 

       Real part of electric current density    (
 

  ) . 

      Figure 4.34 
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Real part of the magnetic field    (
 

 
) , 

    Figure 4.36 

 

 

 
 

Imaginary part of the magnetic field    (
 

 
) . 

      Figure 4.37 
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                                                                         Real part of the magnetic field    (
 

 
) . 

(Second view) 

 Figure 4.38 

 

 

 

    Norm of the electric field | |   (
 

 
). 

        Figure 4.39 
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 Characterization of uncertainties 

 

As the first step we should define, PDFs of the uncertain input variables .we assumed the electric 

conductivities of different tissues as the uncertain input variables. According to the principle of 

maximum entropy, if nothing is known about a distribution except that it belongs to a certain 

class, then the distribution with the largest entropy should be chosen as the default. Despite 

existence of the several values for electric conductivity on 1 GHz, on 1.8 GHz, only one value 

could be found among different references. So, the uniform distribution is the best choice among 

all other labeled probability distributions. Because of The uniform distribution on the interval 

[a,b] is the maximum entropy distribution among all continuous distributions which are 

supported in the interval [a,b] (which means that the probability density is 0 outside of the 

interval). The probability distribution functions of electric conductivity in each anatomical region 

are shown in the following figures. 

 

 

 

Figure 4.40: PDF of the      in 1.8 GHz. 
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Figure 4.41: PDF of the      in 1.8 GHz. 

 

 

 

 
Figure 4.42: PDF of the      in 1.8 GHz. 
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 Surrogate Model 

 

Case 2D:  

Let     and     be uncertain, using the following algorithm we can compare results. Beside 

these it’s possible to obtain statistical descriptors from the polynomial directly. 

 

 

 

Figure 4.43: Comparison between surrogate model and FEM (Case 2D).  

 

Figure 4.44: Variation of                rather     and     using FEM and Surrogate model. 
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  Figure 4.45:     
| | 
     

 . 

 

Figure 4.46:    ( 
| | 
     

)  . 
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Case 3D:  

Let        and      be uncertain, using the following algorithm we can compare results. 

Beside these it’s possible to obtain statistical descriptors from the polynomial directly. 

 

 

          Figure 4.45: Comparison between surrogate model and FEM (Case 3D).  

 

 

 

    Figure 4.46: Mean convergence study for the Case 3D, using surrogate model and FEM. 
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  Figure 4.47: STD convergence study for the Case 3D, using surrogate model and FEM. 

 

 

   Figure 4.48:     | | 
     

 . 
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 Sensitivity Analysis 

 

Variance based method: 

Regard to the section 3.4, relations (3.3.10-12), we obtained the significance descriptors as the 

follows: 

    
        (

 

 
)  , 

    
             (

 

 
)  , 

    
               (

 

  
)  , 

 | | 
          (

 

 
) . 

 

 

 

              Figure 4.49: Significance Descriptors (             )  
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4.3 Interpretation of the results 

 

Extremely Low Frequency Domain (ELF): 

 

 Sensitivity analysis of uncertainties 

As the last step, we carried out a sensitivity analysis of uncertainties, to gain insight into the 

manner in which uncertainties in the electric conductivities, induce uncertainty in electric current 

density in the gray matter. Using the variance based method, we obtained the following 

approximations of the significance descriptors for P=2 and  =3: 

 

 

Uncertain Input Variable 

 

      

      (A/m
2
)

2 

   

   

(    

   )
      

                         

                 

                        

 

        Table 4.3: Uncertain input variables with their significance descriptors 

 

Thus the uncertainties in the electric conductivity of the gray matter are much more significant 

than those in the bone cortical or white matter in inducing uncertainties in the electric current 

density in the gray matter. 

 

 Numerical convergence study 

We conducted a numerical convergence study (for all of the three cases) to examine the impact 

that the values assigned to P and   on the results. Specially, we repeated the construction of the 

surrogate model and the approximation of statistical descriptors for several values of P and 

setting      . We observed that the results presented previously for P=1 and      have 

converged reasonably with respect to the order P of the surrogate model and the parameter   that 

controls the number of nodes in quadrature for integration with respect to the PDFs. 

 



53 
 

Radio Frequency Domain (RF): 

 

 

 Sensitivity analysis of uncertainties 

As the last step, we carried out a sensitivity analysis of uncertainties, to gain insight into the 

manner in which uncertainties in the electric conductivities, induce uncertainty in square norm of 

the inducted electric field in the gray matter. Using the variance based method, we obtained the 

following approximations of the significance descriptors for P=2 and  =3: 

 

 

Uncertain Input Variable 

 

      

      (V/m)
4 

   

   

( | | 
   )

      

                  

                

                       

 
        Table 4.3: Uncertain input variables with their significance descriptors 

 

Thus the uncertainties in the electric conductivity of the gray matter and bone cortical are 

respectively much more significant  than those in the white matter in inducing uncertainties in 

the square norm of the electrical field in the gray matter. 

 

 Numerical convergence study 

We conducted a numerical convergence study (for all of the three cases) to examine the impact 

that the values assigned to P and   on the results. Specially, we repeated the construction of the 

surrogate model and the approximation of statistical descriptors for several values of P and 

setting      . We observed that the results presented previously for P=2 and      have 

converged reasonably with respect to the order P of the surrogate model and the parameter   that 

controls the number of nodes in quadrature for integration with respect to the PDFs. 

 

 



54 
 

Chapter 5 

Conclusions 

 

 

 

 Computational efficiency of the polynomial surrogate model 

In this dissertation, we covered sensitivity analysis in the electromagnetic modeling of the human 

head in its entirety. Both high and low frequency cases are included. In particular, in regard to 

the ICNIRP safety limits (for the central nervous system CNS), we focused on quantifying 

induced uncertainties in the electric current density and square norm of the electric field in the 

gray matter using Monte Carlo and stochastic expansion methods. These non-intrusive methods 

are implemented as wrappers around the finite element method (using GetDP as the finite 

element solver). We observed that, in this particular problem, despite the effectiveness of the 

Monte Carlo method (for computational models with a very large number of uncertain input 

variables), the polynomial surrogate model is much more computationally efficient than the 

Monte Carlo method due to its low computational cost and other advantages. We obtained 

statistical descriptors such as the mean and the variance directly from the surrogate model using 

the Gauss quadrature rule. 

 Sensitivity analysis of uncertainties 

Finally, we carried out a sensitivity analysis of uncertainties. Despite the existence of several 

types of sensitivity analysis of uncertainties, such as methods involving scatter plots and 

regression, correlation, and elementary effects and differentiation based methods, in this 

dissertation we focused on intuitive and variance-based methods. We observed that, in the ELF 

domain, uncertainties in the electric conductivity of the gray matter are much more significant 

than those in the bone cortical or white matter in inducing uncertainties in the electric current 

density in the gray matter. In the RF domain, uncertainties in the electric conductivity of the gray 

matter and bone cortical regions are much more significant than those in the white matter in 

inducing uncertainties in the square norm of the electric field in the gray matter. 

 Challenges 

 Note that we used a quite pessimistic statistical law for the conductivities (uncertain input 

variables) due to the limited number of available samples. For example, In ELF domain, for the 

electric conductivities, only two values, or sometimes even only a single value per frequency 

point could be found in the consulted references. We chose the uniform probability distribution. 

Indeed, the uniform distribution on the interval [a,b] is the maximum entropy distribution among 

all continuous distributions which are supported in the interval [a,b] (which means that the 

probability density is 0 outside of the interval). Note that the presented stochastic expansion 

method is only effective for small or moderate number of uncertain input variables. With many 

uncertain parameters the proposed approach could be accelerated using advanced stochastic 

expansion methods. Much recent research has investigated how the computational cost of 



55 
 

stochastic expansion methods can be reduced, as well as how their range of applicability can be 

extended to problems of higher and higher dimensions and to computational models that lack 

smoothness. In particular, alternative (not necessarily polynomial) basis function and alternative 

formulations of the construction of the surrogate model are being investigated.  
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