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Abstract—This paper examines the magnetic field and supercurrent distributions in three-dimensional structures made of superposed
superconducting films. A recent experimental study of such structures (Tamegai 2017) has shown unusual patterns of the trapped
magnetic flux, with an unexpected discontinuity line in the region where the films overlap. In this work, a finite element model is
used to reproduce and understand these patterns. It is shown that the newly observed discontinuity line originates from the magnetic
field dependence of the critical current density. Moreover, in contrast to common observations made in planar superconducting
structures, the network of critical lines is found to evolve with the applied field when the three-dimensional structure is magnetized
after zero-field cooling. These findings underline the importance of the magnetic coupling between the components of a multi-layered
superconducting structure in building its critical state.

Index Terms—FEM, critical state, coupling, superconductivity, thin films.

I. INTRODUCTION

Over the last decade, progresses in top-down nanofabri-
cation techniques has lead to a wide development of su-
perconducting planar structures with well-mastered electrical
and magnetic properties [1]. Nowadays, the fabrication of
three-dimensional (3D) superconducting structures offers new
possibilities for developing superconducting devices and max-
imizing their functionalities. 3D integration techniques have
recently been identified as promising routes for large-scale
superconducting electronic systems [2]. Several superconduct-
ing sensors already integrate inherently 3D structures, such as
step-edge Josephson junctions [3] or SQUID devices coupled
to a freestanding pickup loop made of tungsten nanowires
that probe in-plane magnetic fields [4]. Complex multi-layered
arrangements also enable the design of superconducting meta-
materials with novel functionalities, such as magnetic flux con-
centration [5], which may increase the sensitivity of magnetic
sensors, or magnetic cloaking [6], enabling the attenuation of
the magnetic flux density in a given region with no disturbance
to the environment. Moreover, 3D structures have proven to be
beneficial in large-scale systems, for instance in twisted Roebel
cables, that profit from reduced transport AC losses [7], and
in magnetized stacks of tapes, that may be used as powerful
permanent magnets in superconducting motors [8], [9], [10].

While offering enhanced or new functionalities, 3D super-
conducting structures have a richer magnetic response than
planar devices. A particular class of 3D structures is obtained
by stacking nanostructured superconducting layers, resulting
in systems where the planar subcomponents are magnetically
coupled with one another, thereby opening the possibilities
of new magnetic flux penetration processes. Magneto-optical
studies have for instance shown that arrays of stacked super-
conducting strips may sustain thermomagnetic instabilities in
the form of anomalous linear avalanches traversing the differ-
ent layers, provided their overlap is large [11]. More recently,

magneto-optical imaging of bi-layer systems showed critical
states that cannot be accounted for from a simple combination
of the critical states obtained in each layer separately [12].

Critical states in planar superconducting structures are char-
acterized by discontinuity lines (d-lines) where the current
density changes abruptly its direction. Such lines are easily
identified in magneto-optical images, since the large demag-
netizing effects of thin films give rise to a sharp variation of
the magnetic field strength around d-lines and hence a high
contrast variation. D-lines typically appear along symmetry
axes and form a pattern intimately related to the geometry
of the film and its current-carrying properties [13], [14]. For
instance, in square films, d-lines appear along diagonals (thus
forming an “X” pattern) and delimit a π/2 angular change
in the direction of the current density, as shown in Fig. 1a.
In rectangular films, d-lines run along the bisector of each
corner angle and merge into a straight segment extending in
the middle of the film, forming a “double-Y” shape, as rep-
resented in Fig. 1b. D-lines are also generated by defects and
extend over distances much larger than the defect characteristic
length [15], [16]. They are further affected by the presence
of holes [17], or an anisotropy in the critical current density
jc [18], [19], as their angle needs to be consistent with the
continuity of the current crossing them [13], [14]. In all these
cases, the critical state is determined once and for all from
the geometrical and critical current density distribution in the
sample. More specifically, for planar structures, the shape of
the d-lines does not change with the applied field.

Recently, a new type of pattern was experimentally iden-
tified by the group of Tamegai [12] in a 3D structure made
of a superconducting strip on top of a square superconducting
film (the strip and the square were separated by an electrically
insulating SiO2 layer, as schematically depicted in Fig. 1d).
As observed in the magneto-optical image of the sample
at the remanent state (Fig. 1c), the magnetic field pattern
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Fig. 1. Magneto-optical image of the critical state in a completely penetrated
square superconducting film (a), in a rectangular superconducting strip in the
remanent state(b), and in the superposition of a rectangular superconducting
strip over a square superconducting film in the remanent state (c). The
geometry of the assembly corresponding to the image in panel (c) is depicted
in (d). For every magneto-optical image, the brighter the contrast, the higher
the magnetic field.

shows an unexpected d-line extending around the center of
the structure, which is perpendicular to the long edge of
the strip, and is absent from the critical state of the square
film alone or that of the strip alone. The purpose of this
work is to shed light on the origin of this new critical state
structure. To that end, we perform numerical simulations for
the penetration of magnetic flux in the square+strip assembly
after a zero-field cooling procedure. Our simulations show
that d-lines patterns reproduce the expected trend observed
in planar structures during the early stages of penetration.
However, the magnetic coupling in the region of overlap is
found to lead to (1) a structure which varies with the applied
field in the subsequent stages of magnetization, and (2) the
horizontal line in the remanent state which was experimentally
observed in Ref. [12].

The studied samples and experimental methods are pre-
sented in Sec. II, while the numerical model is described
in Sec. III. Simulation results are presented in Sec IV and
discussed in Sec. V, where the crucial role played by magnetic
field dependence of the critical current density is emphasized
and a simplified model is suggested. Conclusions are drawn
in Sec. VI.

II. EXPERIMENTS

Bi-layered superconducting Nb films were fabricated on Si
substrates by using magnetron sputtering, photolithography,
and SF6 reactive ion etching technique. To make a reliable top
strip on top of the bottom square film, caldera planarization
was applied [20]. Two 300 nm thick Nb films were separated
by a 300 nm thick SiO2 layer. Flux penetrations and critical
state field profiles into the bi-layered Nb films were captured
by magneto-optical imaging technique (MOI), where spatial
variation of out-of-plane flux density is detected using the
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x

Fig. 2. Domains considered in the H−φ formulation. Ω is the computational
domain, Ωc contains the superconducting materials, and Ωb is an auxiliary
box introduced for the application of the external field. The corresponding
boundaries of the domains are Γ, Γc, and Γb respectively.

Faraday effect in a ferromagnetic garnet film in direct contact
with the sample [11], [12], [21]. We used a commercial
optical microscope (Olympus BX30MF) and a cooled-CCD
camera with 12-bit resolution (ORCA-ER, Hamamatsu) to
capture MO images. Samples are cooled using a He-flow
cryostat (Microstat HighRes II, Oxford Instruments) down
to 6 K under zero applied magnetic field. The magneto-
optically determined critical temperature of the Nb samples
was Tc = 9 K, consistent with the onset of diamagnetism
measured by SQUID magnetometer. A magnetic field was
applied perpendicular to the film plane. In order to remove in-
plane magnetic domains in the ferromagnetic magneto-optical
indicator, permanent magnets were used to generate a 180 Oe
in-plane magnetic field, parallel to a diagonal of the Nb square
film.

III. NUMERICAL MODEL

In order to model the penetration of magnetic flux inside
the assembly, we use a finite-element method with a three-
dimensional H − φ formulation [22]. The magnetic field is
expressed as ~H = ~Ha + ~h, where ~Ha is the applied field
and ~h is the reaction field arising from the superconducting
currents. Faraday’s law is solved in the weak form,∫

Ω

µ0
~̇Ha . ~ψ dΩ +

∫
Ω

µ0
~̇h . ~ψ dΩ

+

∫
Ωc

ρ(|~∇× ~h|) (~∇× ~h) . (~∇× ~ψ) dΩ = 0, (1)

where µ0 is the vacuum permeability, ρ is the electrical
resistivity in the superconducting regions, ~̇Ha is the rate of
variation of the applied field, and ~ψ are the finite element test
functions. Here, Ω is the total computation domain while Ωc
contains the superconducting materials, see Fig. 2. In Ωc, ~ψ
are first-order curl-conforming elements. In Ω/Ωc, as this set
is simply connected, the test functions ~ψ can be written as
~ψ = −~∇ϕ, where ϕ is represented with nodal functions.
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The implementation of the method includes two further
building blocks that are directly related to the flat geometry
of the system [22]. First, boundary conditions at infinite
distances are applied by means of a unidirectional shell-
transformation. Denoting as ẑ the direction perpendicular to
the superconducting films, the change of variable

z = f(Z) = B − A(B −A)

Z
(2)

maps the infinitely extended physical domain Ωph, of coordi-
nates Z, into a shell domain Ωsh of finite extension and coor-
dinates z, as illustrated in Fig. 3. This transformation allows
the calculations to be carried out in a finite-size computational
domain without any truncation approximation. Moreover, the
1/Z2 asymptotic decay of the magnetic potential can be
accurately captured with a suitable choice of the parameters A
and B. The second building block deals with the application
of a uniform field ~Ha to the superconducting system. An
exploitation of the divergence-free property of ~Ha allows us to
rewrite Eq. (1) in such a way that only elements in an auxiliary
box Ωb and its boundary Γb are involved,∫

Ω

µ0
~̇h . ~ψ dΩ

+

∫
Ωb

µ0
~̇Ha . ~ψ dΩ +

∫
Γb

(µ0
~̇Ha ϕ) . ~nb dΓ

+

∫
Ωc

ρ(|~∇× ~h|) (~∇× ~h) . (~∇× ~ψ) dΩ = 0, (3)

thereby avoiding the need to describe the asymptotics of the
applied field at large distances. Here, Ωb is an arbitrary box
which encloses Ωc, while ~nb stands for the outer normal of
Γb, as illustrated in Fig. 2.

The model of Eq. (3) is solved with a constitutive relation
between the electric field, ~E, and the current density, ~j =
~∇ × ~h, assuming the power law | ~E| = Ec (|~j|/jc)n, from
which the electrical resistivity ρ(|~j|) = Ec/jc (|~j|/jc)n−1 is
obtained. Here, Ec = 10−4 V/m is the critical electric field,
n = 19, and jc is the critical current density. Below, jc is either
assumed to be constant, or to follow the extended Kim’s law
with

jc(B) =
jc0

(1 + | ~B|/B0)α
, (4)

where ~B = µ0
~H is the magnetic flux density and α is a

dimensionless exponent.
The system is composed of a square film of size 200 ×

200 µm2 and a superposed strip of size 200 × 100 µm2,
with its long edges at equal distances from the edges of the
square. In accordance with [22], the parameters which define
the geometry of the shell-transformation, A and B, are set
to 22µm and 44µm, respectively. The thickness of each film
is d = 300 nm; they are separated by an insulating layer of
thickness t = 300 nm. Following [22] the high aspect ratio
of the films allows us to treat them as thin films, with one
element across the thickness. The insulating layer also contains
one element across the thickness. Later, more elements are
added when the thickness t is increased in the study reported
in part C of Section V. The magnetic field ~Ha is applied
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Fig. 3. Illustration of unidirectional shell-transformation along the ẑ axis.
Each point P

′
in Ωph is mapped onto a point P in Ωsh, by means of a

change of coordinates, z = f(Z).

perpendicular to the assembly according to a ZFC procedure.
It is first ramped up at a constant rate Ḣa = 1000 A/m.s (or
∼ 12.6 Oe/s) and then ramped back to 0 at the same rate. The
simulations were performed on a Intel Core i7-4790 CPU,
3.6 GHz, 16 Gb RAM with an open-source software suite
including Gmsh [23] for the mesh generation and GetDp [24]
for the finite element solution.

IV. RESULTS

A. Experimental results

Figure 4, left-column, shows the distributions of the out-of-
plane component of the magnetic field as revealed by MOI
after the assembly has been cooled in zero-field and then
subjected to an applied field of fixed maximum strength. At
the lowest strength of 50 Oe, the magnetic flux penetrates the
square film through its edges, with discontinuity lines arising
along the diagonals and forming an “X” pattern [18]. With
increasing maximum strength, the magnetic flux progressively
penetrates the central region, where both superconducting
layers overlap, and generates new discontinuity lines. A first
set of d-lines develops along the bisectors of each of the
corners of the central rectangle, initiating the “double Y”
pattern usually observed in rectangular thin films [18]. A
second set is observed along the edges of the overlapping
region, where discontinuity lines are forming as extensions
of the legs of the outer “X” pattern. These inner lines are,
however, following directions that are clearly different from
the diagonals, as evidenced by the kinks formed near the edges
of the overlapping region. As the magnetic flux progresses
further in, the inner d-lines converge to the central region of
the assembly with an angle which changes with the applied
field. For an applied field of 100 Oe, the angle of the inner d-
lines relative to the vertical direction is seen to be larger than
π/4. As the applied field increases, this angle decreases and
the d-lines tend to align with the diagonals of the square. For
an applied field of 500 Oe, which shows a nearly complete
penetration, it can be observed that the alignment does not
appear to be complete. Within the resolution of the MOI
image, the inner d-lines do not seem to converge to a single
point (the center of the assembly), but they appear to converge
instead pair-by-pair on two separate points located above and
below the center.

Fig. 5, left-column, shows the magnetic field distributions
when the applied field is ramped up to 1000 Oe and then
ramped down to a fixed value, after a zero-field-cooled proce-
dure. Most of the d-line structure is similar to that observed
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Fig. 4. Distribution of magnetic field in the Nb bi-layer assembly, where
after a zero-field cooling to 6 K, the applied field is ramped up to a fixed
value given as, from top to bottom, 50, 100, 150, 200, 300, and 500 Oe,
respectively. Left column: magneto-optical images showing the experimental
distributions of the out-of-plane component of the magnetic field, Bz (dark
pixels correspond to low field strengths). Right column: simulated distribution
of µ0Hz .

in Fig. 4: the square film exhibits an “X” pattern, while
the overlapping region exhibits the “double Y” pattern. New
patterns can, however, be observed in the central part of the
overlapping region. The inner d-lines which arise as extension
of the external “X” pattern are now extending toward the
central region with an angle relative to the vertical direction

Fig. 5. Distribution of the magnetic field in the Nb bi-layer assembly, where
after a zero-field cooling to 6 K, the applied field is ramped up to 1000
Oe and decreased to a fixed value given as, from top to bottom, 500, 200,
150, 100, 50, and 0 Oe, respectively. Left column: magneto-optical images
showing the experimental distributions of Bz (dark pixels correspond to low
field strengths). Right column: simulated distribution of µ0Hz .

which is smaller than π/4 and decreases as the final value
of the applied field is decreased. Now, the d-lines converge
pair-by-pair to two points located left and right of the center.
These points are joined by a horizontal segment which forms
the new d-line which was first reported in [12]. The length of
this new line increases as the final applied field is decreased
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and reaches a maximum extension in the remanent state.

B. Simulation results

Numerical simulations of the magnetic response were car-
ried out for the same conditions as those which prevailed
in experiments. The model of Sec. III was applied assuming
an extended Kim’s law with different sets of parameters for
each film. These parameters were chosen to fit at best the
experiments, which are shown in the left column of Fig. 4
and Fig. 5. In the square film, B0 = 1.25 mT, jc0 = 3.4
MA/cm2 and α = 0.42, while in the strip, B0 = 4.9 mT,
jc0 = 5.4 MA/cm2 and α = 0.51. Results are summarized
in the right column of Fig. 4 for raising fields applied to a
virgin state, and in the right column of Fig. 5 for decreasing
fields after an initial magnetization. The main characteristics
of the experimental d-line pattern are faithfully reproduced,
including the “X” and double “Y” patterns, the kinks at the
edge of the overlapping region, and the occurrence of a new
horizontal d-line in the remanent state.

V. DISCUSSION

A. The essential role played by the dependence of jc with the
magnetic field

Fig. 6. Simulated µ0Hz distribution for a remanent state in the square film
(upper row) and the rectangular strip (lower row), when jc is assumed constant
(left column) and when jc is assumed to depend on | ~B| according to Kim’s
law (right column).

In the following section, we discuss different aspects of the
magnetic coupling between the two films, while assuming the
same jc(B) laws for each layer, with α = 1. These sets
of parameters simplify somewhat the discussion, while we
believe they capture the essential physical mechanisms at play.
As we now discuss, assuming an explicit field dependence of
the critical current density turns out to be essential in order
to reproduce the d-lines observed experimentally. Indeed, this
becomes apparent in Figure 6, which shows a comparison

between the predictions of the numerical model in two cases:
(a), (c), for jc = 2 MA/cm2 assumed constant, and (b), (d),
for jc following Kim’s law in Eq. (4) with jc0 = 12 MA/cm2,
B0 = 5 mT and α = 1 in both films. In each case, the applied
field is ramped up to 500 Oe and then decreased to zero to
reach a critical state.

The d-lines patterns are strikingly different. For a constant
jc, the obtained pattern is a mere combination of those
expected for a square and rectangular films considered alone:
one can identify the “X” pattern running along the diagonals of
the square film, with d-lines oriented at an angle π/4 relative
to the vertical direction, and the “double Y” pattern expected
in rectangular films. More specifically, no kink is observed at
the edge of the overlapping region. By contrast, the patterns
observed experimentally are fully reproduced when jc(B) is
assumed to vary with | ~B|, as already discussed in Figs. 4 and
5.

It is important to note that essentially the same magnetic flux
distribution is seen in both the square and rectangular films,
even though they are separated by the electrically insulating
layer. As shown in Fig. 6, the distribution of the out-of-plane
component of the magnetic flux density are nearly identical.
Hence, a common magnetic flux is threading both layers
and the same d-lines appear in each layer of the assembly.
Experimentally, the magneto-optical images are measuring the
magnetic flux which emerges out of the upper part of the
assembly and thus also show the same d-lines.

Fig. 7. Distribution of |~j| and vector map of ~j in the square film (upper row)
and in the strip (lower row) for the case of a magnetic field dependent jc and
a remanent state (magnetization to 1000 Oe, see text).

Further insight into the magnetic coupling between the two
layers can be gained by studying the current distribution in
each layer, shown in Fig. 7. It can be observed that even
though the two layers share the same distribution of the out-of-
plane component of magnetic flux, their current distributions
are different. The difference stems from dissimilar in-plane
magnetic field components, in accordance with Ampere’s law.
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Fig. 8. Critical state in the simplified model corresponding to a magnetization
of the square + strip assembly, assuming Jc−int = 2Jc−ext and W = L/2,
where W is the width of the strip. Only the upper right part of the structure
is shown, the other parts can be obtained by reflection symmetry. Blue lines
are d-lines, while thin red lines show the current lines in the square film

The currents in the rectangular film have their flow organized
in four sectors, delimited by the “double Y” network of d-lines.
In this sense, the current lines are nearly similar to those found
in an uncoupled rectangular strip, even though they undergo
small deviations near the d-lines originating from the exterior
“X” pattern. By contrast, the current lines in the square film
are quite different from those expected in an uncoupled film.
The current lines are organized in four sectors, delimited by
the “X” pattern and its extension in the central region. The
most remarkable property is a cell of current rotating around
the central horizontal d-line with sharp changes of direction
near the lateral edges of the overlapping region, at an angle
different from π/2. In the overlap region near the upper and
lower edges, current lines are subjected to small deviations in
the vicinity of the “double Y” network of d-lines.

B. A simplified model

The current distributions in the remanent state, exhibiting
kinks at the edges of the overlapping region, are reminiscent of
those observed in a system with an inhomogeneous distribution
of the sheet current density Jc(x, y) =

∫ d/2
−d/2 jc(x, y, z)dz,

see e.g. [13]. In order to focus on the main elements of the
magnetic coupling between the two films, we formulate the
following simplified planar model: the assembly is divided
into a central overlapping region of width L/2 with a con-
stant sheet current density Jc−int, while the non-overlapping
region (containing two symmetrical parts of width L/4) has
a constant sheet current density Jc−ext. Further, it is assumed
that
• upon magnetization from a virgin state, Jc−int and Jc−ext

have fixed values with Jc−int > Jc−ext, since the mag-
netic flux is penetrating the non-overlapping region earlier
than the overlapping one;

• upon a reduction of the external field after an initial
magnetization, Jc−int and Jc−ext have fixed values with
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Fig. 9. Critical state in the simplified model corresponding to a remanent
state in the square + strip assembly, assuming Jc−int =

√
3/2×Jc−ext and

W = L/2, where W is the width of the strip. Only the upper right part of
the structure is shown, the other parts can be obtained by reflection symmetry.
Blue lines are d-lines, while thin red lines show the current lines in the square
film.

now Jc−int < Jc−ext, since the trapped field is on average
larger in the overlapping region.

The resulting model is very simplified in the sense that it is
two-dimensional and the spatial variations of current densities
are neglected within the overlapping and the exterior regions,
while only the difference of magnetic field levels between
these two regions is taken into account. This model has
the advantage that the corresponding critical states can be
calculated analytically, yielding Fig. 8 for a magnetization
from the virgin state, and Fig. 9 for the remanent state. Quite
clearly, the obtained d-lines have a similar structure to that
observed in Fig. 4 for the fully magnetized structure, and
that found in Fig. 5 for the remanent state. Note in particular
the kink appearing along the segments AD in Fig. 8 and DB
in Fig. 9, marking the crossing of current lines between two
regions with different sheet current densities.

Of particular interest is the occurence of a vertical d-line of
extension `v in Fig. 8 and an horizontal line of extension `h
in Fig. 9. As explained in detail in the appendix, an analysis
of the critical states yields

`v,h =
L

2

∣∣∣∣Jc−ext

Jc−int
− 1

∣∣∣∣ , (5)

which shows that `v,h are sensitive to variations of critical
currents, induced by spatial variations of magnetic flux den-
sities. To proceed with the analysis, if the average levels of
magnetic flux densities are denoted by | ~Bint| and | ~Bext|, upon
using Kim’s law in Eq. (4), with α = 1, the simplified model
predicts that the length of the horizontal line in the remanent
state varies as

`h =
L

2

| ~Bint| − | ~Bext|
B0 + | ~Bext|

. (6)

Such a result is not expected to hold strictly in the full three-
dimensional numerical model, as the magnetic field varies
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result from numerical simulations.

spatially and so does the critical current density. Equation 6,
however, suggests the possibility to fit the simulated `h with
the relationship

`h
L

=
C1

B0/(µ0jc0d) + C2
, (7)

where C1 and C2 are constants and the product µ0jc0d has
been chosen as representing a typical level for the magnetic
response of the assembly. Figure 10 shows the length of the
horizontal line in a series of simulations, where the parameters
of Kim’s law, jc0 and B0, have been varied, together with the
fit suggested in Eq. (7). Remarkably, the simulation results
fall along a unique curve which is well fitted by Eq. (7). This
figure also shows that the horizontal critical line arises when
jc(B) varies sufficiently over the range of involved magnetic
flux densities. More specifically, `h is larger for smaller B0,
which induce sharper variations of jc(B).

We emphasized the key role played by the jc(B) depen-
dence, leading to an inhomogeneous critical current density
distribution. In fact, inhomogeneous critical current densities
can also be obtained when an anisotropy is induced by an
in-plane magnetic field component [25]. However, note that
the strength of in-plane fields which are required to induce
a critical current anisotropy in the Nb films studied here (of
thickness of 300 nm) is of the order of 300 Oe [25]. Both the
in-plane magnetic fields which are obtained in our simulations
(less than 60 Oe) and the in-plane fields which are applied to
suppress the magnetic domain in the magneto-optical indicator
(∼ 180 Oe) are below this threshold. In addition, if the applied
in-plane field ever induces a critical current anisotropy, its
principal axes should be parallel to the diagonals of the square,
which is different from our observations. Thus, the anisotropy
induced by an in-plane component does not appear to play a
role in the observed critical states.

C. Influence of the strength of the magnetic coupling

Although the simplified model predicted the correct archi-
tecture for the d-lines, the information about the average levels
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Fig. 11. `h/L as a function of t/d. The inset depicts the evolution of the
normalized scalar magnetic potential φ/φ0 above the center of a square film
of side L, as a function of the dimensionless distance z/L. φ0 is the magnetic
potential on the boundary of the film.

| ~Bint| and | ~Bext| must still be deduced from the magnetic
coupling between the square and the rectangular films. In
the remanent state for instance, the magnetization of the
rectangular strip, with its typical “roof-top” distribution of Hz ,
helps in increasing | ~Bint| over | ~Bext|, so that the magnetic
coupling is a key element of the resulting critical state. We now
study further the influence of the magnetic coupling between
the two films by varying the thickness of the insulating layer,
t, as illustrated in Fig. 11. The simulations were carried out
with jc0 = 4 MA/cm2, B0 = 20 mT and α = 1 in both
films, for remanent states. It can be observed that increasing t
leads to a shorter `h, as less magnetic flux emanating from the
square film will thread the rectangular film, and vice-versa.
The magnetic coupling is monotonically decreasing with t,
first fairly slowly for t < 10 µm, and then much more rapidly
for larger separations. This change of behavior is reminiscent
of the evolution of the magnetic scalar potential φ along the
out-of-plane direction for a superconducting square film, as
shown in the inset of Fig. 11. It can be seen that φ starts
decreasing rapidly at a distance L∗ ∼ 0.1×L = 20 µm from
the square film, and so does the magnetic coupling between
the two films.

D. Influence of the width of the rectangular strip

Last, we investigate the effect of the width, W , of the
rectangular strip, relative to the side of the square film, L.
Figure 12 shows the d-lines obtained in a remanent state under
the same conditions as those of Sec. IV, for rectangular strips
of varying width, with W/L = 1/6, 1/3, 1/2, and 2/3. It
can be observed that the horizontal d-line for W/L = 2/3
is shorter than that for W/L = 1/2. This reduction can be
explained simply, as `h is expected to vanish in the limit
W/L = 1, for a stack of two squares. Another way to see
this is to observe that an increase of the area of the overlap
region leads to a reduction of the average field | ~Bint| and
thus of the ratio of critical current densities Jc−ext/Jc−int,
hence a smaller `h. For small W/L, it is observed that `h
increases slightly from W/L = 1/2 to W/L = 1/3, and
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Fig. 12. Distribution of µ0Hz in the square film in the remanent state for
different values of the strip width, W . a) W = L/6, b) W = L/3, c)
W = L/2 and d) W = 2L/3. The parameters of the extended Kim’s law
are the same as in Sec. IV.

becomes roughly equal to W for W/L = 1/6. To sum up,
`h will increase with ∼W for small W/L, reach a maximum
at intermediate W/L, and decrease again as W → L.

VI. CONCLUSIONS

In this work, we investigated numerically the critical states
in a bi-layered structure made of a thin superconducting square
film and a rectangular superconducting strip. We showed that
the inhomogeneous distribution of critical current density in
the films, which is induced by the magnetic field dependence
of the critical current density and the spatial distribution of
~B, plays a crucial role in the geometry of the critical state.
We studied the evolution of the magnetic response of the
assembly under a varying applied magnetic field and showed
that some d-lines evolve with magnetic field. We suggested
a simplified model which reproduces the variations of the
new horizontal d-line observed in the remanent state as a
function of the parameters jc0 and B0. Last, we showed that
the magnetic coupling driving the observed patterns persists up
to separations between the two superconducting films of about
10% of the lateral size of the films. The findings on this simple
assembly are expected to contribute in understanding how
the critical state is built in more complex three-dimensional
assemblies of planar superconducting components. Several
findings on this simple assembly can be used to predict the
critical states in more complex three-dimensional assemblies
such as stacks of strips or tapes. We can anticipate that the
magnetic coupling will be most important for nearby layers,
placed at a distance of less than a few tenths of their lateral
sizes. Moreover, the effects will be more pronounced when
these layers have different characteristic sizes. Although we
investigated only the effect of the lateral sizes, it will be

interesting to study the effects of different parameters, such
as the thickness of the films, their relative positions and
orientations, and the variations of their shapes.

APPENDIX

We derive here the expressions for the extensions of the
central discontinuity lines, `v and `h, in the simplified model
with an inhomogeneous distribution of sheet current densities.

A. Case where Jc is larger in the overlapping region

Assume W = L/2 and Jc−int > Jc−ext, yielding the
critical state shown in Fig. 8. Consider the segment AD,
separating region 2 and region 4, with respective sheet current
densities Jc−ext and Jc−int. According to Schuster [13], the
horizontal current lines originating from region 2 are deflected
an angle 2α to the right upon entering region 4, with

Jc−int

Jc−ext
=

1

cos 2α
. (8)

The vertical current lines originating from region 5 are de-
flected into region 4 along L2, while keeping the same sheet
current density Jc−int. Hence, they are deflected an angle
π−2β to the left. As current lines in region 5 are perpendicular
to those in region 2, one has

−(π − 2β) = −π/2 + 2α =⇒ β = α+
π

4
. (9)

In order to relate the extension `v to angles α and β, take
the projections of the path OABC along the horizontal and
the vertical directions, and calculate their difference. This
procedure gives

`v = 2L2 (sinβ − cosβ) . (10)

Then, solving the triangle ABD leads to

L2 =
L

4

sinα

sin(π + α− β)
. (11)

Collecting Eqs. (8) to (11) finally gives

`v
L

=
1− cos 2α

2
=

1

2

(
1− Jc−ext

Jc−int

)
. (12)

Note that in the extreme case α = π/4, B is located on the
vertical median of the square, in such a way that C is the same
point as B. Moreover, regions 4 and 5 merge together, so that
the segment AB becomes horizontal and is not considered as
a d-line any more.

B. Case where Jc is larger in the peripheral region

We now turn to the case where Jc−ext > Jc−int, using
similar arguments. Again, all calculations are made assuming
W = L/2. The corresponding critical state is shown in Fig. 9.
Consider first the current lines originating from region 2. These
are deflected into region 4 by an angle 2α to the left, with,
following Schuster [13],

Jc−ext

Jc−int
=

1

cos 2α
. (13)

Author post-print version. Published in Superconductor Science and Technology 32 (12) 125010 (2019).  
DOI: https://doi.org/10.1088/1361-6668/ab4b18 



Similarly, current lines originating from region 1 and entering
region 4 through the segment AB are deflected an angle π−2β
to the left. Since these current lines are perpendicular to those
entering region 4 through the segment AD, one has

−(π − 2β) = −π/2− 2α =⇒ β =
π

4
− α. (14)

The length `h is again obtained by evaluating the difference
between the projections of the path OABC on the vertical and
horizontal directions. This procedures yields

`h = 2L2 (cosβ − sinβ) . (15)

Next, solve successively triangles OAD and DAB to obtain

L1 =
L

4

sinπ/4

sin(3π/4− α)
, (16)

and

L2 = L1
sinα

sinβ
. (17)

Collecting Eqs. (13) to (17), we finally have

`h
L

=
1

2

(
1

cos 2α
− 1

)
=

1

2

(
Jc−ext

Jc−int
− 1

)
. (18)

Similarly to the previous case, the d-lines depicted in Fig. 9
are only valid if

1

2
< cos 2α (19)

Otherwise, the segment AB does not intersect the vertical line
which delimits the two regions of different critical current
densities. The segment AB slides down and crosses the median
line at some new point. As a result, region 5 is not apparent,
and Eq. 18 is invalidated.
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