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ABSTRACT: The North-Eastern region of Morocco is filled with marine marls 

of Neogene age. The Neogene marls from the lower-Kert area were 

characterized to evaluate their suitability in the ceramic industry. To meet this 

objective, two cross-sections involving all the Neogene facies were performed 
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on the both banks of the Kert River. Grey and green marls occurring between 

sandstone and tuffs were characterized by mineralogical (XRD) and physico-

chemical analyses (grain-size, Atterberg limits, XRF, and specific surface area). 

The studied Neogene clays are mainly calcareous silty marls with CaCO3 

content ranging from 13 to 20 wt.%. The mineralogical composition showed the 

occurrence of quartz, calcite, feldspars, dolomite, illite, kaolinite, chlorite, and 

mixed-layers (10-14 Å). Cristobalite occurred only in the uppermost level of 

the green marls supplied from volcanic ash during the Messinian. Siderite and 

rhodochrosite occurred as traces pointing out to reducing or locally oxidizing 

conditions during sedimentation or shortly thereafter. There, marls have 

medium to high plasticity that is optimum for extrusion. Raw Neogene marls 

are suitable for structural clay products manufacturing. More specific uses were 

supported by geochemical results and grain-size distribution as hollow 

products, roofing tiles, and masonry bricks. 
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INTRODUCTION 

Large tonnages of clay materials are used in ceramic industry such as common 

bricks, structural bricks, refractories, pottery products, stonewares, sanitary 

wares, and roofing tiles (Murray, 1994; Harvey & Lagaly, 2006; Reeves et al., 

2006; Murray, 2007; Keith & Murray, 2009; Petrick et al., 2011; Mukherjee, 

2013). Mineralogical, chemical, and grain-size distributions of clays determine 

their engineering properties (Harvey & Lagaly, 2006; Keith & Murray, 2009). 

Due to their plastic behavior, clay materials could be worked in many desired 

shapes, dried, and fired to produce products with high hardness (Murray, 1994). 

Morocco is one of the most producers and consumers of clayey building 

materials. In particular, the Rif area (Northern Morocco) is mostly filled with 

clays of Neogene age (El Ouahabi, 2013; Mesrar et al., 2013; El Ouahabi et al., 

2014a; El Ouahabi et al., 2014b). These clayey materials have particularly 

drawn attention since few years ago.  

In the Northwest of Morocco (Tetouan area), sandy marls of Late Pliocene age 

showed high content of illite/muscovite (43-57 %) and clay minerals (30 %). 

The clay fraction consists mostly of illite (88 %). These Pliocene clays are silty 

clay (92 % of 2-20 µm fraction), with low to medium plasticity and are suitable 

for structural clay products (El Ouahabi et al., 2014a; El Ouahabi et al., 2014b). 
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In the Tangier region (N.W. Morocco), Pliocene marls are sandy clay with 

variable mineralogical composition. The total clay minerals and quartz content 

are 24-48 % and 29-61 %, respectively. The clay fraction is dominated by illite 

(56-82 %). These marls are silty clay (70-88 % of 2-20 µm fraction) and have 

medium plasticity. These materials are suitable for clay roofing tiles and 

structural clay products (El Ouahabi et al., 2014b). 

In the Center-North Morocco (Meknes region), Miocene yellow sandy marls 

from the Saïs Basin are mostly homogeneous. They consist of total clay (27-45 

%), quartz (19-27 %), and calcite (20-28 %). Illite (45-58 %) always dominates 

with the occurrence of variable amount of smectite. These marls are therefore 

illitic, very plastic, and suitable for structural clay products (El Ouahabi et al., 

2014a; El Ouahabi et al., 2014b). In Fez region (Center-North Morocco), 

Miocene gray marls are also illitic clays (37-46 % of illite), having medium to 

high plasticity. They are illitic silty clay, containing 23-37 % of total clay. As 

Miocene marls from the Meknes area, the Fes raw marls are suitable for 

structural clay products (Mesrar et al., 2013). Furthermore, similar composition 

is found in Miocene marls from the Taza region (Center-North Morocco) 

displaying the presence of quartz, calcite, dolomite, illite, and kaolinite (Mesrar 

et al., 2017). 
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The Neogene deposits from North-East of Morocco have been the subject of 

geological, sedimentological, paleontological, and structural studies (Guillemin 

& Houzay, 1982; Frizon de Lamotte & Leikine, 1985; Essafi, 1986; Asebriy et 

al., 1993; Azdimousa & Bourgois, 1993; Abdellah, 1997; Cunningham et al., 

1997; El Bakkali et al., 1998a; El Bakkali et al., 1998b; Cunningham & 

Collins, 2002; Azdimousa et al., 2006; Münch et al., 2006; van Assen et al., 

2006; Chalouan et al., 2008; Achalhi, 2016; Achalhi et al., 2016; Cornée et al., 

2016; Nasri et al., 2016). However, there are no previous studies dealing with 

Neogene marls in the area because of the inaccessibility of this mountainous 

region, particularly with the lack of infrastructure. This problem has recently 

been resolved thanks to the construction of the coastal road connecting the east 

(Saïdia) to the west (Tangier) regions of Morocco. Within this context, the 

current study aims to characterize the clayey materials from the lower part of 

the Kert Basin (North-Eastern Rif) and to evaluate their suitability for ceramic 

production through mineralogical, geochemical, and geotechnical properties. 

(Dondi et al., 2014) proposed an industry-oriented technological classification 

of clay raw materials, on the basis of chemical (Fe2O3 content), clays and 

carbonates mineralogy, particle size and plasticity. The potentiality of Neogene 

marls for ceramic applications will be evaluated based on characterization 
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study. For this purpose, two geological cross-sections were performed on the 

both banks of the Kert River. 

 

GEOLOGICAL SETTING 

The geological history of the Rif area began since Late Cretaceous at the time 

of closure of Tethys oceanic domain (Michard et al., 2002). Since, two periods 

of relatively rapid convergence during Late Cretaceous and Eocene-Oligocene 

occurred, alternated with periods of slower convergence during Paleocene and 

since Early Miocene (Rosenbaum et al., 2002). Since Middle Miocene, an E-W 

extension have lead the individualization of Neogene post-nappes basins in the 

Rif area during Tortonian, including the Kert Basin (Guillemin & Houzay, 

1982; Achalhi, 2016; Achalhi et al., 2016). Since Late Tortonian, a strong 

convergence associated with intense volcanism in the eastern Rif area has led 

Africa to move in the N.W. direction (Guillemin & Houzay, 1982; Mazzoli & 

Helman, 1994). Consequently, the Kert Basin, as other Neogene basins of the 

region, was exposed to abundant marly sedimentation during Miocene. 

Due to its large surface area, the Kert Basin is divided into two parts (Guillemin 

& Houzay, 1982): (1) Lower-Kert is located in the western part of the Melilla-

Nador Basin and continues to the Beni Saïd mountain. (2) Upper-Kert extends 

from the Beni Bou Ifour massif in the East, to the Tizi Ouzbar schist (west of 
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Midar city) in the west. This latter is limited to the north-west by the Bou Ziza 

volcano and to the north-east by the Gourougou volcano (FIG. 1). 

The Neogene of the Kert Basin is characterized by a basal conglomerate located 

on westward of the Beni Saïd (Guillemin & Houzay, 1982; Essafi, 1986) and 

Zeghanghane Mountains suggesting a deepening due to the occurrence of syn-

sedimentary faults affecting the thickness of the series towards the west of the 

basin (Essafi, 1986; Abdellah, 1997). Marl associated with interstratified levels 

of rhyolitic tuffs-cinerites layers were deposited above the conglomerate in a 

deep Messinian sea (Essafi, 1986). In the lower-Kert area, the post-nappes 

series are Messinian with a clearly transgressive behavior submerging the Beni 

Saïd Mountain (eastern Temsamane), setting up a marly sedimentation started 

with detrital conglomerate and sandstone, overcoming the Beni Saïd Mountain 

in the West of the basin. Then, the facies becomes marly, with cinerite 

intercalations due to the Messinian volcanic activity, from the bottom of the 

mountain to the S.W. of the Melilla Basin (Guillemin & Houzay, 1982). 

Interbedded pyroclastic levels (tuffs and cinerites) in the Messinian marls could 

be used for stratigraphic correlations because of their large extension (Abdellah, 

1997). More recent 
40

Ar / 
39

Ar dating works have assigned a date of 6.9 ± 0.02 

Ma at the basal level of the Izaroren cross-section (Cunningham et al., 1997; 

van Assen et al., 2006). The end of open marine deposits was carried out before 
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6 Ma (van Assen et al., 2006) confirming the Messinian age of marls from the 

Lower-Kert area. Like the neighboring sedimentary basins, the Late-Messinian 

regression is recorded in the Kert Basin (Guillemin & Houzay, 1982). 

 

MATERIALS AND METHODS 

Materials 

Sampling was carried out in the Messinian marly sediments of the Lower-Kert 

area, along two cross-sections; Izaroren and Afza located on either sides of the 

Wadi Kert mouth (FIG. 1). The thickness of each section exceeds 100 meters. 

A total of five marly samples, labeled Izar 1, Izar 3, Izar 4, Izar 5, and Izar 6, 

were sampled from the Izaroren profile (east of the Wadi Kert) (FIG. 2). A total 

of four samples were also taken from the Afza cross-section (west of the Wadi 

Kert), labeled Af 1, Af 3, Af 4, and Af 5 (FIG. 3). The sampling locations have 

been chosen in marly facies away from trees, shrubs, and anthropogenic 

influences. The sampling has been performed by digging deep into the 

formation after removing the altered surface, and then sampling a fairly 

sufficient amount of material. In addition to correlate the two profiles, three 

more samples have been taken from tuff levels: Izar 2 from Izaroren cross-

section; Af 2 and Af 6 from Afza cross-section. 
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Experimental methods 

The studied samples were subjected to mineralogical and geochemical analyzes 

to estimate bulk and clay mineralogical composition, and determine the main 

major chemical elements. The calcimetry and grain-size analyzes allowed to 

determine the CaCO3 content, and the < 2 µm, 2-20 µm, and > 20 µm fractions, 

and the sedimentological fractions (< 4 µm; 4 µm-63 µm; 63 µm-2 mm) 

according to Wentworth scale (Wentworth, 1922). The Atterberg limits and 

methylene blue values allow the determination of the marls plasticity level, 

their extrudability, and their specific surface area. 

 

Mineralogical and chemical analysis 

To characterize the Messinian marls and tuffs belonging to the both studied 

profiles, mineralogical and geochemical analyzes were performed. The bulk 

samples were prepared by grinding about 1 g of dried sample in a mortar, and 

then placed into a sample holder in order to limit any preferential orientation of 

minerals (Moore & Reynold, 1997; Boski et al., 1998; Fagel et al., 2003). 

The mineralogical composition (XRD) was carried out using an XPERT-PRO 

diffractometer with Cu-Kα radiation (λ = 1.5418 Å), at the National Center for 

Scientific and Technical Research - Technical Support Unit for Scientific 

Research (UATRS-CNRST), Rabat, Morocco. The X-ray patterns were 
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analyzed using X'Pert HighScore Plus software and PDF-2 database. Semi-

quantitative estimation of mineralogical phases was obtained by multiplying the 

measured intensity of specific reflection by corrective factors to obtain the 

amount of each mineral (Cook et al., 1975; Boski et al., 1998; Fagel et al., 

2003).  

Oriented aggregates using the Glass Slide Method (Moore & Reynold, 1997) on 

the < 2 μm fraction were only performed on marly samples. The clay fraction 

was obtained by suspension in distilled water of about 1 g of dried bulk 

sediment, previously sieved at 63 μm. The samples were decarbonated with 

HCl (0.l mol/L) and thereafter washed enough with distilled water, and the 

supernatant was removed by centrifugation. The < 2 μm fraction was separated 

after a settling time by gravity sedimentation following Stoke's law (AFNOR, 

1992; Moore & Reynold, 1997). The first centimeter of the suspension was 

placed on a glass slide and dried overnight at room temperature. The XRD clay 

analyzes included the successive measurement of an X-ray patterns in air-dried 

(AD), after solvation with ethylene glycol for 24 h (EG), and after heating at 

500°C for 4 h (500°C) (Moore & Reynold, 1997). This last treatment allows to 

characterize some hydrated minerals and to distinguish between the 

contribution of kaolinite and chlorite at ~7.1Å. The (001) peak of kaolinite 

disappears after heating at 500°C, while the (002) peak of chlorite persists at 
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~7.0Å (Moore & Reynold, 1997; Fagel et al., 2003; Fagel & Boës, 2008). 

Semi-quantitative estimations of the main clay phases were obtained from the 

measured intensity of a diagnostic peak multiplied by the corrective factors 

(Biscaye, 1965; Cook et al., 1975; Fagel et al., 2003; Fagel et al., 2007; Nkalih 

Mefire et al., 2018) (FIG. 4 and 5). 

The chemical analysis of the major elements has been performed on Axios X-

Ray Fluorescence spectrometer with wavelength dispersion (1 kW), at the 

National Center for Scientific and Technical Research - Technical Support Unit 

for Scientific Research (UATRS-CNRST, Rabat, Morocco). The results have 

been expressed in mass percentage of oxides. The Loss On Ignition (L.O.I) was 

obtained by heating the samples at 1000°C during 2 h under oxidizing 

conditions.  

The CaCO3 content has been measured using a Bernard calcimeter; based on 

the volume of carbon dioxide (CO2), according to the French Standard NF P 

94-048 (AFNOR, 1996). 

 

Physical and textural analyzes 

Particle-size distribution has been obtained by wet sieving through an 80 μm 

sieve. The < 80 μm particles was then suspended in water mixed with a 

dispersant (sodium hexametaphosphate: Na6 (PO3)6, 10H2O), and shacked in 
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order to avoid any agglomeration of clay particles, according to the French 

Standard NF P 94-057 (AFNOR, 1992). The evolution over time of the solution 

density was measured by an apparatus called a hydrometer. The maximum 

diameter and the mass percentage of sedimented particles are calculated based 

on the measured densities. 

The Atterberg limits, including liquid limit (LL), plastic limit (PL), and 

plasticity index (PI) were determined by the Casagrande method according to 

the French Standard NF P 94-051 (AFNOR, 1993). The methylene blue amount 

absorbed by the clay sample allowed to determine the capacity of clay to adsorb 

cations from a solution, and thereby predicts how the clay will react, based on 

cation-exchange capacity (CEC). Clay minerals are negatively charged owing 

to the presence of permanent charges due to isomorphous substitutions in the 

octahedral and tetrahedral sheets and the formation of negative charges at the 

edges (Ammann et al., 2018). The CEC is the capacity of clay to hold cations in 

order to balance this negative charge. The Specific Surface Area (SSA) has 

been calculated using the methylene blue index method according to the French 

Standard NF P 94-068 (AFNOR, 1998). The SSA was calculated by the 

following equation (AFNOR, 1998): 

SSA = MBV (CMB*Nav*AMB/1000 MMB) 

MBV = VMB*CMB*100/w0 
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Where CMB is the concentration of methylene blue solution (10 g/L), Nav is the 

Avogadro number (6.02 10
23

), AMB is the area covered by one methylene blue 

molecule (130 Å
2
), MMB is the molar mass of methylene blue (319.85 g/Mol), 

MBV is the methylene blue value (g/100g of sample), VMB is the volume of 

methylene blue solution injected to the soil solution (ml), and w0 is the dry 

weight of the sample used (g). 

 

RESULTS  

Lithological description 

In the lower part of the Kert Basin, two cross-sections located on both banks of 

the Kert River were investigated; the Izaroren cross-section to the east and the 

Afza cross-section to the west. The maximum depth of both profiles not 

exceeds 100 m (FIG. 2 and 3). 

The Izaroren profile begins with gray marl outcropping over about 10 m-thick. 

This marl is devoid of visible fossils. It is surmounted by a whitish tuff layer of 

8 m-thick, rich in quartz and feldspars, and is rhyolitic in nature (El Bakkali et 

al., 1998a). The series continues with a thick grayish marl layer of about 80 m-

thick without visible macrofossils, which becomes gypsiferous at the top (FIG. 

2). The profile ends with a succession of 6.5 m-thick indurated sandstone marl 
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and greenish marly layers of 20-15 m-thick with some ferruginous features, 

probably reflecting the beginning of the Late-Messinian regression. 

The Afza profile is remarkably affected by normal faults attesting for the 

Messinian syn-sedimentary subsidence (FIG. 3). At the base, as the Izaroren 

profile, a greenish marly layer of 10 m-thick with some yellowish patches 

occur. It is topped by a whitish tuff layer of 2 m-thick. In the Afza profile, 

succession of at least two gray marly layers (12-15 m) alternates with two 

conglomeratic banks of sandy breccias (5-7 m) and affected by normal faults. 

These marls are gray with red ferruginous features. This alternation is 

surmounted by a sandbar of about 4 m-thick, showing bioturbations and 

ferruginous features on its upper surface. The series continues with green 

plastic marly sediment of 45 m-thick, topped by a slightly altered white 

volcanic tuff of about 12 m-thick.  

 

Marl characteristics 

The mineralogical composition (TABLE 1) mostly showed quartz (12-25 

wt.%), total clay (38-58 wt.%), and calcite (13-32 wt.%), associated with minor 

amounts of feldspars (3-15 wt.%) and dolomite (1-5 wt.%). While siderite (0-1 

wt.%) and rhodochrosite (0-2 wt.%) occur in traces. Cristobalite occurred only 

in Izar 6 (22 wt.%) and Af 5 (6 wt.%). The amount of quartz was slightly 
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smaller in Izaroren marly samples (12-18 wt.%) than in Afza (22-25 wt.%). 

Conversely, total clay amount was greater in the Izaroren (39-58 wt.%) than in 

the Afza profile (38-46 wt.%). The clay fraction (< 2 µm) significantly vary; it 

consisted of illite (28-46 wt.%), kaolinite (2-27 wt.%), and mixed-layers 10-14 

Å (26-48 wt.%). Chlorite occurred from 11 wt.% to 29 wt.%, but was absent in 

the uppermost samples of the Izaroren and Afza profiles (in samples Izar 6 and 

Af 5). 

The chemical composition of studied marly samples (TABLE 2) showed that 

the main oxides are SiO2 (38.3-54.8 wt.%), Al2O3 (8.5-13.1 wt.%), Fe2O3 (9.1-

16.6 wt.%), and CaO (6.6-9.2 wt.%). Whereas, TiO2 (0.37-0.65 wt.%), MgO 

(1.75-2.98 wt.%), K2O (1.09-1.67 wt.%), Na2O (1.04-4.28 wt.%), SO3 (0.3-1.1 

wt.%), MnO2 (0.29-0.51 wt.%), and P2O5 (0.15-0.2 wt.%) were present in small 

amounts. The L.O.I values varied between 11.37 wt.% and 16.85 wt.% due 

mainly to the variable amount of carbonates and clay minerals. The amount of 

carbonate (TABLE 3) was varying between 13 wt.% and 20.4 wt.%, which is 

characteristic of marly facies. 

The TGA-DTA curves of the Izaroren 4 marl is shown in FIG. 6. The DTA 

curves display four endothermic and two exothermic peaks. The first 

endothermic peak is situated at ~100 associated with loss on weight of 3.6 wt.% 

due to the removal of physisorbed water. An exothermic peak appears at ~160 
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°C which is attributed to the burning of organic matter. The second endothermic 

peak is situated at about 550°C and associated with relatively high weight loss 

of 5.86 wt.%, assigned to dehydroxylation of kaolinite into metakaolinite 

(Brindley and Nakahira, 1959; Shvarzman et al., 2003). The third and fourth 

endothermic peaks at ~730 and ~850°C are associated with slightly high loss on 

weigh of 5.1 wt.% due to decomposition of calcite and dolomite respectively 

(Alvares et al., 2000). A small exothermic peak at ~900°C associated with 

small loss on weight of 0.6 wt.% is related to crystallization of intermediate Ca-

silicates phases and most likely the inception of aluminosilicates (spinel) 

formation (Trindade et al., 2009; El Ouahabi et al., 2015   ilo evi     ogar, 

2017). 

The grain-size data showed significant variations along the profiles, implying 

lateral and vertical variation within the deposit (TABLE 3). Hence, along the 

Izarouren section, the grain-size fractions did not show a huge regularity (FIG. 

7. A). Thus, sand (> 63 µm) content is 9 wt.% in the Izar 6 sample, but it didn’t 

exceed 3 wt.% in the other samples of the Izaroren profile. Nevertheless, silts 

(4-63 µm) showed variable amounts (26-75 wt.%) over the depth. The < 4 µm 

fraction varies from 23 to 71 wt.%, which inversely varies with the silt (4-63 

µm) amount. 
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In the Afza section, more regular variations in clay, silt, and sand fractions were 

observed (FIG. 7. B). Thus, the sand content increased gradually from the base 

of Afza profile (10 wt.%) to the top (18 wt.%). Similarly, the silt content 

increased from 28 wt.% at the base to 49 wt.% at the top, and from 29 wt.% to 

37 wt.% in the middle part of the profile. However, the clay content gradually 

decreased from the bottom (60 wt.%) to the top (32 wt.%). 

The differences in mineralogical and grain-size properties are also shown on 

geotechnical data (TABLE 3). The liquid limit (LL), plastic limit (PL), and 

plasticity index (PI) varied from 44 % to 72 %, from 20 % to 45 %, and from 

23 % to 45 %, respectively. The SSA values showed a huge variation, ranging 

from 26.3 m
2
/g to 125.6 m

2
/g. 

 

DISCUSSION 

Characterization of Miocene marls 

Mineralogical analysis allowed to correlate between the lithologies of the two 

cross-sections. Thus, the two profiles can be subdivided into two parts: (1) gray 

marl in the lower part, and (2) green marl in the upper part (FIG. 8). In addition, 

total clay amount inversely varied with the content of quartz and cristobalite. At 

the top of the two profiles, a slight decrease in total clay from 43 to 39 wt.% 

and from 42 to 38 wt.% occurred in the Izaroren and Afza profile, respectively. 
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This decrease is associated with the appearance of cristobalite (22 and 6 wt.% 

in uppermost samples of the Izaroren and Afza profiles respectively). Likewise, 

chlorite inversely varied with the abundance of illite and kaolinite, and 

definitively disappeared at the top of the two profiles (Table 1). The late 

appearance of cristobalite is due to the Messinian volcanism characterizing the 

eastern Rif, supported by the disappearance of chlorite and the establishment of 

the tuff overlying the green marl in the Afza profile. 

These marls are rich in calcite, which is basically of biological marine origin 

(planktonic and benthic) and also could have a continental origin. Traces of 

siderite and rhodochrosite were formed in the sediments during their deposition 

or shortly thereafter. In fact, they point out to reducing or locally oxidizing 

conditions.  

The chemical composition is in accordance with mineralogical composition. So, 

the high content of SiO2 is mainly related to the high amount of clay minerals, 

quartz, and also the presence of cristobalite in samples Af 5 (SiO2 = 46.37 

wt.%) and Izar 6 (SiO2 = 54.8 wt.%). The Al2O3 and CaO amounts are mostly 

associated respectively with total clay and calcite abundance. The L.O.I values 

vary between 11.4 wt.% and 16.8 wt.% which is related to the presence of clay 

minerals, hydroxides, organic matter, and carbonates (Milheiro et al., 2005; 

Baccour et al., 2008). 
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Along the Izaroren profile, the Shepard grain-size classification (Shepard, 

1954) classified samples Izar 1 and Izar 4 in silty clay field. Whereas, the other 

samples (Izar 3, Izar 5, and Izar 6) were clayey silts (FIG. 9). This grain-size 

irregularity was mainly due to hydrodynamic fluctuations during sedimentation. 

According to the Shepard classification (Shepard, 1954), the uppermost sample 

(Af 5) of the Afza cross-section was clayey silt. The other samples were silty 

clays (FIG. 9). The progressive evolution of the different particle size fractions 

over depth was due to gradual increase in hydrodynamic energy during 

deposition. 

The mineralogical composition of the Messinian marls form the Lower-Kert 

area displayed similarities with Neogene marls from the Sais Basin in Meknes 

area (Morocco) (El Ouahabi et al., 2014b). However, the studied marls of the 

Lower-Kert area contained 10-14 Å mixed-layers clays instead of smectite in 

the Meknes marls. Furthermore, similar mineralogical composition has been 

observed for the Algerian Neogene clayey deposits from Jijel Basin (Baghdad 

et al., 2017), but with a greater amount of kaolinite than the Lower-Kert marls. 

Both Neogene marls are successfully used for structural clay products (El 

Ouahabi et al., 2014b; Baghdad et al., 2017). 

The variations in mineralogical and grain-size results mainly affected the 

geotechnical properties. The Atterberg limits showed that the samples Af 3 and 
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Af 4 were medium plastic, whereas the other studied samples were highly 

plastic (FIG. 10).  

SSA depends on several parameters like the quantity and mineralogy of clay 

minerals, CEC, and grain-size of the materials (De Kimpe et al., 1979; Tiller & 

Smith, 1990; Petersen et al., 1996; De Jong, 1999). The SSA (26.3-125.6 m
2
/g) 

values of the Lower Kert marls were considered low even though they are 

greater than the Meknes marls values (33.3-37.9 m
2
/g). The Lower-Kert marls 

belonged to the SSA intervals of kaolinite (10-30 m
2
/g), illite (70-140 m

2
/g), 

and chlorite (50-150 m
2
/g); and they were much lower than smectite (700-800 

m
2
/g) and vermiculite (760 m

2
/g) ones (Beaulieu, 1979; Mahmoudi et al., 

2017), which was consistent with the mineralogical data.  

 

Ceramic suitability 

The suitability of raw clay deposits for ceramic applications is determined by 

their physical properties, mineralogy, and chemistry (El Ouahabi et al., 2014b; 

Lisboa et al., 2016; Baghdad et al., 2017; Kharbish & Farhat, 2017; El Boudour 

El Idrissi et al., 2018). The bulk mineralogical association of studied samples 

and the dominance of illite in their clay fractions classified these marls as 

common clays (Murray, 2007; Keith & Murray, 2009), and gave them suitable 

ceramic properties (Ferrari & Gualtieri, 2006; Wattanasiriwech et al., 2009; 
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Baghdad et al., 2017; Mahmoudi et al., 2017). According to the Strazzera 

ternary diagram (Strazzera et al., 1997) (FIG. 11), the top sample of the Afza 

profile (Af 5) was suitable for clay roofing tiles. The other samples were within 

the field of structural clay products, except the bottom-most sample of the 

Izaroren profile (Izar 1). The samples Af 5, Izar 1, and Izar 6 were extremely 

plastic. They require some processing such as the addition of coarse materials 

(e.g. quartz, feldspar, and chamotte) to decrease the plastic behavior of their 

higher clay content. The other samples were medium to highly plastic marls 

suitable for extrusion (Fig. 12). 

According to Winkler (Winkler, 1954) and based on grain-size results (FIG. 

13), Af 1 and Izar 4 samples belonged to roofing tiles and masonry bricks field. 

While, the samples Af 3, Af 4, Af 5, and Izar 1 were suitable for hollow 

products. Nonetheless, the sample Izar 1 requires some pretreatments to make it 

suitable because of its relatively high content of clay fraction. In comparison, 

Neogene marls from Jijel Basin (Algeria) are situated between the hollow 

products and roofing tiles-masonry bricks fields (Baghdad et al., 2017), while 

marls from Meknes (Morocco) are out of domains of suitability, because of 

their high silt content (El Ouahabi et al., 2014b). 

According to the (Al2O3)-(Fe2O3+CaO+MgO)-(Na2O+K2O) ternary diagram 

(FIG. 14) (Fiori et al., 1989), all Afza samples, and samples Izar 3 and Izar 4 
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from the Izaroren marls belonged to red ceramic field. The studied marls were 

moderately rich in CaO acting as fluxing agents (Trindade et al., 2009; 

Trindade et al., 2010), which allows to predict the transformation of high-

temperature minerals in ceramic products (Trindade et al., 2010; EL Ouahabi et 

al., 2016). The higher amount of Fe2O3 (> 5 wt.%) could give all samples a 

reddish color after firing (Abajo, 2000; Ngun et al., 2011), and made them 

inappropriate for fine ceramics without any processing to dilute the iron oxide 

content. Comparable Fe2O3 amounts were also detected in the Neogene marls 

from Meknes (12.16 - 16.63 wt.%) making them unsuitable for fine ceramics 

(El Ouahabi et al., 2014a). Much lower amounts were found in the Neogene 

marls from Jijel Basin (Algeria) deposits (4.89 - 8.08 wt.%) (Baghdad et al., 

2017). Similar iron oxide percentages (4.21-8.61 wt.%) with high carbonate 

content (20-25 wt.%) were showed on the Tertiary marls from the Bailén area 

in southern Spain. These marls are suitable for making porous red wall tiles, 

clinker, vitrified red floor tiles and porous light-coloured wall tiles by pressing 

(Gonzalez et al., 1998).  

In the north-western Mediterranean, Tertiary marls from Castellon area (Spain) 

have much lower iron oxide percentages (3.75-6.10 wt.%) with wide and 

variable amount of CaCO3 (16-27 wt.%) (Jordán et al., 2001). Likewise, Plio-

Pleistocene marls from the Sassuolo District (Italy) show low iron oxide 
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amount (4.5-6 wt.%), with large variability in carbonate content (15-25 wt.%) 

and MgO (Dondi, 1999). 

Due to the occurrence of sulfate and sodium associated of high amount of 

calcium in the most of marls studied (Table 2), efflorescence phenomenon can 

be produced during firing (González et al., 2006; Andres et al., 2009). This 

phenomenon can be controlled by monitoring the firing parameters such the 

rate of heating and the level of the firing temperature (Andres et al., 2009). 

 

CONCLUSIONS 

Neogene clayey deposits located on the Kert River banks (North Eastern Rif, 

Morocco) were characterized and their suitability for ceramic manufacture was 

also discussed. 

The mineralogical composition mainly consisted of quartz, calcite, and total 

clay fraction. The latter consisted of illite, kaolinite, mixed layers (10-14 Å), 

and chlorite. Such composition qualified these materials as common clays. The 

chemical composition of these marls was in agreement with mineralogical 

composition. The main oxides were SiO2, Al2O3, Fe2O3, and CaO. 

Mineralogical and geochemical data confirmed the occurrence of the volcanism 

relicts recorded in the Messinian sedimentary series. The studied Neogene clay 

deposits were marly silts or silty marls with medium to high plastic behavior.  
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The marls of the Lower Kert were suitable as a potential raw material for 

ceramic industry. These raw marls could be used in the manufacturing of 

structural clay products, especially hollow products, roofing tiles, and masonry 

bricks excluding Izar 1 sample which requires processing to make it suitable for 

this ceramic kinds. Some marl samples were appropriate for optimal (Af 3, Af 

4, and Izar 4) or acceptable (Af 1, Izar 3, and Izar 5) extrusion. The remaining 

samples (Af 5, Izar 1, and Izar 6) need additional treatments or formulations 

because of their high plasticity. Sand or chamotte addition is necessary to 

produce extruded ceramic.  
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FIGURES CAPTION 

 

FIG. 1. Study area location in the geological map of the north-eastern Rif (Morocco) (Jabaloy-Sánchez et al., 

2015), modified. 
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FIG. 2. Lithological section of the Izaroren profile and corresponding photograph. 

 

FIG. 3. Lithological description of the Afza profile and photograph illustrating the studied facies. 
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FIG. 4. XRD pattern of unoriented powders of Izaroren 5 and Afza 3 samples: M-L-Mixed-layer, Ch-Chlorite, 

I-Illite, K-Kaolinite, Tc-Total caly, Q-Quartz, C-Calcite, Pl-Plagioclase, and D-Dolomite.  
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FIG. 5. XRD pattern of oriented Izaroren 5 and Afza 3 samples: M-L-Mixed-layer, Ch-Chlorite, I-Illite, K-

Kaolinite. 
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FIG. 6. DTA/TG curves of Izaroren 4 sample. 
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FIG. 7. Particle size distribution along (A) Izaroren and (B) Afza profiles based on d10, d30, d50, d60, d75 

and d90 parameters. 
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FIG. 8. Correlation between Izaroren and Afza profiles based on pyroclastic layers and mineralogical 

composition. 
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FIG. 9. Plot of grain-size results of studied samples in Shepard ternary diagram (Shepard, 1954). 
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FIG. 10. Plot of studied samples in plasticity chart (Casagrande, 1947; Holtz & Kovacs, 1981). 
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FIG. 11. Classification of studied samples based on Strazzera ternary diagram (Strazzera et al., 1997). 
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Fig. 12. Bain diagram showing the potential molding of the studied samples (Bain, 1986). 
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FIG. 13. Plot of studied samples in Winkler ternary diagram (Winkler, 1954). 
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FIG. 14. Plot of studied samples in (Al2O3)-(Fe2O3+CaO+MgO)-(Na2O+K2O) ternary diagram (Fiori et al., 

1989). 
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TABLE 1. Bulk and clay mineralogy of studied samples. Qz: quartz. K-F: Potassium feldspar. Pl: plagioclase. Cc: calcite. Do: dolomite. Sid: 

siderite. Cris: Cristobalite. Rhod: Rhodochrosite. Amp: Amphibole. I: illite. K: kaolinite. Ch: chlorite.  

Profiles 

  Bulk mineralogy (wt.%)     Clay mineralogy (< 2 µm) (wt.%) 

Minerals Total clay Qz K-F Pl Cc Do Sid Cris Rhod Mica Amp I K Ch Mixed-layers 

Iz
ar

o
re

n
 

Izar 1 58 16 3 2 18 1 1 0 1 - - 28 9 29 34 

Izar2 (tuff) 50 7 9 16 0 0 0 0 0 10 8 - - - - 

Izar 3 45 18 0 6 26 3 0 0 2 - - 32 19 14 35 

Izar 4 51 14 3 4 22 3 1 0 2 - - 35 21 11 33 

Izar 5 43 17 0 4 32 2 0 0 2 - - 29 2 21 48 

Izar 6 39 12 3 3 19 1 0 22 1 - - 40 22 0 38 

A
fz

a 

Af 1 45 22 0 4 25 2 0 0 2 - - 46 6 16 32 

Af 2 (tuff) 34 4 0 33 6 

 

0 0 7 10 6 - - - - 

Af 3 46 22 0 3 27 2 0 0 0 - - 36 24 14 26 

Af 4 42 25 4 4 20 2 1 0 2 - - 34 16 20 30 

Af 5 38 23 0 15 13 5 0 6 0 - - 31 27 0 42 

  Af 6 (tuff) 8 1 0 79 5 0 0 0 2 5 0 - - - - 
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TABLE 2. Geochemical composition in wt.% (* in ppm) and Loss-On Ignition percentage of the studied samples . 

Profiles Samples SiO2 Al2O3 TiO2 Fe2O3 CaO MgO K2O Na2O SO3 S* MnO2 P2O5 L.O.I Total 

Iz
ar

o
re

n
 

Izar 1 40.78 11.52 0.64 15.95 7.92 2.66 1.57 1.76 1.10 4406 0.46 0.19 15.32 99.9 

Izar 2 (tuff) 61.33 12.33 0.14 9.67 0.92 1.03 2.76 4.73 0.46 1842 0.00 0.11 6.07 99.6 

Izar 3 42.60 12.02 0.65 15.13 8.12 2.98 1.58 4.28 0.59 2363 0.46 0.20 11.37 100 

Izar 4 39.11 12.51 0.61 14.73 8.66 2.51 1.54 2.27 0.63 2523 0.40 0.19 16.85 100 

Izar 5 44.39 10.99 0.52 13.09 9.20 2.29 1.28 1.04 0.50 2003 0.38 0.20 16.12 100 

Izar 6 54.82 8.48 0.37 9.13 8.70 1.75 1.09 1.34 0.30 1202 0.29 0.15 13.58 100 

A
fz

a 

Af 1 38.32 12.13 0.57 16.60 8.38 2.36 1.45 2.71 0.46 1842 0.45 0.18 16.39 100 

Af 2 (tuff) 60.67 13.70 0.43 3.16 2.79 2.51 1.00 6.74 0.28 1121 0.08 0.10 8.55 100 

Af 3 39.85 13.11 0.65 14.27 8.94 2.33 1.52 2.28 0.67 2683 0.49 0.19 15.54 99.9 

Af 4 40.11 11.82 0.65 15.62 8.12 2.30 1.67 2.17 0.82 3284 0.51 0.19 14.67 98.6 

Af 5 46.37 10.80 0.56 15.46 6.57 2.27 1.41 2.32 0.49 1962 0.47 0.16 13.13 100 

Af 6 (tuff) 56.08 11.61 0.44 4.83 5.76 1.91 1.05 6.42 0.29 1161 0.12 0.08 11.40 100 
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TABLE 3. Carbonate content, grain-size, Atterberg limits, and Specific Surface Area results of the studied marly samples. 

Profiles Izaroren Afza 

Samples Izar 1 Izar 3 Izar 4 Izar 5 Izar 6 Af 1 Af 3 Af 4 Af 5 

Total CaCO3 (wt.%) 19 17 20 20 19 17 20 18 13 

Particle size distribution (wt.%)          

< 2 µm 48 19 54 13 21 53 48 36 24 

2-20 µm 47 71 39 71 57 27 31 36 46 

> 20 µm 6 10 7 16 22 20 21 28 29 

          Clay (< 4 µm) 61 29 71 23 33 61 58 46 33 

Silt (4-63 µm) 37 71 26 75 58 29 30 38 49 

Sand (> 63 µm) 3 0 3 2 9 11 12 16 18 

Atterberg limits (%)          

LL 72 53 52 63 69 57 44 48 71 

PL 29 30 23 27 45 24 20 20 26 

PI 44 23 30 35 24 33 23 29 45 

Specific Surface Area (m
2
/g) 89.1 73.9 89.5 70.0 26.3 88.3 107.7 90.8 125.6 

 

 


