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Abstract

The promotion time cure model is a survival model acknowledging that an uniden-
tified proportion of subjects will never experience the event of interest whatever the
duration of the follow-up. We focus our interest on the challenges raised by the strong
posterior correlation between some of the regression parameters when the same co-
variates influence long- and short-term survival. Then, the regression parameters of
shared covariates are strongly correlated with, in addition, identification issues when
the maximum follow-up duration is insufficiently long to identify the cured fraction.
We investigate how, despite this, plausible values for these parameters can be obtained
in a computationally efficient way. The theoretical properties of our strategy will be
investigated by simulation and illustrated on clinical data. Practical recommendations
will also be made for the analysis of survival data known to include an unidentified
cured fraction.

1 Introduction
When the follow-up of subjects in time-to-event studies is insufficiently long, one cannot
reasonably claim that the surviving units are ‘cured’, i.e. that they will never experience
the event of interest whatever the duration of their follow-up. Given the uncertainty on
the status of these units, estimating the cure probability can be challenging. However, it
does not mean that nothing can be said about it as the number of failures and their timing
dynamically inform us not only on the risk evolution, but also on upper (and to some extend
lower) bounds for the cure probability. More importantly, non negligible information can
be extracted on relative values of conditional risks and of cure probabilities for different
covariate profiles. We propose to discuss these issues in the framework of the bounded
cumulative hazard (BCH) model, also named the promotion time cure model.

The promotion time (cure) model was initially motivated by a biological model to ana-
lyze the time-to-relapse in cancer studies (Yakovlev and Tsodikov, 1996; Tsodikov, 1998;
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Chen et al., 1999; Tsodikov et al., 2003). Assume for example that, after a tumor removal,
a subject is still potentially exposed to N ∼ Pois(θ) undetected latent cancer cells that
require independent and identically distributed times W1, . . . ,WN ∼ F to become de-
tectable tumours. Then, Y = min{Wi : i = 1, . . . , N} is the time required to diagnose a
relapse and it has an improper survival distribution

Sp(y) = Pr(Y > y) = Pr(N = 0) + Pr(W1 > y, . . . ,WN > y,N ≥ 1)

= e−θ +

+∞∑
N=1

(
1− F (y)

)N
e−θ

θN

N !

= exp{−θF (y)}.

The proportion of ‘cured’ subjects is given by Pr(N = 0) = Sp(+∞) = exp(−θ). But
the preceding biological motivation is not essential to come up with the proposed expres-
sion for the population survival function Sp(t), opening its use in non-medical areas such
as demography (Bremhorst et al., 2016, 2018). Indeed, if a fraction of the population is
really ‘cured’ or ‘non-susceptible’ (to experience the event of interest), then the underly-
ing cumulative hazard Λ(t) has a finite positive limiting value (say θ), yielding the former
expression for Sp(t) with the normalized cumulative hazard F (t) = Λ(t)/θ. For that rea-
son, the model is sometimes more explicitly named the bounded cumulative hazard (BCH)
model (Tsodikov, 1998). We refer to the latter paper for additional insightful information
on the genesis of that family of cure survival models.

To describe the effect of covariates x on cure probability (or long-term survival), one
usually takes a log-linear model for θ,

log θ(x) = ηθ(x) = β0 + x′β. (1)

In the frequentist framework, Tsodikov (1998) suggests a profile likelihood approach to
estimate the promotion time model for a completely unspecified distribution function F (·).
This approach is extended by Liu and Shen (2009) when the reported survival times are
interval censored. Within the Bayesian paradigm, Chen et al. (1999) suggest a parametric
(Gamma or Weibull) distribution for F (·), while a piecewise constant function is proposed
by Ibrahim et al. (2001).

Covariates z can also be assumed to affect the dynamics in the normalized cumulative
hazard function F (·) (or, in other words, short-term survival). This can be done e.g. using
a Cox proportional hazards model (Cox, 1972),

F (y|z) = 1− S0(y)exp(ηF (z)) with ηF (z) = z′γ, (2)

where S0(t) denotes the baseline survival function (when z = 0). Tsodikov (2002) pro-
posed, in a frequentist framework, a nonparametric estimation of the baseline survival func-
tion S0(t). Using a Bayesian approach, Yin and Ibrahim (2005) suggested a flexible spec-
ification of S0(t) using a piecewise exponential distribution where the number of intervals
is selected via the conditional predictive ordinate (CPO) criterion, while Bremhorst and
Lambert (2016) opt for a flexible and smooth specification of the baseline distribution us-
ing Bayesian P-splines (Eilers and Marx, 1996, 2010; Lang and Brezger, 2004; Jullion and
Lambert, 2007) with covariates appearing simultaneously in (1) and (2). They also prove
the identifiability of that promotion time model when the follow-up study is sufficiently
long and, in particular when the covariate vectors x and z potentially share some compo-
nents.

Starting from this last result, one of our goals is to point the identifiable quantities in the
promotion time cure model when the follow-up is insufficiently long and when the same
covariates potentially affect the cure probability and the dynamics in the population hazard
function, see Sections 2.1 and 2.2. Based on this information, a reparametrization of the
conditional promotion time cure model is suggested in Section 2.3 with some practical rec-
ommendations for the modelling of survival data in the presence of an unidentified cured
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fraction. That reparametrization turns to be useful whatever the duration of the follow-up
as it substantially reduces the posterior correlation of regression parameters and, hence, im-
proves the mixing of Markov chain Monte Carlo in a Bayesian framework or facilitates the
convergence of nonlinear optimizers in likelihood based estimation procedures. The choice
of priors for the regression parameters is discussed in Section 2.4 as slightly informative
and meaningful specifications for these distributions can help to avoid the exploration of
unrealistic parameter combinations during the inferential process, see Section 2.5. An ex-
tensive simulation study in Section 3 will not only confirm the theoretical expectations
regarding the identification issues, but also lead to additional practical recommendations
for the analysis of survival data with a cured fraction, in particular when the follow-up is
insufficiently long, see also Section 5. Times to recurrence in patients with colon cancer
are analyzed in Section 4 to illustrate the proposed modelling strategy. We conclude the
paper with a discussion and practical recommendations in Section 5.

2 The conditional promotion time cure model

2.1 Definition
Denote by Yi andCi the event and right censoring times for the ith of n units (i = 1, . . . , n).
Further assume that Yi and Ci are independent given covariate values (x′i, z

′
i) in IRp1+p2

and that only (Ti, δi) is observed where Ti = min{Yi, Ci} and δi = I(Yi < Ci). Given the
covariates, the conditional promotion time cure model assumes that the population survival
function is given by

Sp(yi|xi, zi) = Pr(Yi > yi|xi, zi)
= exp{−θ(xi)F (yi|zi)}, (3)

where F (·|zi) is a conditional distribution function, see Section 1 for a motivation of this
expression. Hence, exp{−θ(xi)} = Sp(+∞|xi, zi) is the conditional probability to be
cured for some positive function θ(·) of the covariates.

For the inclusion of baseline covariates, we follow Bremhorst and Lambert (2016) and
Bremhorst et al. (2016) with the log-linear model (1) for the cure probability and a (flex-
ible) proportional hazards (PH) model (2) to complete the specification of the event time
distribution. The baseline survival function,

S0(yi) = exp

(
−
∫ yi

0

h0(t)dt

)
= exp

{
−
∫ yi

0

exp

(
K∑
k=1

bk(t)φk

)
dt

}
, (4)

is specified through the log of the baseline hazard h0(t) (Rosenberg, 1995) using a cubic
B-spline basis {bk(·) : k = 1, . . . ,K} on (0, tmax) where tmax denotes the considered
minimum follow-up duration required to ensure that an event-free subject by that time will
not experience the event of interest. Mathematically, we assume that tmax is the smallest
value of y ensuring that S0(y) = 0. In the context of a cancer study, this might be, for
example, 9 years after surgery if a subject is (arbitrarily) defined to be ‘cured’ when no
event is reported by that point in time. Note that the proposed strategy slightly differs
from Bremhorst and Lambert (2016) where the largest knot was chosen to be the observed
maximum follow-up time for the data at hand. However, the two definitions will roughly
coincide if the study is designed to ensure that any susceptible unit would be observed to
experience the event of interest if monitored up to the maximum follow-up time. Following
Eilers and Marx (1996, 2010), we take a large numberK of equidistant splines on (0, tmax)
and penalize rth-order differences of successive B-spline coefficients φ = (φ1, . . . , φK)′

when it comes to estimation, yielding penalized B-splines (shortly named P-splines), see
Section 2.4.2 for more details.
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2.2 Identification issues
The population survival function in (3) and the associated cumulative hazard,Hp(y|x, z) =
− logSp(y|xi, z) are key expressions to understand identification issues in the promotion
time cure model as they have quite straightforward ‘observable’ counterparts that can be
obtained from the data D =

{
(ti, δi,x

′
i, z
′
i) : i = 1, . . . , n

}
using e.g. the nonparametric

Kaplan-Meier estimator (Kaplan and Meier, 1958). It implies that Hp(y|x, z) can be es-
timated from the data, but not necessarily the two factors θ(xi) and F (yi|zi) entering its
definition in the promotion time model, see (3). To fix the ideas, assume that the two sets
of regressors built from the same 3 covariates share a single component, more specifically
that

ηθ(x) = β0 + x′β = β0 + β1x1 + β2x2 + 0
ηF (x) = x′γ = 0 + γ2x2 + γ3x3 .

When the follow-up duration t of a susceptible unit is not large enough to ensure that the
event was observed, translating in a small value for the baseline c.d.f. F0(t) = 1−S0(t) in
the preceding Cox regression model, one can show, using a MacLaurin series, that

F (t|x) = 1− S(t|x) = 1− (1− F0(t))exp(ηF (x))

= exp
(
ηF (x)

)
F0(t) +O

(
F0(t)2

)
.

Therefore, for such values of t, the log of the population cumulative hazard is

logHp(t|x) = log
(
− logSp(t|x)

)
= log θ(x) + logF (t|x)

≈ ηθ(x) + ηF (x) + logF0(t)

= (β0 + logF0(t)) + β1x1 + (β2 + γ2)x2 + γ3x3 . (5)

This suggests that, when the follow-up is insufficiently long (to ensure that the last moni-
tored units will never experience the event of interest), there are identification issues for the
intercept β0 as there there are no such values for the reported event or right censoring times
at which the summed logF0(t) is theoretically known. The same is true for the regression
coefficients of shared covariates (here, x2) as they only appear summed in (5) for a small
value of t. On the other hand, no identification problems are expected for β1 and γ3 as they
correspond to non-shared regressors.

Note also that, for small values of t, (5) indicates that everything works as if a propor-
tional hazards model was assumed at the population level with baseline (population) hazard
eβ0f0(t) such that

hp(t|x) ≈ e−β0+ηθ(x)+ηF (x)(eβ0f0(t)
)

= ex
′
(β+γ)(eβ0f0(t)

)
. (6)

For an arbitrary value of t, one has

hp(t|x) = ex
′
(β+γ)(eβ0f0(t)

)
S0(t)exp(γ

′
x)−1 , (7)

where the last factor in the expression induces time-varying (conditional) hazard ratios for
different values of a covariate xk associated to a non-zero value for γk.

2.3 Model reparametrization
The preceding identification issues suggest to reparametrize the model, as disentangling co-
variate effects on the cure probability (i.e. on long-term survival) or on the normalized cu-
mulative hazard dynamics (NCHD) (i.e. on short-term survival) will remain computation-
ally challenging even with longer follow-ups. It will improve the mixing of Monte Carlo
Markov chains (MCMC) when exploring the joint posterior under the Bayesian paradigm,
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or facilitate the convergence of algorithms used to compute maximum likelihood estima-
tors in a frequentist framework. Given that a pre-defined zero-value for a component in β
(resp. γ) indicates that the corresponding regressor is not part of the covariates x in IRp

entering the definition of θ(x) (resp. F (t|z)), consider (β0,β,γ) −→ (β0,ψ, dψ) where,
for k = 1, . . . , p,

ψk =

 βk if γk = 0 (kth covariate only in (1))
γk if βk = 0 (kth covariate only in (2))
(βk + γk)/2 if βkγk 6= 0 (kth covariate shared by (1) and (2)).

Then, when βkγk 6= 0, one has βk = ψk + dψk and γk = ψk − dψk where dψk =
(βk − γk)/2. In the illustrative example of Section 2.2 with the new parametrization and
under an insufficiently long follow-up, we expect that limited information can be extracted
from the data on components β0 and dψ2 (with, thus, bias or relatively large variances for
any relevant estimators of these quantities). However, it does not imply that sets of plausible
values for these parameters cannot be obtained, as will be illustrated by the simulation study
in Section 3.

Concerning the baseline distribution function, F0(t) = 1 − S0(t), in (4), we force it
to be one whenever t ≥ tmax. Given the assumed smoothness of the associated baseline
hazard h0(·), the uncertainty on β0 (that can be identified when summed to logF0(t) in
(5)) will be reduced when the effective follow-up duration approaches values of t for which
logF0(t) is close to zero.

2.4 Prior elicitation
2.4.1 Regression parameters

The uncertainty on β0 and shared regression parameters can be very large. The time spent
on a careful elicitation of priors for these parameters is usually worthwhile as it can avoid
putting posterior probability mass on meaningless values for parameters or combination of
them. Assume for example that x = 0 corresponds to a meaningful combination of the
regressors. If helpful, this could be achieved by subtracting from a continuous component
a reference value such as its sample mean. Then, β0 has a clear interpretation in terms of
the baseline probability to be cured,

β0 = log θ(x = 0) = log (− log Pr(cured|x = 0)) = g (Pr(cured|x = 0)) ,

that can be used to build an informative prior for β0. Assume for example that one can
claim that the baseline cure probability is with a large probability (say, about 95%) in
(pmin

0 , pmax
0 ) = (.01, .30). This could tentatively be translated by the following normal

prior for β0,

β0 ∼ N

bmin
0 + bmax

0

2
,

(
bmax
0 − bmin

0

2× 1.96

)2
 = N (.86, .3352), (8)

where bmin
0 = g

(
pmax
0

)
and bmax

0 = g
(
pmin
0

)
correspond to the limiting cure probabili-

ties on the β0-scale. That would imply that, a priori, β0 and the baseline cure probability
have a 95% probability to be in (bmin

0 , bmax
0 ) and in (pmin

0 , pmax
0 ), respectively. A similar

exercise could be made separately for the shared regression parameters, β2 and γ2 in the
example of Section 2.2, yielding independent normal priors for these quantities. It will
avoid putting a non negligible posterior mass on sub-regions of (β2, γ2) where unrealisti-
cally large (resp. small) values of β2 are associated to (partially compensating) unrealis-
tically small (resp. large) values of γ2. In particular, when the follow-up is insufficiently
long, these parameters (approximately) only enter the model likelihood through their sum
(β2 + γ2), see Eq. (5). Alternatively, this could be made in the (ψ2, dψ2) parametrization
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with the help of the proportional hazard approximation to the conditional population haz-
ard, see (6). Indeed, when F0(t) is small, twice ψ2 can be (approximately) interpreted as
the log of a conditional hazard ratio,

exp(2ψ2) = exp(β2 + γ2) ≈
hp(t|x1, x2 = s+ 1, x3)

hp(t|x1, x2 = s, x3)
,

which is helpful to realize what might be (un)realistic values for such a quantity.

2.4.2 Spline parameters

As indicated in (4), the log of the baseline hazard is specified using a linear combination of
B-splines associated to a large number of equidistant knots on (0, tmax),

log h0(t) =

K∑
k=1

bk(t)φk.

The flexibility induced by that large number of B-splines can be counterbalanced by penal-
izing changes in rth (typically 2nd or 3rd) order differences of B-splines coefficients,

∆rφk = ∆r−1φk −∆r−1φk−1 with ∆1φk = φk − φk−1,

yielding penalized B-splines or P-splines. In a frequentist context, this can done by adding
a penalty,

pen(φ|λ) = −λ
2

∑
k

(∆rφk)2 = −λ
2
φ′D′rDrφ, (9)

to the log-likelihood (Eilers and Marx, 1996, 2010). In a Bayesian framework, it translates
into a smoothness prior for φ (Lang and Brezger, 2004),

p(φ|λ) ∝ exp

(
−λ

2
φ′D′rDrφ

)
.

A robust prior for the penalty parameter λ is recommended by Jullion and Lambert (2007),

(λ|δ) ∼ G (.5ν, 5νδ) ; δ ∼ G (aδ, bδ) ,

as results were shown to be potentially sensitive to the choice of hyperparameters with the
simple gamma priors suggested in Lang and Brezger (2004). One can show that, when
ν = 1 and aδ = bδ = .5, the marginal prior density for λ is

p(λ) =

∫ +∞

0

p(λ|δ)p(δ)dδ ∝ 1√
λ(1 + λ)

, (10)

i.e. λ ∼ BetaPrime(.5, .5), or equivalently, λ/(1 +λ) ∼ Beta(.5, .5). Given the symmet-
ric U-shape of the corresponding Beta density, this indicates that some more prior weight is
set symmetrically on values of λ close to 0 or tending to +∞, corresponding to no penalty
(λ = 0) or an extremely large one (λ → +∞), yielding a polynomial of order (r − 1)
for log h0(t) in the latter case. Note that (10) is equivalent to taking a half-Cauchy prior
(Polson and Scott, 2012) for

√
λ, thereby expressing the limited prior information assumed

on λ using this particular specification of the Jullion and Lambert (2007) prior.
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2.5 Inference
We focus on likelihood-based inferential methods. Given the data setting and model speci-
fication in Section 2.1, the log-likelihood is

logL(β0,β,γ,φ;D) =

n∑
i=1

{
δi log hp(ti|xi, zi)−Hp(ti|xi, zi)

}
,

with the following expressions for the (population) cumulative hazard and hazard functions,

Hp(ti|xi, zi) = θ(xi;β0,β)F (ti|zi;φ,γ)

= exp(β0 + β′xi)
{

1− exp
(
− exp(γ′zi)H0(ti;φ)

)}
;

hp(ti|xi, zi) = exp(β0 + β′xi + γ′zi) h0(ti;φ) exp
(
− exp(γ′zi)H0(ti;φ)

)
.

In a frequentist setting, the penalty (9) is added to the log-likelihood. The penalized log-
likelihood can be maximized using e.g. a Newton-Raphson algorithm to obtain parameter
estimates for a given value of the penalty parameter λ.

In a Bayesian framework, given the potentially large posterior correlation between re-
gression parameters, we strongly suggest to reparametrize the model along the suggestions
made in Section 2.3. The joint posterior is given by

p(β0,ψ, dψ,φ, λ, δ|D)

∝ L(β0,ψ, dψ,φ;D) p(β0) p(ψ) p(dψ) p(φ|λ) p(λ|δ) p(δ).

Except for λ and δ for which

(λ| . . . ,D) ∼ G
(
ν +K

2
,
νδ + φ′D′rDrφ

2

)
,

(δ| . . . ,D) ∼ G
(
aδ +

ν

2
, bδ +

νδ

2

)
,

the conditional posteriors of the other model parameters do not belong to familiar distribu-
tions. Therefore, we suggest to explore the joint posterior using a Metropolis-within-Gibbs
algorithm with Gibbs steps for λ and δ and Metropolis steps for the other parameters.
A good starting value can be obtained by maximizing the joint posterior for given rough
guesses of λ and δ. The inverse Hessian at the so-obtained (conditional) posterior mode
can be used to improve the mixing of the chains by making Metropolis steps along the
eigenvectors of that matrix. The variances of the proposal distributions in the Metropolis
steps are tuned automatically using the adaptive procedure proposed by Haario et al. (2001)
during the burn-in to achieve the targeted optimal acceptance rates (Gelman et al., 1996;
Roberts and Rosenthal, 2001). Strategies relying on Laplace approximations could also be
used (Gressani and Lambert, 2018).

3 Simulation study
A large simulation study was performed to confirm the identification issues suggested by
the theory of Section 2.2 and to evaluate the merits of the strategy proposed in Sections 2.3
to 2.5 to obtain plausible values for the model parameters.

The data were generated using the conditional promotion time cure model defined in
Section 2.1 using three independent covariates X1, X2, X3 ∼ N (0, 1). The first two re-
gressors were used to define the cure probability by taking ηθ(x1, x2) = β0 +β1x1 +β2x2
with (β0, β1, β2) = (.75,−.50, .80), while only the last two regressors were assumed to
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influence the detection of a given latent factor for a susceptible subject with ηF (x2, x3) =
γ2x2 + γ3x3, where (γ2, γ3) = (.40,−.40). Denote by Weib(a, b) a Weibull distribution
with shape and scale parameters a and b. The baseline F0(·) distribution for the time-to-
detection of a given latent factor was taken to be Weib(2, 9) with mean 8.0 and standard
deviation 4.2. The independent right censoring process was taken to be a Weib(3, 25) trun-
cated on (0, tR) where tR denotes the maximum follow-up time.

Five-hundreds datasets were generated for two different sample sizes (n = 300 or
500) and three possible maximum follow-up durations (tR = 25, 15 or 10 with F0(tR)
equal to .9995, .937 and .707, respectively), yielding increasing average proportions of
right censored units (24%, 31% or 41%, respectively) including an average common 20%
proportion of (unidentified) cured units.

In what follows, the support of the response was assumed to be (0, tmax) = (0, 30)
with a basis of ten B-splines defined on that interval for the specification of the baseline
hazard (cf. Section 2.4.2). Such a value for tmax is obviously large enough given that
F0(30) = .999985. We also use the recommendations following from Eq. (8) and Section
2.4 to specify the priors for the regression coefficients in the ψ–dψ parametrization:

ψ0 = β0 ∼ N (.86, .3352) ; ψk, dψk ∼ N (0, 1.52).

The first one implicitly assumes that the baseline cure probability is in (.01, .30), while
the other priors just ensure that completely unrealistic values are not generated during the
exploration of the joint posterior using MCMC.

3.1 Correctly specified model
Assume that the correct model family is chosen (here: the promotion time cure model)
and that, in addition, the set of regressors in the cured probability and Cox proportional
hazards regression models are correctly specified, namely x = (x1, x2) and z = (x2, x3).
As can be seen from the simulation results in Table 1 for two different sample sizes, when
the maximum follow-up time tR is sufficiently large (such as in Setting 1 where one can
reasonably assume that all right-censored units at tR = 25 correspond to cured ones given
that F0(25) = .9995), the posterior means taken as estimators of the regression parameters
in the two parametrizations have excellent frequentist properties: biases are virtually zero
and the coverage of 95% credible intervals are close to their nominal values. Note also
that the empirical standard errors for β2 and γ2 (sharing the same covariate x2) tend to be
relatively large.

However, when the duration of the follow-up is really short such as in Setting 3 (with
F0(tR) = .707), one can see (as expected from the theory in Section 2.2) that the estima-
tors for the regression parameters β2 and γ2 sharing the same covariate x2 have relatively
large standard errors and display biases that tend to compensate. However, their credible
intervals have coverages close to their nominal values, suggesting that the exploration of
their posterior distributions was realized properly by pointing in a satisfactory way plausi-
ble values for β2 and γ2 (given the observed data). One can also see that their (half) sum,
ψ2, is estimated without bias and that the associated 95% credible interval has a compat-
ible frequentist coverage. Their (half) difference dψ2 is, not surprisingly, estimated with
bias, but again with properly explored plausible values. As also announced by the theory,
the intercept β0 = ψ0 cannot be estimated, but its sum to logF0(t) can when t ≤ tR
as illustrated with t = tR. Standard errors of regression coefficient estimators for shared
covariates also tend to be larger, as a consequence of the identification issue.

3.2 Misspecified model
Assume now that the correct model family is chosen, but that unnecessary regressors are
included in the cured probability part and in the Cox proportional hazards model. More
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specifically, let us wrongly assume that x = z = (x1, x2, x3) like when one does not know
a priori whether a given covariate acts on long- or short-term survival.

Simulation results in Tables 2 & 3 clearly suggest that, whatever the considered follow-
up duration, the regression parameters for the covariate x1 acting only on cure probability
are estimated without significant biases and with a frequentist coverage of the HPD credible
intervals close to the 95% nominal value. In particular, the absence of an effect of x1 on
NCHD (γ1 = 0) is clearly revealed, suggesting to drop x1 from the regression model in
(2).

Except when the follow-up is sufficiently long (such as in Setting 1 where all regression
parameters are properly estimated), the estimation of a regression parameter associated to
a covariate having (at least) a true effect on NCHD (i.e. on short-term survival) (such as x2
and x3) is biased with compensating biases for βk and γk (k = 2, 3). While the credible
intervals for the regression parameters β2 and γ2 associated to the truly shared covariate
x2 have the expected frequentist coverages, it is not the case for the intervals for β3 and
γ3 associated to the covariate x3 (truly) acting on NCHD only. The latter intervals tend to
have an effective frequentist coverage slightly smaller than their nominal values. However,
the (half) sum of these parameters, ψ3 = (β3 + γ3)/2, has a credible interval with the
expected coverage.

3.3 Conclusions
The lessons of this simulation study are particularly useful (and not only a reassuring in-
dication that our code is working properly and with results in agreement with our prior
theoretical expectations). Given that, in practice, one rarely knows in advance how covari-
ates should be divided between the two regression model parts, one will most likely start
with a misspecified model, cf. Section 3.2.

If the follow-up is sufficiently long, regression parameter estimation will proceed prop-
erly (with unbiased estimators and a good quantification of uncertainty) and provide reli-
able information on covariate effects.

On the other hand, if the follow-up is insufficiently long, one should be very care-
ful when analyzing estimation results. Unless substantive knowledge indicates that a co-
variate only has a potential impact on cure probability or if strong informative priors
are available for the regression parameters, one should only rely on point estimation for
ψk = (βk + γk)/2. In addition, slightly larger credibility levels should be considered to
examine plausible values for the regression parameters to compensate for the potential un-
dercoverage of intervals if the covariate only happens to (truly) impact short-term survival
(and not the long-term cure probability).

Therefore, when the maximum follow-up is insufficiently long and unless the division
of covariates between the two regression model parts is clear, the safest option is to consider
the simplified promotion time cure model corresponding to a proportional hazards model
with (population) survival function

Sp(t|x,ϕ) = exp
(
− exp(x′ϕ)H0(t)

)
= S0(t)exp(x

′
ϕ), (11)

where the baseline cumulative hazard H0(t) remains constant for t ≥ tmax, the maximum
follow-up time required to observe the monitored event on a susceptible subject. The latter
function H0(t) corresponds to eβ0F0(t) in the first order approximation discussed in Sec-
tion 2.2, see Eq. (5). However, in the presence of a cured fraction, indications on the specific
impact of the selected covariates can be obtained from the extended conditional promotion
time model presented in Section 2.1 and credible regions with large nominal levels for the
pairs (βk, γk). Potential identification issues in that context and the preceding simulation
results suggest that one can reasonably construct interpretations for covariate effects using
credible intervals, but that one should be very cautious with point estimates.
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4 Application
Moertel et al. (1990) and Moertel et al. (1991) report the results of a successful treatment
of colon cancer based on the combination of Levamisole (used to treat parasitic worm
infections) and Fluorouracil (5-FU), a now widely used medication to fight cancer. We
focus here on the time to cancer recurrence for the n = 888 patients involved in the trial
with complete information on sex, age, indicators of obstruction of the colon by the tumour
and of adherence to nearby organs, differentiation of cancer cells, the extent of the cancer
and the number of positive lymph nodes. The median follow-up time was 4.26 years with
a maximum value slightly exceeding 9 years (tR = 9.12). About half of the patients were
observed to experience a cancer recurrence with the largest recurrence time observed after
7.38 years. The other 442 patients were right censored after a median censoring time of
6.27 years.

A plot of the Kaplan-Meier Meier estimates of the survival curves for the recurrence
times under each treatment level, see Fig. 1, suggests that a cured fraction exists and that
the addition of the chemotherapeutic agent 5-FU decreases the chance of a relapse. A
first selection of the covariates was made using a stepwise procedure with the Cox propor-
tional hazards model. The flexible promotion time cure model described in Section 2.1 was
fitted to the preceding data with the pre-selected covariates simultaneously included to de-
scribe the cure probability and their effects on the population hazard dynamics. Priors were
elicited for the regression parameters using the suggestions of Section 2.4. In particular, a
Normal prior with mean -0.512 and standard deviation 0.494 was taken for β0, translating
a 95% prior belief that the cure probability is within (.20,.80) in the patient subgroup with
baseline values for the covariates. Normal priors with mean 0 and standard deviation 1.5
were taken for the other regression parameters: they correspond to flat priors in the study
context, but will prevent the generation of unrealistic (ψk, dψk) parameter values when
generating Monte Carlo Markov chains (MCMC).

A Metropolis-within-Gibbs algorithm was used to sample the joint posterior. The
model was reparametrized following the recommendations in Section 2.3, enabling the
generation of well mixing chains. A chain of length 10,000 followed a burn-in of 2,000
iterations during which the standard deviations of the univariate normal proposal distribu-
tions were tuned (Haario et al., 2001) to reach the desired acceptance probabilities (Roberts
and Rosenthal, 2001). A summary of the MCMC results can be found in Table 4 giving
the estimated posterior mean, standard deviation and several quantiles for each of the re-
gression parameters. The significance of a contrast between a covariate category and its
reference value was measured using the minimum of the posterior probabilities of the pa-
rameter to be larger and smaller than 0, respectively, with bolded values when it is smaller
than 0.05/2.

Given that the Cox PH model is a special case of the promotion time cure model,
it is not surprising to discover that each covariate is associated to a least one regression
parameter with only non-zero plausible values (given by a 95% credible interval). Starting
from there, the model was progressively simplified by regrouping covariate categories (such
as the Control and Levamisole treatment levels, the first two categories for the number
of positive lymph nodes, and the Submucosa and Muscle categories in the description of
the extent of the cancer) and by determining whether they were significantly influencing
the probability to be cured or/and NCHD. It led to the final flexible cure promotion time
model in Table 5. We can conclude from it that treatment, the number of positive lymph
nodes (Nodes) and the extent of the cancer significantly influence the probability of ‘cure’,
i.e. of not experiencing a cancer recurrence within (about) 9 years. The combination of
Levamisole and 5-FU significantly improves prognosis (as compared to Levamisole alone
or the absence of treatment), while the risk of relapse significantly increases with the spread
of the cancer (qualitatively described by the extent of the tumour into the wall of the colon,
and also quantified by the number of contaminated lymph nodes).

From the bottom of Table 5, we conclude that the time to recurrence also tends to be
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significantly smaller when the number of positive lymph nodes exceeds two. In particular,
it suggests that hazard ratios contrasting different categories of Nodes are not proportional
(conditionally on the other covariates), but change over time. The other selected covariate
suggests that a recurrence tends to occur faster with patients with poorly differentiated
cancer cells (conditionally on other covariates), but its absence in the upper panel of the
table reveals that it does not significantly influence the long term risk of recurrence.

Our results are more insightful than with traditional analyses based e.g. on the Cox
proportional hazards model where one does not try to disentangle the effect of covariates
on long term risk from their short term influence on hazard dynamics.

To illustrate the influence of the maximum follow-up duration on the estimation of the
regression parameters, the preceding selected cure survival model was refitted on the same
data with the response artificially right censored at increasing values of tR (between 1 and
9 years by steps of six months) when an individual follow-up originally exceeds tR. The
plots of the so-obtained posterior means and 95% credible intervals are available in Fig. 2.
The first two rows, related to the quantification of the Nodes effects, clearly illustrate
the large uncertainty in the estimation of βk and γk when the corresponding covariate
simultaneously appears in the two regression model parts and when the maximum follow-
up tR is insufficiently long. In addition, a large (resp. small) value for βk tends to be
compensated by a small (resp. large) one for γk as a consequence of the identification
issues anticipated in Section 2.2. On the other hand, the estimate for the sum of these
coefficients, βk + γk(= 2ψk), does not change much with tR and has good theoretical
properties (in terms of bias and effective coverage of credible intervals, cf. Section 3). The
same is true for regression parameters associated to covariates involved only in one of the
two regression model parts (see the bottom row in Fig. 2). The evolution with tR of the
estimates of the regression parameter ϕk in the Cox PH model with the same covariates
can also be visualized as dashed curves on the same figure. In the first two rows of Fig. 2,
one can see (as expected from the theory in Section 2.2) that the estimates for (β2 + γ2)
and (β3 + γ3) are very close to these for ϕ2 and ϕ3, respectively, when the maximum
follow-up duration tR is small, but tend to diverge as tR increases. On the other hand,
when a covariate only enters the sub-model defining the cure probability, the estimation of
βk in the promotion time model and of ϕk in the Cox PH model are equivalent whatever
tR (see the first three plots in the third row of Fig. 2 where the solid and dashed lines are
are hardly distinguishable). From the credible intervals for the βk’s and the sign of their
plausible values, one can see that clear indications on the effect of these covariates on long-
term survival are already available from the data with a rather short maximum follow-up
time tR. Effects on short-term survival require larger tR values to be established for shared
covariates.

5 Discussion
Cure rate models are attractive alternatives to classical survival model when it is known a
priori that a unidentified proportion of subjects will never experience the event of interest
whatever the duration of the follow-up. When the study duration is long enough to declare
that survivors with the maximum follow-up time are ‘cured’, estimating a promotion time
cure model with covariates simultaneously influencing the cure probability (or long-term
survival) and the population hazard dynamics (or short-term survival) works perfectly: es-
timators of the regression parameters are unbiased and credible intervals have the expected
frequentist coverage.

On the other hand, for shorter follow-up, although the inclusion of informative priors
for the regression parameters could be helpful, it is probably not sufficient to obtain unbi-
ased estimations when the concerned covariate truly affects the hazard dynamics. Credible
intervals with the expected frequentist coverage can be obtained for the regression param-
eters provided that the corresponding covariate (truly) affects the probability to be cured.
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Thus, in practice, when the follow-up is insufficiently long and unless it is known a
priori that a covariate can only affect either the probability to be cured or the population
hazard dynamics, one should be very cautious and probably opt for a simpler model in a
first step. A standard proportional hazards model is a possibility as it can be seen as a first
order approximation of the extended promotion time cure model. Then, for a short max-
imum follow-up duration, a regression coefficient ϕk in the PH model can approximately
be seen as the sum of the corresponding (non disentangled) regression coefficients βk and
γk in the associated promotion time cure model with shared covariates. Thus, compared to
a classical procedure, variable selection and parameter estimation would not differ, but the
interpretation of a regression coefficient as a conditional log hazard ratio (for a subject truly
at risk) would not hold anymore. Indications on whether the selected covariates affect the
long- or short-term survival can be obtained by fitting, in a second step, the promotion time
model described in Section 2.1. If the credible interval for βk (resp. γk) does not include
zero, then one has good hints on the conditional qualitative effect of the corresponding
covariate on long-term (resp. short-term) survival. But when a covariate simultaneously af-
fects long- and short-term survival, one should not rely on point estimates for its regression
coefficients. An illustration of the whole modelling strategy can be found in Section 4, in
particular when the follow-up is insufficiently long.

It would be interesting to explore the same research questions for extensions of the pro-
motion time model. For example, Zeng et al. (2006) motivated the inclusion of a subject-
specific frailty term in the population survival function as the independence assumption
for the Wi’s in the biological derivation of the promotion time model might be unrealistic.
Alternatives to the Poisson distribution for the number of latent factors N can also be con-
sidered (Cooner et al., 2007). In the special case of a Bernoulli distribution forN , one ends
up with the mixture cure model (Berkson and Gage, 1952) where the population survival
function is modelled as

Sp(t|x, z) = π(x) +
(
1− π(x)

)
Su(t|z),

where π(x) denotes the conditional cure probability and Su(t|z) the survival function for
the susceptible subjects. We plan to report on these issues in an additional paper.
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Table 4: Colon cancer data: regression parameter estimation in the flexible promotion
time cure model with all the pre-selected covariates included. neff indicates the effective
size of the MCMC sample out of a chain of length 10, 000; P(Coef) = min{Pr(Coef >
0|D),Pr(Coef < 0|D)}.

Quantiles
Variable Category Coef Mean sd 2.5% 5% 95% 97.5% P(Coef) neff
Intercept β0 -0.429 0.125 -0.673 -0.632 -0.222 -0.184 0.000 939

Control – 0.000

Treatment Lev(amisole) β1 -0.064 0.118 -0.299 -0.260 0.128 0.165 0.299 1480
γ1 0.075 0.156 -0.234 -0.181 0.328 0.378 0.318 785

Lev + 5-FU β2 -0.521 0.131 -0.780 -0.738 -0.303 -0.264 0.000 1668
γ2 -0.034 0.173 -0.379 -0.321 0.243 0.293 0.423 1318

≤ 1 – 0.000

2
β3 0.114 0.163 -0.209 -0.147 0.381 0.432 0.242 1184

#Positive γ3 0.188 0.212 -0.230 -0.156 0.539 0.598 0.189 454
lymph

[3, 5]
β4 0.484 0.142 0.205 0.248 0.721 0.762 0.000 993

nodes γ4 0.396 0.181 0.034 0.094 0.699 0.755 0.016 380

≥ 6
β5 0.875 0.142 0.597 0.643 1.111 1.155 0.000 1289
γ5 0.437 0.192 0.065 0.131 0.756 0.824 0.011 575

Cell Well/Moderate – 0.000
differentiation Poor β6 0.099 0.131 -0.165 -0.117 0.316 0.359 0.221 1597

γ6 0.703 0.158 0.388 0.443 0.956 1.005 0.000 1331
Submucosa β7 -0.563 0.185 -0.929 -0.870 -0.266 -0.201 0.002 1617

Extent or Muscle γ7 -0.030 0.242 -0.572 -0.455 0.334 0.398 0.475 1379
of cancer Serosa – 0.000

Contiguous β8 0.275 0.232 -0.184 -0.117 0.651 0.719 0.121 1611
structures γ8 0.525 0.275 -0.044 0.056 0.960 1.033 0.034 1619

– DIC=2319.63 ; pD=21.49 ; BIC=2407.74 –

Table 5: Colon cancer data: regression parameter estimation in the flexible promotion time
cure model after the final covariate selection. neff indicates the effective size of the MCMC
sample out of a chain of length 10, 000; P(Coef) = min{Pr(Coef > 0|D),Pr(Coef <
0|D)}.

Quantiles
Variable Category Coef Mean sd 2.5% 5% 95% 97.5% P(Coef) neff

Long-term survival: Pr(cured|x) = exp
(
− exp(β0 + x′β)

)
Intercept β0 -0.403 0.085 -0.574 -0.548 -0.266 -0.245 0.000 1192

Treatment Control / Lev – 0.000
Lev + 5-FU β1 -0.506 0.108 -0.719 -0.687 -0.335 -0.301 0.000 1937

#Positive ≤ 2 – 0.000
lymph nodes [3, 5] β2 0.446 0.117 0.214 0.252 0.635 0.669 0.000 1514

≥ 6 β3 0.846 0.124 0.604 0.641 1.052 1.089 0.000 1541
Extent Submucosa/Muscle β5 -0.572 0.171 -0.912 -0.858 -0.289 -0.241 0.000 1699
of cancer Serosa – 0.000

Contig. Structures β6 0.462 0.205 0.038 0.112 0.785 0.837 0.017 1601

Short-term survival (NCHD): F (y|z) = 1− S0(y)exp(z
′
γ)

#Positive ≤ 2 – 0.000
lymph nodes [3, 5] γ2 0.304 0.149 0.000 0.051 0.544 0.591 0.025 681

≥ 6 γ3 0.347 0.156 0.040 0.091 0.605 0.649 0.012 808
Cell Well/Moderate – 0.000
differentiation Poor γ4 0.733 0.147 0.438 0.491 0.971 1.020 0.000 1260

– DIC=2308.98 ; pD=12.97 ; BIC=2362.17 –
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Figure 1: Colon cancer dataset: Kaplan-Meier estimates of the survival functions for the
time (in years) to recurrence for each of the treatment groups.
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Figure 2: Colon cancer dataset: regression parameter estimation for growing maximum
follow-up time tR (in years) in the final model: posterior mean (solid line) and 95%
quantile-based credible interval (grey region) for βk, γk and (βk + γk) in the flexible pro-
motion time model ; dashed curves, when present, provides the corresponding parameter
estimates for ϕk in the Cox PH model.
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