

Full-field optical and laser non destructive testing for aerospace applications

Dr. Marc GEORGES

Head of Laser and Nondestructive Testing Laboratory

Centre Spatial de Liège – Liège Université, Belgium

Sponsored by

The international society For optics and photonics

Belgium

Liège, the university

- 24.000 students
- Different campuses
- In suburbs of Liege
- Other cities (agronomy)

FACULTY OF PHILOSOPHY AND LETTERS	FACULTY OF LAW, POLITICAL SCIENCE AND CRIMINOLOGY	FACULTY OF SCIENCES
FACULTY OF MEDICINE	FACULTY OF APPLIED SCIENCES	FACULTY OF VETERINARY MEDICINE
FACULTY OF PSYCHOLOGY, SPEECH AND LANGUAGE THERAPY, AND EDUCATION	HEC MANAGEMENT SCHOOL-ULIÈGE	FACULTY OF SOCIAL SCIENCES
FACULTY OF GEMBLOUX AGRO-BIO TECH	FACULTY OF ARCHITECTURE	

Centre Spatial de Liège

- 53 years existence
- Research Center of Liege University
- 85 people
 - Engineers/Scientists (2/3)
 - Technicians
 - Administratives
- Excellence Center of Optics of the European Space Agency (ESA)

- 100 % self-funded by projects (institutions, industries)
- A few academic tasks
- Internship for students
- Master, PhD students

Centre Spatial de Liège

Optics for Space

Simulated space environment testing Large chambers with optical benches

Development of optical space instrumentation

Development of Advanced Technologies

- Vacuum-Cryogeny
- Quality insurance
- Thermal Design
- Signal Processing
- Spaceborne Electronics
- Smart sensors
- Surface processing
- Optical Design
- Optical Metrology
- Non Destructive Testing

Summary

- Analog Holographic interferometry
- Digital Holographic interferometry
- Speckle interferometry
- Shearography
- Thermography
- Combination thermography-holography
- Terahertz imaging-holography

Holographic interferometry

Holographic Interferometry : different methods

$$I(x,y) = (U_0(x,y) + U'_0(x,y)) \cdot (U_0^*(x,y) + U'_0^*(x,y)) \qquad I_{av} = I_0 + I'_0$$

$$I(x,y) = I_{av}(x,y)[1 + m(x,y)\cos\phi(x,y)] \qquad m = 2\sqrt{I_0 \cdot I'_0}/(I_0 + I'_0)$$

Holographic interferometry

Displacements of scattering objects

$$\phi = S.L = (k_o - k_i).L = \frac{2\pi}{\lambda} (\hat{e}_o - \hat{e}_i).L$$

Special cases

 $I = I_{av}[1 + m\cos\phi]$

Holographic interferometry

Determination of phase difference

 $I = I_{av} [1 + m \cos \phi]$

Phase-shifting technique

 $I_k = I_{av}[1 + m\cos(\phi + \beta_k)]$

 $\phi \mod 2\pi$

Holographic interferometer based on photorefractive crystal

- Studied and developed between 1993-2000 (PhD thesis M. Georges)
- Commercialised by spin-off company OPTRION since 2000

OPTRION

Application: defect detection

• Aeronautical composite structures

• Flat cables

Application: non-contact metrology of space structures

- Thermo-mechanical assessment of composite structures for satellites
- Comparison with Finite-Element Modeling (FEM)

Extension to 3D measurements

• Complete 3D deformation of space laser bench structure – FEM comparison

Application: deformation of space structure

• Under vacuum

Thermal tent support

lographic Camera

Michelson Path

No good results ! Vibration problems

Analog holography

Discussion

- Analog recording of hologram
- Characteristics
 - > High interferogram quality
 - High spatial resolution of recording medium (allows to record holograms of extented objects)
 - Usually physico-chemical processing (not immediately reusable)
 - Some materials allow in situ recording
 - Photorefractive crystals
 - Relatively slow (a few seconds)
 - Need of stability (laboratory conditions)
 - Despite this, a lot of applications demonstrated
- Alternative : numerical recording of holograms
 - Digital holography
 - Speckle pattern interferometry
 - Speckle shearing interferometry (shearography)

Basic principle

• Propagation of light from object to sensor

Fresnel propagation integral (paraxial approximation)

$$U_{O}(x, y, d_{0}) = \frac{\exp(ikd_{0})}{i\lambda d_{0}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U_{O}(\xi, \eta, 0) \exp\left\{\frac{i\pi}{\lambda d_{0}}\left[\left(x - \xi\right)^{2} + \left(y - \eta\right)^{2}\right]\right\} d\xi d\eta$$

Reconstruction by Fresnel

$$U_{o}(x, y, z = d) = \frac{i}{\lambda d} e^{-i2\pi d/\lambda} \exp\left[-i\frac{\pi}{\lambda d}(x^{2} + y^{2})\right] \iint H(\xi, \eta) U_{r}(\xi, \eta) \exp\left[-i\frac{\pi}{\lambda d}(\xi^{2} + \eta^{2})\right] \exp\left[i\frac{2\pi}{\lambda d}(x\xi + y\eta)\right] d\xi d\eta$$

"S-FFT" algorithm
$$FT\left[H(\xi, \eta) U_{r}(\xi, \eta) \exp\left[-i\frac{\pi}{\lambda d}(\xi^{2} + \eta^{2})\right]\right]$$

$$Mightarrow FT\left[H(\xi, \eta) U_{r}(\xi, \eta) \exp\left[-i\frac{\pi}{\lambda d}(\xi^{2} + \eta^{2})\right]\right]$$

$$Phase$$

$$\varphi_{o}(x, y, d) = \sqrt{\frac{Re^{2}(U_{o}(x, y, d))}{Hm^{2}(U_{o}(x, y, d))}}$$

$$\varphi_{o}(x, y, d) = \tan^{-1}\left[\frac{Im(U_{o}(x, y, d))}{Re(U_{o}(x, y, d))}\right]$$

Useful configurations

Preliminary capture of separated beams

Suppress unwanted orders

In-line

Phase-shifting (4 acquisitions)

Extract object image

Resolution: full

Some properties

Angle between objet and reference – Dimension of objects

- In order to resolve hologram, angle β must be well chosen
- Angle too large = fringes too close to be resolved
- Resolving fringes : satisfy Shannon sampling theorem
- Maximum size of objects $S_{\text{max}} = \frac{d\lambda}{2\Delta}$ d: reconstruction distance

Digital holographic interferometry

$$\phi(t_k) = \varphi_o(t_k) - \varphi_o(t_0)$$

Phase of hologram in state 1

Phase of hologram in state 2

Vibration modes patterns (P. Picart, P. Tankam)

Wrapped phase difference (mod 2π)

Unwrapped phase difference

Digital holographic interferometry

Digital holographic interferometry in the Long-Wave InfraRed

Motivation

LWIR Equipment - Components

(b) K-geometry

Application in space metrology for European Space Agency (ESA)

Aspheric reflectors

- Application in space metrology for European Space Agency (ESA)
 ESA needs:
 - Full-field deformations of reflectors in vacuum-thermal testing
 - Large reflectors: up to 4 m diameter
 - Range of deformations: 1 μm 250 μm
 - Reflectors cannot be equipped with cooperative targets nor sprayed with scattering powder !

Specific features of LWIR DHI for space metrology

• Reduce sensitivity to displacement to measure ? YES

• Reduce sensitivity to external perturbations ? YES

• Large objects ? YES

Observable objects 7 x larger at 10 μm

• BUT: Objects reflects more specularly than in visible

Development of DH interferometer for space aspheric testing

M. Georges et al., OSA Topical Meeting, DH2013, Miami, Paper DW4C.1 (2012) M. Georges et al., Applied Optics **52**(1), A102-A116 (2013)

- Results of vacuum-thermal testing
- Deformation between 295 K and 107 K (ΔT = 188 K)
 - Error on 1 ! Measurement : 0.5 1 μm
 - Combination of 3 consecutive measurements
 - Total error estimated : $1.5 3 \mu m$
 - After tilt and defocus removal

Application in space metrology : EUCLID focal plane array

Application in space metrology : EUCLID focal plane array

Principle

$$\sigma_u = \sigma_v = 2.44 \frac{\lambda d}{D}$$

Specklegram (interference object-reference beams)

$$Sp(x,y) = I_0(x,y) + I_R(x,y) + 2\sqrt{I_0 I_R} \cos(\psi(x,y))$$

$$\psi(x,y) = \phi_R(x,y) - \phi_0(x,y)$$

Multiple exposures during object deformation

Principle - 2

After mathematical transformations:

 $|Sp(x,y) - Sp'(x,y)| = 2\sqrt{I_0 I_R} [\cos(\psi(x,y)) - \cos(\psi(x,y) + \phi(x,y))]$

$$|Sp(x,y) - Sp'(x,y)| = 4\sqrt{I_0 I_R} \sin\left[\psi(x,y) + \frac{\phi(x,y)}{2}\right] \sin\frac{\phi(x,y)}{2}$$

Signal at high spatial frequency

Contains the speckle

Signal at low spatial frequency

Fringes related to the deformation

"Correlation fringes"

Phase-shifting can be applied

4 specklegrams with 90° phase shifts are recorded before deformation

4 specklegrams with 90° phase shifts are recorded after deformation

$$\varphi(x, y) = \tan^{-1} \left[\frac{Sp_4(x, y) - Sp_2(x, y)}{Sp_1(x, y) - Sp_3(x, y)} \right]$$

shifts are
$$\varphi'(x,y) = \tan^{-1} \left[\frac{Sp'_4(x,y) - Sp'_2(x,y)}{Sp'_1(x,y) - Sp'_3(x,y)} \right]$$

$$\phi(x,y) = \varphi'(x,y) - \varphi(x,y)$$

 $\phi(x,y) \mod 2\pi$

 Applications: deformation of space mirrors and comparison with multiphysics simulation

EXOMARS probe

- *Off-axis parabola* Ø=80 mm
- Full aluminum
- Optical surface: diamond turning and polishing

- Applications: deformation of space mirrors and comparison with multiphysics simulation
 - Measurement set-up

ACR: auto-collimation reflector BC: beam combiner BS: beamsplitter CAM: camera D: diffuser L: lenses M: mirrors MPZT: mirror with piezo OB: object beam OF: optical fiber RB: reference beam RE: reference element RP: reference plate

- Applications: deformation of space mirrors and comparison with multiphysics simulation
 - Heater: temperature change well controlled and regulated for different power of heating

• Measurement of deformation over time (temporal phase unwrapping)

Applications: deformation of space mirrors and comparison with multiphysics simulation

• Residual deformation for different powers of heating

Deformation difference between experimental and simulation

- Applications: deformation of space mirrors and comparison with multiphysics simulation
 - Optical aberrations:
 - Measured by Fizeau interferometer and processed by Intelliwave software
 - Simulated deformed surface is prepared for Zemax optics software and aberration computed by Zemax

 Table 2.
 Comparison Between Experimental (exp) and

 Simulated WFE Indicators

	Exp Value (waves)	Simulated Value (waves)	Relative Error (%)
PtV	0.86	0.89	3.5
RMS	0.20	0.20	0
Focus	-0.27	-0.25	7.4
X-ast	-0.22	-0.28	27.3
Y-ast	-0.20	-0.18	10.0

F. Languy et al, "Space mirror deformation: from thermomechanical measurements by speckle interferometry to optical comparison with multiphysics simulation", Appl. Opt. 57 (2018)

Principle: speckle shearing interferometry

x: direction optical shear Δx : amplitude of shear

$$Sh(x,y) = I_{O,M1}(x,y) + I_{O,M2}(x,y) + 2\sqrt{I_{O,M1}I_{O,M2}}\cos(\psi(x,y))$$
$$\psi = \varphi_{O,M1} - \varphi_{O,M2} = \frac{\partial\varphi_O}{\partial x}\Delta x$$

Sh'5

 t_5

Principle: speckle shearing interferometry - 2

Sh'2Sh'3Sh'4Sh0 Sh'1Multiple exposures during object deformation Application of phase-shifting for each state t_0 t_1 t_2 t_3 t_4 *speckle interferometry* shearography $\phi = \frac{4\pi}{2}L_{\perp}$ $\phi = \frac{4\pi}{\lambda} \frac{\partial L_{\perp}}{\partial x} \Delta x$ 250 200 150 100 50 300 300 200 200 100 100 Δx speckle interferometry shearo

 Composite layers (d) Honeycomb core

New post-processing methods

Automated recognition of defect signature in shearography

Analysis of temporal series

From temporal series of shearographic images (a few tens) during composite heating

... To a single image showing all

obtained by Principal Components

Comparison with finite element modeling

Simple symmetric sample

(a) Experimental interferogram

(b) Simulated interferogram

Thermography

Measure infrared radiation emitted by objects

Active Thermography

Method for detecting defects

Combination holography-thermography

Useful examples

Thermo-mechanical deformation of space composite structures

Defect detection in aeronautics composite structures

Thermography

Shearography

Combination of thermography and holography in a single sensor

Holography: Speckle interferometry ("image holography" setup)

Position on sensor

Development of setup (collaboration with ITO, Optrion)

Laboratory set-up

Transportable field prototype

Laboratory compact prototype

Measurements of large deformations in field conditions

Decoupling temperature and deformation information

3D plot of deformation

Measurements in industrial facilities at Airbus

« All Composite Aircraft » A350 Fuselage

Measurements in industrial facilities at Airbus

Generalities

- Terahertz wave range (1 THz=10¹² Hz)
- Sandwiched between the microwave and infrared
- Frequency: 0.3-3 THz

The "cliché" about THz:

- Nonpolar material penetration without ionization
- ✓ Spectroscopic features

Source: "THz scanner imagery", www.dailymail.co.uk

Source: "Damage and defect inspection with terahertz waves" by Redo-Sanchez et al., 2006

Source: "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints" by Kawase *et al.*, 2003

Our motivation: transfer our knowledge of LWIR to FIR and beyond

Gas laser

Optimized FIR camera

LWIR camera

384×288 35 μm pitch

640x480 17 μm pitch

LWIR camera has good response in FIR !! (Without lens...)

P=500 mW @ λ =118 μ m

Validity of paraxial approximation at FIR

- Object must be very close to the sensor (a few cm)
- Cannot enter the reference beam.....
- Reconstruction by S-FFT feasible but lateral resolution very poor
- Solution: Use Angular Spectrum Method (ASM)
 - Size of reconstructed object = size of detector
 - Lateral resolution proportional to distance object-sensor z
 - Good resolution = object close
 - Reference beam occlusion
 Image degradiation !

Recorded hologram with occlusion

Use of phase retrieval to improve resolution

Use of phase retrieval to improve resolution

Resolution:
$$d_r = rac{\lambda z}{rac{Detector size}{Detector size}}$$
 $d_{r,\mathrm{H}} = 114,7 \, \mu\mathrm{m}$
 $d_{r,\mathrm{V}} = 152,9 \, \mu\mathrm{m}$

- Many composite materials are not transparent enough at FIR
- Move to sub-THz (1-3 mm wavelength) Collaboration with CENTERA Poland
 - Other detectors/sources
 - No cameras Single point detectors or line sensors (FET)
- Transparency test with true aerospace materials

Focal plane Imaging Pitch 0,5mm

source side)

Back (detector side)

Scanning hologram with single point detectors

Digital holography validation

Amplitude object: metallic cross Phase object: plastic stick

Without object

180

20

With object

Setup (CENTERA Poland)

- 100 mm*100 mm hologram
- pitch: 0,5mm
- 2 hours scan

Object amplitude

Phase difference

Further readings

Publications

https://orbi.uliege.be/ph-search?uid=U027964

Book chapters

"Long-wave Infrared Digital Holography"

in *New Techniques in Digital Holography* Wiley-ISTE, 2014

"Photorefractives for holographic interferometry and nondestructive testing" in *Photorefractive Organic Materials and Applications* Springer, 2016

Optical Holography

"Holographic interferometry: From History to Modern Applications"

in *Optical Holography. Materials, Theory and Applications* Elsevier, 2019 (in press)

Announcement

Photonics Europe

CALL FOR PAPERS

Submit abstracts by 25 September 2019

FOR 2020 ш EUROP PHOTONICS

Palais de la Musique

Strasbourg, France

29 March-2 April 2020

31 March-1 April 2020

spie.org/pecall

et des Congrès

Conferences

Exhibition

NANO, AND OUANTUM SCIENCES

MAD	O- AND GUANTON SCIENCES
PE101	Metamaterials (MacDonald, Staude,
	Zayats)5
PE102	Nanophotonics (Andrews, Bain,
	Kauranen, Nunzi) 6
PE103	Advances in Ultrafast Condensed
	Phase Physics (Haacke, Sharma,
	Yakovlev)
PE104	Quantum Technologies
	(Diamanti, Ducci, Treps, Whitlock) 8
PE105	Terahertz Photonics (Jarrahi, Preu,
	Turchinovich)8
ODT	
OPTI	CAL IMAGING AND SENSING
PEIU6	SD Printed Optics and Additive
	von Ereymann, Elury) 10
DE107	Digital Ontics for Immorshy Displays
PEIU/	(DOID20) (Kross Poroz) 12
DE108	Unconventional Ontical Imaging
FLIOO	(Eourpior Goorges Popescu) 13
DE100	Ontics and Photonics for Advanced
PEIUS	Dimensional Metrology
	(de Groot Leach Picart) 15
DE110	Ontics Diotonics and Digital
FEIIO	Technologies for Imaging
	Applications (Schelkens, Kozacki) 16
PE111	Optical Sensing and Detection
	(Berghmans, Mignani, O'Keefe)
	(as grantally, righting of the cytricity to the
LACE	DO AND NONE INCAD ODDICO

LASERS AND NONLINEAR OPTICS

- PE112 Micro-Structured and Specialty Optical Fibres (Kalli, Peterka, Bunge) . . 20
- PE113 Semiconductor Lasers and Laser Dynamics (Sciamanna, Michalzik,
- PE114 Fiber Lasers and Glass Photonics: Materials through Applications

PE115 Nonlinear Optics and its Applications (Broderick, Dudley, Peacock)......24

BIOPHOTONICS

PE116	Biomedical Spectroscopy, Microscopy, and Imaging
	(Popp, Gergely) 25
PE117	Neurophotonics (Pavone)
PE118	Biophotonics in Point-of-Care
	(Canva, Giannetti, Altug, Moreau) 27
PE119	Clinical Biophotonics (Elson, Gioux,
	Pogue) 28
PE120	Tissue Optics and Photonics (Tuchin, Blondel, Zalevsky)29

APPLICATIONS OF PHOTONIC TECHNOLOGY

PE121	Silicon Photonics: from Fundamental
	Research to Manufacturing
	(Baets, O'Brien, Vivien)
PE122	Organic Electronics and Photonics: Fundamentals and Devices (Reineke, Vandewal, Maes)
PE123	Photonics for Solar Energy Systems (Wehrspohn, Sprafke)
PE124	Photosensitive Materials and their Applications (McLeod, Pascual Villalobos, Tomita, Sheridan)

WORKSHOPS ON EMERGING TOPICS

WS201 Neuro-Inspired Photonic Computing (Sciamanna, Bienstman)......34 WS202 Synthesis of Photonics and Plasmonics at the Mesoscale

WS203 Light Shaping Focus Session

WS204 6th annual Sino-French "Photonics and Optoelectronics" PHOTONET International Research Network Workshop (Blondel, Gralak,

Thanks for your attention !

mgeorges@uliege.be