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Abstract 

This thesis documents a first time demonstration of electromechanical transducer and/or sensor 
fabricated using Direct Laser Writing (DLW). A low-cost prototype has been fabricated via a 
rapid and high-tech laser micro-milling technique to achieve a parallel kerf-width (capacitive 
gaps) of about 60 micrometers (µm) into a piece of aluminum and a stainless steel each of 1 
and 2 millimeters (mm) thickness respectively, thus leading to a high-aspect ratio (> 33) 
structure. A device is demonstrated to facilitate actuation via electrostatic means and sense a 
capacitive change across its electrode. Experiments have been performed with a structure made 
of aluminum. Emphasis is on the fabrication and associated issues. A strategic fabrication and 
measurement of an average kerf-width of about 60 micrometres is reported, which is 
advantageous to develop our application. A detailed study of width variation using laser cut is 
also given. Based on the in-depth literature survey, it is postulated that achieving 
simultaneously a kerf-width as small as 60 µm with metal parts up to 2 mm thickness is 
unprecedented (either in the industry or in academia). This important aspect is one of the 
highlights of this research. Results comprising analytical modeling, fabrication, and electrical 
characterization are presented. An applicability of a device as a 2 degree-of-freedom (DoF) 
resonating mode-localization sensor that employs a weak electrostatic coupling is 
demonstrated to offer vibration amplitude based sensitivity to a relative change in the stiffness. 

This sensor is able to resolve a minimum stiffness perturbation (normalized), 
mink

eff

k

K
 

 of the 

order of 7.98×10-4. This magnitude is of the same order to that achievable in MEMS based 
coupled resonators. Based on our opening results, it is postulated that this navigating research 
opens up new possibilities to fabricate new devices and/or sensor based on alternative 
fabrication platform such as laser micromachining as reported here.  

In parallel, a work in this thesis closely observes the state-of-the art for coupled resonators and 
thereby proposes realistic system level models in the context of our architecture fabricated 
using high-tech laser machining. Based on the representative system-level models developed 
in this thesis, theory estimate of maximum sensitivity to stiffness perturbation is found to be 
comparable to that achievable in MEMS for two degree of freedom (DoF) coupled resonating 
sensor. Developed models represents findings in open/closed loop implementation. A work on 
the most fundamental and crucial aspects such as sensitivity, resolution and noise floor of 
coupled resonators is reported.  
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Chapter 1 

1 Introduction 
In today’s world, Microelectromechanical Systems (MEMS) based sensors have simplified our 
daily lives. There are quite a few MEMS based sensors in the smartphones, and many of them 
in every new car. In addition, there are many in drones, fitness modules, and automobiles. 
MEMS sensors are the building blocks of the connected world providing everyday objects with 
sensory awareness and connecting them with the internet [2].  

MEMS are miniaturized mechanical features (springs, deformable membranes, vibrating 
structures, etc.) integrated with the electronic components. They are embedded into a single 
chip to sense, and report on the physical properties of their immediate or local environment. 
They are also used to perform some kind of controlled physical interaction or actuation. Some 
examples of MEMS-enabled functionality in everyday life are airbag arrangement in 
automobiles, motion and orientation detection in smartphones, blood pressure measurement, 
and the list goes on. 

The physical transduction mechanisms underlying MEMS based devices can be capacitive, 
piezoelectric, piezoresistive, electromagnetic, optical etc. The most commonly used and 
successful types are based on electrostatic actuation and capacitive sensing; the reasons are the 
ease with which they can be batch fabricated using planer silicon fabrication technology (bulk 
and surface micromachining being the most common examples), low power consumption, 
good stability over temperature, etc.[3,4] 

MEMS based solutions offer several advantages such as 1) monolithic integration of MEMS 
devices with electronics simplifies design cycles and speeds up time-to-market; 2) lower 
product cost for a given functionality; 3) MEMS based product reliability is considered to be 
good in rugged, real-world applications such as military, automotive and medical fields. 

1.1 Motivation of research 

Amongst variety of MEMS devices and/or sensors, MEMS resonators are also of key interest 
in the research and industrial community, particularly their placement as a sensing element in 
the simple or even a complex integrated system. MEMS resonators are micro-machined 
mechanical structures that vibrate at their natural resonant frequency when excited by an 
external force. This excitation force may arise from variety of sources such as electrostatic, 
piezoelectric, optical, mechanical vibration, or magnetic transduction. A single resonating 
structure can have several different mode shapes or resonant frequencies. Resonators generally 
employ flex (bending) mode or bulk acoustic (extension) mode of vibration for their operation. 
The frequency of the resonators is determined by both material properties and geometry of the 
resonators. A clamped-clamped beam, being a simple structure features a small mass and high 
stiffness, thus extending the frequency of operation. Silicon, which the structure is usually 
made of offers a high quality factor thus making these devices useful circuit elements in 
frequency reference applications [5]. Examples are the MEMS based oscillators in which 
resonators are inserted as a high-Q frequency reference tank, to determine the frequency and 
the stability of the oscillator, and an electronic circuit is interfaced to it to sustain the oscillation. 
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1.1.1  Principle of electromechanical transduction in micromachined resonators 

In a typical microresonator application, the device/structure is forced into vibrations by 
converting an input electrical signal into a force and applying it to the device. Vibrations of the 
structure are then picked up and converted back to the electrical domain through various 
transduction techniques (for example: capacitive transduction). We may use the analogy 
between electrical and mechanical resonators to build an equivalent electrical circuit for a 
micromachined resonator. To represent a mechanical device with electrical elements, proper 
mapping of mechanical to electrical quantities can be done. A common set of mapping rules is 
provided in Table 1.1. 
 

Table 1.1 Analogy between mechnical and electrical domains [6]. 

Mechanical domain Electrical domain 
Force, F Voltage, V 
Velocity, x  Current, I 
Displacement, x Charge, q 
Spring 1/k Capacitance, C 
Mass, M Inductance, L 
Damping,   Resistance, R 

 

A resonant device can be modelled as a series Resistance-Inductance-Capacity (RLC) circuit. 
The transductions from the electrical to mechanical domain and vice versa can be modelled 
with transformers with proper winding ratios or controlled voltage or current sources. Other 
elements, especially parasitic and feedthrough capacitors may also be added to the equivalent 
circuit so that the model provides results similar to experimental measurements. Figure 1.1 
illustrates an equivalent electrical model for a resonator with electrostatic input and output 
ports. The transformer at the input port converts an input voltage to a force, Fin and applies it 
to the mechanical system represented by the series RLC circuit. At the output, another 
transformer converts velocities of the mechanical structure back to an electrical current. In the 
model, ηin and ηout represent electromechanical coupling coefficients.  

 

 

Figure 1.1 Electrical equivalent model for a MEMS resonator  
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Typical values of parasitic elements include as follows: Cpad is the shunt capacitor usually about 
1 pF to 2 pF. C0 is the nominal capacitor. A resonator model values are expressed as follows 

[7,8]: A nominal capacitor, C0 is given as o

A
C

d


 . Other equivalent parameter values can be 
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(1.1) 

where, ω0 is the resonant frequency of a resonator, Q is the quality factor and jωC0 is the 
admittance of a capacitive parasitic. A denominator of the above equation determines the 
frequency response of a system. 

1.1.2 Resonator in sensing applications  

Resonant sensing is a promising method of detecting small linear parametric variations in the 
structural properties of micromechanical sensors. Typical examples of resonant sensing include 
strain sensing [10], angular motion detection [11], pressure sensing [12] and mass detection 
[13], etc. A key attribute of these entire sensors is that the output signal is the variation in the 
resonant frequency of a vibrating structure that is subjected to small perturbations in the 
structural parameters i.e. stiffness or mass. Additional features of this method of detection is 
simple mechanical design, quasi-digital nature of the signal (thus using simple frequency 
measurement system such as frequency counter), ultra-high resolution (up to 10−18 grams scale) 
[14], etc.. There are however also a drawback associated with resonant sensor employing only 
one resonator; sensors of these types are prone to environmental shifts such as pressure and/or 
temperature. Furthermore, these type of sensors, when used as a mass sensor are able to detect 
only one type of material at a time. Not to mention, long-term frequency stability [15] is also 
a limiting factor. 

Since last decade, however, in the MEMS community, there has been a paradigm shift in the 
research referring to MEMS resonating sensors being developed for variety of sensing 
applications. Specifically, a widespread interest has aroused using 1-d chain of a coupled 
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resonating proof masses, more familiarly refereed as multi degree-of-freedom (m-DoF) or 
weakly coupled resonator sensors [16,17]. These sensors attribute an ultra-high sensitivity 
[17,18] manifested via a novel transduction principle, i.e. sensing magnitude of vibrational 
energy exchange between the moving proof masses subject to a small disruption introduced 
into the system which alters either an effective mass, ∆m or an effective mechanical stiffness, 
∆k of one of the proof mass element in a chain. In the following section, we explain a principle 
of transduction of coupled resonator sensor. 

1.1.3 A new transduction principle: paradigm shift in resonant sensing applications  

Due to the characteristic as mentioned above, ultimately, m-DoF coupled resonators have 
emerged as a new and promising sensing standard, which is attempting to revolutionize the 
sensing world. A sensor prototype as proposed in this thesis operates on the principle of mode-
localization, a novel transduction paradigm in resonant sensing applications. As depicted by 
Figure 1.2 (a), it consists of two identical resonators coupled through a spring (either 
mechanical or electrostatic). Even a small disorder in the structural properties (stiffness or 
mass) of one of the coupled resonators inhibits the propagation of vibrations within the system 
leading to the confinement of vibration energy to small geometric regions. The extent of this 
vibration energy confinement depends not only on the magnitude of the periodicity breaking 
irregularity, but also on the strength of internal coupling between the resonators, resulting in 
large variations in the vibrational amplitudes (mode shape). Therefore, in contrast to the 
resonant sensors using only one resonators, this new class of sensor offers ultra high parametric 
sensitivity (up to three to four orders high in magnitude).  

Other acknowledged characteristics of weakly-coupled resonating devices are linearity 
(attributed to high sensitivity [19], invulnerability against responding to ambient pressure and 
or temperature (i.e. common-mode rejection), [20]. These characteristics make these devices 
efficacious and hence being pursued over conventional method based on sensing the frequency 
variation of a single resonating device. In this context, one of the primary motivation of this 
thesis is to investigate the most fundamental and central performance parameters of 
coupled resonators such as sensitivity, resolution, noise, etc as depicted in Figure 1.2 (b). 

 

(a) 
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(b) 

Figure 1.2 (a) A schematic representation of two identical mass-spring-damper system 
coupled by spring to illustrate transduction principle, (b) graphic showing key performance 
parameters pertaining to new class of resonant sensor based on mode-localization. 

1.1.4 Potential applications for mode-localized sensors 

Figure 1.3 shows a graphic to indicate potential sensing applications that can be developed with 
coupled resonators utilizing the concept of mode-localization. These applications are discussed 
as follows: (refer also Figure 1.2 (a)) 

A displacement sensor – During fabrication, a suspended proof mass can be realized and be 
placed adjacent to one of the resonator separated by a coupling gap. Transduction takes place 
when any displacement of this suspended proof mass modulates the coupling gap between 
proof mass and its adjacent resonator, thus altering the stiffness of that resonator causing 
system imbalance. [21].  

A charge sensor (electrometer) - A separate input port can be used to apply different DC 
voltages to one of the resonator (across an electrostatic capacitive gap) implying the change in 
charge (δq) at this input port. This exerts an electrostatic force to the resonator thus altering the 
stiffness of the resonator causing system imbalance [22].  

A force sensor- An electrostatic tensile force to one of the resonator can be applied, hence 
modulating the stiffness of that resonator. This electrostatic force can be generated by creating 
the voltage difference between the resonators and its neighbouring electrode separated by a 
coupling gap [23].  
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Figure 1.3 A graphic showing potential sensing applications that can be developed using 
coupled resonators.  

 

An acceleration sensor- Given the same architecture of  coupled resonators as in Figure 1.2 
(a), when acceleration acts on the proof mass/es, single/differential electrostatic stiffness 
perturbation/s will be applied to the weakly coupled resonators, leading to mode localization, 
and thus, mode shape changes. Therefore, acceleration can be sensed by measuring the change 
in amplitude (or amplitude ratio) based readout as mentioned in section 1.1.3 above [24].  

A mass sensor- A multi-DoF structure can be utilized to detect a change in the amplitude ratio 
output metric as a function of mass change (due to addition of mass [16] or removal of mass 
[25]) in a chain of 1-dimensional coupled resonating sensor architecture. Coupled resonators 
in mass sensing applications offer advantage of single measurement/device for multiple 
analytes. 

Other applications may also be listed such as-electric field [26], tilt [27–29], etc. It is to be 
noted that all of these applications, excluding coupled resonators as a mass sensor, essentially 
implies the effective stiffness change of one or both (via differential perturbation) resonator/s. 
Therefore, all these sensors falls under the category of ‘coupled resonators for stiffness change 
applications’. 
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1.1.5 Fabrication using the state-of-the-art laser micromachining 

Electrostatic actuation and capacitive sensing are widely used principles in the micro-electro-
mechanical system (MEMS) field. A variety of devices including gyroscopes, accelerometers, 
and resonators based on the principle of electrostatic actuation and capacitive sensing have 
been developed using existing silicon wafer lithography based processes [3,4]. One of the 
essential features of these devices is the requirement of forming micro-size gaps/trenches 
through the active device layer, thus forming parallel-plate capacitors.  

Conventional MEMS fabrication processes, such as surface and bulk micromachining, offer 
the advantage of large area patterning to create batch-processed miniaturized devices with sub-
micron level resolution [30,31]. These processes, however, require expensive clean-room 
facilities. A relatively high number of fabrication steps are involved starting with photo-mask 
preparation, followed by several cycles of lithography, deposition, selective etching and finally 
wafer dicing [32,33].  

For the first time, we show that a laser micro-milling technique can be utilized to machine 
micro-size kerf-widths, (referred as a capacitive gap in MEMS) to perform electrostatic 
actuation and capacitive sensing. We demonstrate that laser micro machining could be used as 
a pathway towards developing a diverse range of structures and devices. Moreover, it is 
suggested as a hypothesis that, some other micro-milling techniques [34,35] , if capable to form 
a micro-size cuts through a device thickness (thus providing a reasonable aspect ratio) could 
also be used. The benefit of using laser micromachining is the possibility to utilize new 
materials to enhance device performance [36]. At present, most of the laser-assisted work was 
used for making micro-cuts, drilling holes, engraving or forming embroidery onto a piece of a 
material [36–39], creating channels for microfluidic applications [40–42], and realizing micro-
optical devices using photoresist [43]. A laser machining was used to develop an electro-
mechanical based transducer and it experimentally demonstrated the possibility to use direct 
laser writing (DLW) to fabricate electro-mechanical based actuators and sensors with high 
precision and resolution. This fabrication method as proposed here can be particularly useful 
when there is no cleanroom access and there is a requirement for quick prototyping with 
materials other than silicon. This can potentially also be extended for small or medium-scale 
series production. 

Given the novel fabrication platform (laser micromachining) as proposed in this thesis, it is 
worth investigating the performance parameters pertaining to the coupled resonator sensors. 
These performance parameters are sensitivity (in both open and closed loop), resolution (lowest 
possible detection limit), effective noise floor, etc.  

By doing so, objective is to explore whether and how our proposed design offers any 
performance benefit over the coupled resonator sensors realized using MEMS technology. In 
this thesis, the possibility to fabricate such devices using state-of-the-art laser micro-
machining/milling is also explored. Particularly, a goal is to fabricate a coupled resonator 
architecture and (as mentioned in the previous section above) evaluate its performance 
for stiffness sensing applications. 

1.2 Thesis organization 

This thesis is organized as follows: 
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Chapter 2 provides a first principle of MEMS resonator. An in-depth, including most recent 
literature coverage relevant to ultra-sensitive coupled resonators in sensing application is 
provided. 

Chapter 3 provides a theory of operation of mode-localized weakly coupled resonators. This 
background was used to design and fabricate (using laser micromachining) our macro-scale 
two degree-of-freedom (DoF) coupled resonators for stiffness sensing applications. We 
develop a theory model to estimate a device sensitivity. We also analyse performance of our 
design for various operating conditions. A model developed using COMSOL Multiphysics 
software is also given in this chapter. 

Chapter 4 presents system level models for coupled resonators built using a SIMULINK. A 
simulation results for variety of operating conditions are provided. We derive and compare the 
theoretical and simulated results of device sensitivity. We estimate the theoretical noise floor 
of our design and, subsequently determine the minimum resolvable shifts in to the output. We 
therefore determine a resolution for our macro-scale two DoF coupled system. We compare 
results of our theoretical model and system-level simulation and report a good agreement 
between them. 

Chapter 5 begins with overview of various potential micromachining high-tech methods. It 
presents a laser micromachining fabrication and assembly processes. Fabrication outcome at 
the University of Liege and with the outside manufacturing service is compared and discussed 
in detail. We demonstrate a micro-size capacitive gap fabrication into metal parts of up to 2 
mm thickness, thus resulting a high aspect ratio structure. This is useful in terms of MEMS 
transduction in capacitive devices and fabricating such deep trenches using laser 
micromachining to develop a transducer and/or sensor is unprecedented. 

Chapter 6 presents initial experiments and measurement results for the developed prototype. 

Chapter 7 offers a platform for discussion and conclusion and future direction. 

Appendix for the MATLAB script, circuit schematic, vacuum chamber used, etc.  is presented 
at the end of this thesis. 
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Chapter 2 

2 Literature Review 
This chapter starts by reviewing the fundamentals of electromechanical transduction. A model 
for electrostatic actuation and capacitive sensing is given. Next, a theory for a resonator is 
formulated using a one degree of freedom mass-spring-damper model, transfer function 
analysis and electrical equivalent circuit model. Following this, an in-depth overview for ultra-
precise weakly coupled resonators as sensors is presented.  

2.1 Electrostatic actuation and capacitive sensing  

Electrostatic actuation and capacitive sensing are widely used principles in the micro-electro-
mechanical system (MEMS) field. A variety of devices including gyroscopes, accelerometers, 
and resonators based on the principle of electrostatic actuation and capacitive sensing have 
been developed using existing silicon wafer lithography based processes [3,4]. One of the 
essential features of these devices is the requirement of forming micro-size gaps/trenches 
through the active device layer, thus forming parallel-plate capacitors. 

Figure 2.1 shows a schematic representation of an electrostatic actuation and capacitive sensing 
principle. It is one of the widely used principle amongst the devices for their operation. In 
resonator featuring electrostatic actuation and capacitive sensing, the electrical load and the 
mechanical restoring force govern the behaviour of a mechanical vibrating structure. The 
electrical load is composed of a DC polarization voltage, Vdc and an AC voltage vac. The DC 
component exerts an electrostatic force on the mechanical structure, thereby deflecting it to a 
new equilibrium position, while the AC component vibrates the structure around this 
equilibrium position.  

 

Figure 2.1 Electrostatic actuation and capacitive sensing in parallel plate actuator 
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The combined electrical load has an upper limit beyond which the mechanical restoring force 
can no longer resist its opposing force, thereby leading to the structural instability called as 
‘pull-in’, and the hazardous voltage associated with it is called ‘pull-in voltage’.  

In a parallel plate actuator, a nominal capacitance is given as 0

A
C

d


 where ε, A, and d are 

permittivity, nominal electrode area and nominal capacitive air gap used for electromechanical 
transduction. As shown in Figure 2.1, when the top movable plate moves by a distance x, a net 

capacitance is given by
A

C
d x





. A total energy stored in the parallel-plate capacitor is given 

by
21

2
E CV , where V is the potential applied across the capacitor plates. In case of a 

resonator, V=Vdc+vac. Therefore,  
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An associated net electrostatic force is therefore calculated as 
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Thus, we have components of this force at three frequencies: a force at DC, force at the 
excitation frequency f due to the term 2vacVdc and force at twice the excitation frequency due 
to square term 2

acv . A force F at the excitation frequency is given by 
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(2.3) 

Assuming displacement of a proof mass , x is relatively very small in comparison to nominal 

air gap, d i.e., x d , equation (2.3) takes the form as  
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A parameter, η is defined as the electrostatic transduction factor given by 
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is called as a capacitive gradient. It is seen from 

above derivation that designing a large value of a nominal capacitance should benefit in 
enhancing a transduction factor, η. 

2.2 Motional current  

A charge voltage relationship in a capacitor is given by Q=CV. A current through the capacitor 
is given as 
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The first term in the above equation is the ac or more commonly called feedthrough current 
and second term is called the motional current. 

2.3 A mass-spring-damper system  

Figure 2.2 shows a model for a typical one degree of freedom (DoF) mass-spring-damper 

system. An expression of a force can be written as
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Summing the forces, one can write 
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Here, Fe is externally applied net electrostatic force, FS is the restoring force of the spring, 
which often tries to balance a net externally applied force, and FC is the force by the damper. 
For an undamped system, FC=0.  
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For a static case (i.e., x is independent of time), FS = Kx. For a parallel-plate capacitive 
actuation, 

effS effF K x  where, Keff  = Km+Ke is effective spring constant, Km is mechanical  

 

Figure 2.2 A mass-spring-damper system. 

spring constant and Ke is electrical spring constant derived as (referring to equation (2.2)) 
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Note that Ke has a negative effective value and therefore it causes a spring softening (decreasing 
the effective value) as illustrated in Figure 2.1. Assuming that displacement x of a proof mass 
M is relatively very small than that of original capacitive gap, d (i.e. x << d), Ke can be 

approximated as 2
3e

A
K V

d


   and (V = vac+Vdc) for resonator.  

For a linear, dynamic case where x is a time dependent, an expression for an effective restoring 

force can be written as (t) (t)
effS effF K x . An expression for effK  can be derived as

eff effS S

eff

F F x
K

t x t

  
 

  
.  

2.4 Transfer function for one DoF system 

From Figure 2.2, a governing equation of motion for a single Degree of Freedom (DoF) mass-
spring-damper system can be given as [44]  

 Mx Cx Kx F     (2.9) 

A transfer function can be derived as 
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where, 2
n

K

M
   is the undamped natural frequency, and,  
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(2.11) 

where,   is the amount of proportional damping, typically stated as percentage of critical 

damping, crC  ( 2crC KM is the critical damping value). Equation (2.11) can also be written 

as
2

2
2cr

C C K C K

M C M MKM
  . With this, equation (2.10) can further be written as:  
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By using s j , we get, 
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(2.13) 

Equation (2.13) shows how ratio 
( )

( )

X j

F j




varies as a function of frequency . This ratio being 

a complex number has properties at different values of the ratio n


 
 
 

.  

Case 1) at low frequencies, 
2 2
n n     
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Magnitude and phase are expressed as 
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Case 2) at high frequencies, 2 2
n n     
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Figure 2.3 Magnitude-frequency response of a single DoF mass spring damper system [44] 

Case 3) at Resonance, n   
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Magnitude and phase are expressed as 
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resonance phase angle is 090 . 
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For 1  , system is underdamped. This means energy dissipation is sufficiently small so that 

free-vibration response of the system is oscillatory. This is the case with most MEMS 
resonators. The free-vibration response of an underdamped one degree of freedom (DoF) 
system takes the form as  

    0 cos sint
d dx t e A t B t   

 (2.17) 

Where, A and B are constants that depend on the initial values of (0)x and (0)x that set the 

system into free vibration and ωd is the damped natural frequency given as 2
0 1d     . 

For a damping ratio, 0.2   0d

K

M
   where ω0 is the undamped natural frequency as 

stated earlier. Since
2

C

KM
  , a quality factor for a resonator is given as 

1

2

KM
Q

C
  . 

Figure 2.3 shows a magnitude-frequency response of a system. 

2.5 Coupled resonators  

Using an array of resonators for frequency and timing application has been quite well known 
in the MEMS field. An array of mechanically coupled structures have been proposed for 
increasing the transmission gain of the signal [45], for oscillator application [7], etc.. In [46], 
two microscale clamped-clamped beams were mechanically coupled by a soft flexural-mode 
mechanical spring and demonstrated its usage for filtering application. A study [47] presents 
coupling techniques for implementation of high order narrow-bandwidth bandpass filters from 
micromechanical resonators using electrical coupling elements. Active and passive coupling 
elements were used in this work to implement high order resonant systems from individual 
MEMS resonators. The concept of passive coupling of resonators used capacitors as the 
coupling elements for filter synthesis. Active coupling of resonators used transistor-based 
amplifying circuits. In a more recent study [48], A CMOS-MEMS fabrication platform was 
used to implement a mechanically coupled array of free-free beams resonators and filter 
application was demonstrated [43]. 

2.6 Coupled resonators in sensing applications 

Since last decade, in the MEMS community, there has been a paradigm shift in the research 
referring to MEMS resonating sensors being developed for variety of sensing applications. 
Specifically, a widespread interest has aroused using 1-d chain of a coupled resonating proof 
masses, more familiarly refereed as weakly coupled resonator sensors [16,17]. These sensors 
attribute an ultra-high sensitivity [17,18] manifested via novel transduction principle, i.e. 
sensing magnitude of vibrational energy exchange between the moving proof masses subject 
to a small disruption introduced into the system which alters either an effective mass, ∆m or an 
effective mechanical stiffness, ∆k of one of the proof mass element in a chain. In coupled 
resonating sensor devices, a coupling between the proof masses is constituted either 
electrostatically or mechanically. Such sensors are also characterized by a veering point or loci 
which is described as a reference point from where eigenvalues and/or eigenvectors of this 
coupled system abruptly change and move away from each other (eigenvalues do not cross one 
another but eigenvectors do) subject to a small disorder injected into the system. This change 
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in eigenvalues and/or eigenvectors is larger and linear to some extent as the magnitude of an 
applied disorder is further increased. Veering point thus is also used to describe the amount of 
spacial energy re-distribution amongst the vibrating proof masses in a chain when there is a 
disorder present into the otherwise originally balanced system. If this reference veering 
point/loci is at the centre, it is regarded as an inherent symmetric system. Ideally, this condition 
should occur when ∆k or ∆m is zero, i.e. without the introduction of any disruption into the 
system. However, owing to the manufacturing tolerances, ideal symmetric system does not 
exist into the practice and individual devices coupled together as a whole system exhibit 
mismatch in the geometric features [49]. Unequal energy distribution is also a result of choice 
of driving scheme used for operation and it has recently been shown in [50] that in-phase mode, 
simultaneous driving of both the proof masses resulted in symmetric veering point for the 
eigenvalues of the system. However, the veering loci of eigenvectors was observed to be shifted 
away from the symmetry. In such situation, by introducing an external disruption into the 
system, equal energy distribution between vibrating 

 

Figure 2.4 Ultrasensitive mass sensor using a mode localization in coupled 
microcantilevers [16] 

proof masses was achieved and the point/loci at which this happened was refereed as revived 
veering point of the system. This act could be viewed similar to a calibration scheme for any 
sensor wherein a sensible measurement can be done and therefore accuracy in the measured 
physical quantity can be assured. Away form this veering point, magnitude of energy exchange 
between proof masses resonating in a particular mode was measured and thereby device 
sensitivity and linear measurement range could be determined. Potential applications of 
coupled resonator sensors are classified as mass detection and identification [51], force sensor, 
electrometer (electrical charge measurement), displacement sensor, and acceleration sensor, to 
name a few. 

Spletzer et al., [16] proposed for the first time that a vibration mode localization can be used 
for sensing purpose. This is shown in Figure 2.4. Two mechanically coupled cantilevers were 
used that experimentally demonstrated about two orders of higher in magnitude relative 
changes into the eigenstates (5% to 7%) than relative changes in frequencies (0.01%). 
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Following this, a study in which an array of four microbeam sensors (cantilevers) were used 
for the detection and identification of multiple analytes [52]. It is shown in Figure 2.5 below. 
A single output signal was measured optically from the shuttle mass, using a laser vibrometer, 
to determine the resonance frequencies M1–M4, which correspond to the localized microbeam 
modes of the coupled system. 

 

Figure 2.5 A microbeam sensors utilizing mode-localization to detect and identify the 
analyte [52]  

In the work reported by Thiruvenkatanathan et al,[17], authors used two different types of 
MEMS structures namely free-free beam and double-ended tuning fork as shown in Figure 2.6. 
An electrical coupling as opposed to the mechanical coupling was used and about two orders 
of high sensitivity to eigenstate shifts was demonstrated. In the same study, an effect of initial 
mechanical asymmetry was also investigated. Amplitude change instead of a frequency change 
as a sensor output was proposed. A maximum percentage change in eigenstates and resonant 
frequency shift of about 8.9% and 0.019% respectively were reported. Same group also showed 
a mode-localized MEMS electrometer [22] with the double-ended tuning fork resonator 
topology and also a mode-localized displacement sensor [21]. Reported shifts in eigenstates  
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(a) (b) 

 

(c) 

Figure 2.6 Electrically coupled weakly coupled resonators with enhanced sensitivity (a) A 
fabricated double-ended tuning fork and (b) two free-free beam resonators and (c) a 

representative two DoF coupled resonator model [17] 

were about three orders of magnitude higher than resonant frequency variations. Equal but of 
opposite polarity DC voltage difference was applied on the two resonators, which are coupled 
by an electrostatic spring. Note that Km1  = Km2 = Km, ke1 = ke2 = ke, keff = km-ke, this put the system 
under initial symmetry and at the same time established a coupling spring, Kc between the two 
resonators. Later, the DC voltage on one of the resonators was varied thereby altering the 
effective stiffness of that particular resonator (electrostatic spring-softening effect) to introduce 
a disorder, ∆k = keff1- keff2. (In initially established symmetry of the system keff1 ≈ keff2 , ∆k = 0). 
The approximation sign denotes an initial asymmetry due to fabrication tolerances). By 
decreasing the DC voltage on one of the resonator also alters a coupling spring, Kc and it was 
called as a way to tune the mode shape sensitivity of the system under test.  

This action as mentioned above also decreased the effective value of Kc, making it weaker. For

ck K   sensitivity to mode shape changes, i.e. shifts in eigenstates were reliably measured. 

In short, with such biasing schemes as reported in this research, Kc is also changing (thus 
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parametric sensitivity) for a given stiffness imbalance between the resonators which, in real 
systems is undesirable as usually Kc has to be fixed to reliably measure the impact of ∆k, as an 
external disturbances into the system.  

It was proposed that mode shape sensitivity could be enhanced either by increasing the 
magnitude of externally added perturbation and/or by simply altering (decreasing) the coupling 
spring, Kc between the two resonators. It is also noteworthy that by decreasing Kc could 
increase the mode shape sensitivity of the system under investigation but it remains ‘insensitive 
to the variations in the resonant signal frequency shifts. In other words, frequency sensitivity 
to the varying coupling strength is ideally zero.  

Zhao et al., [18,23,53] demonstrated a highest possible amplitude ratio based sensitivity of 
amplitude ratio to stiffness perturbation (about 13558) with the coupled resonators employing 
an array of three adjacent resonators. A prototype fabricated by this research group is shown 
in Figure 2.7. Same group also reported a force sensor [23] with a sensitivity of about 
4.9×106/N. A concept of bias  

Figure 2.7 A coupled resonator sensor employing an array of three resonators [18] 
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Figure 2.8 A mode-localized MEMS electrometer based on two mechanically coupled 
resonators [54] 

stiffness perturbation was introduced in this work to avoid mode-overlap. A sensor was 
designed in a way that mechanical spring of the middle resonator was designed to be not equal 
to the mechanical spring of other two resonators. It was identified that the third resonator in 
the middle of a two identical resonators reduces the energy propagation due to its absorption 
of energy, thus increases the energy attenuation along the chain. Amplitude ratio based output 
was proposed for the first time highlighting the benefit of common mode rejection. In this 
work, two different approaches for detection were investigated, perturbing the stiffness in the 
form of either an axial electrostatic force or change in electrostatic spring. Using the same 
prototype an electric potential sensor was also reported in [26]. 

Reportedly, a high amplitude ratio based sensitivity to input charge (about 2151) MEMS based 
electrometer [54] as shown in Figure 2.8 was also demonstrated that used two mechanically 
coupled resonators to show a mode-localization effect. In this work, it was shown that when 
charges are applied to the external electrode, the stiffness of specific resonator is perturbed, 
owing to the mode-localization. A reported minimum charge that this electrometer could 
resolve was approximately 1.29 fC for amplitude ratio based output. An electrometer using a 3 
DoF weakly coupled resonators as sensing element was proposed in [55]. In this work, an input 
charge causes stiffness perturbation to one resonator and leads to a drastic change of the mode 
shape owing to the mode localization phenomenon  

A research on comparative study of different output metric has been given in [53]. In this study, 
different outputs have been compared based on sensitivity, nonlinearity, etc. for a sensor based 
on three weakly and electrically coupled resonators. Another study [56] showed that algebraic 
summation of eigenstates as a sensor output are effective to extend the linearity of a two weakly 
coupled resonators. There is a study [57] reporting on influence of the feedthrough capacitance 
on the performance of a weakly coupled resonators. It was shown that undesired signal output 
from the feedthrough, if not reduced, could have a negative effect on matching the resonant 
frequencies of a two resonators at the two vibration modes for a two-coupled resonator. This 
can lead to the measurement errors in the output metric. 
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Figure 2.9 A mass sensor using two DoF coupled resonators [25] 

A mode-localized mass sensor using two electrically coupled resonators has been demonstrated 
in [25]. A structure was fabricated using a silicon-on-insulator (SOI) process as shown in 
Figure 2.9. In this work , a mass has been removed as opposed to mass addition process shown 
in [16]. An amplitude ratio based sensitivity has been reported which is 5.4 times the sensitivity 
based on conventional resonant frequency shift output. A highest reported mass sensitivity is 
about 34,361 for an electrical coupling spring of -8.88 N/m. Same group also investigated the 
developed prototype performance for stiffness imbalance between two electrically coupled 
resonators [49]. A highest reported amplitude ratio sensitivity in this work was 3257 for a 
anchor beam length of 55 µm.  

Few studies have characterized the sensor at atmospheric pressure. A sensor based on three 
electrically coupled resonators with sensitivity to stiffness change was reported with a quality 
factor, Q as low as 5 in [58]. With the same prototype, an amplitude ratio based mass sensitivity 
of 17.29 with a quality factor of about 8 was reported in [1,59]. 

(a) (b) 

Figure 2.10 A cantilever based mass sensor (a) simulated frequency response and (b) 
fabricated prototype [60] 

A study [60] reported the characterization of disturbances in coupled micro-resonators, in 
which set of cantilevers were used to detect a mass change. A fabricated prototype and 
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simulated results are shown in Figure 2.10. From the frequency response, a relative change in 
eigenvalues (resonant frequencies) were recorded to identify which resonator was perturbed 
and by what amount. An advantage of this method was that an output signal from only any one 
of the resonator provides an information about parameters of the other resonators in a chain 
through a system matrix. A micro-size structure with a three cantilevers coupled mechanically 
were used in [61]. A mass perturbation approximately 10 pg was applied and changes into the 
output amplitudes were shown. 

  

(a) (b) 

Figure 2.11 In search of optimal mode localization in a mechanically coupled resonators 
(a) graph showing coupling spring optimization and (b) implemented prototype in a 

mechanical workshop [62] 

For the resonators that are electrically coupled, it was suggested that a spring coupling the 
individual resonators should be designed as low as possible to enhance the parametric 
sensitivity. However, a study[62] proposed that there instead exists an optimal coupling for the 
coupled mechanical structures at which the mode-localization phenomenon reaches a 
maximum. Figure 2.11 shows calculated ratio of the change in the eigenvector to the coupling 
spring factor. A macro-scale two-cantilever structure fabricated in a mechanical workshop was 
mounted on an excitation equipment. An amplitude ratio output was extracted from the 
vibrational output signal. It is seen that maximum amplitude ratio is achieved for an optimized 
value of coupling factor between the two cantilevers (and not necessarily a lowest value of a 
coupling factor). 
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(a) (b) 

Figure 2.12 An accelerometer based on mode-localization (a) a prototype image and (b) 
output of an sensor as a function of acceleration [24] 

A research on weakly coupled resonators also has demonstrated an accelerometer that uses a 
mode-localization phenomenon [24]. An amplitude ratio shifts (about 300 times higher) than 
the frequency shifts are reported for a prototype fabricated as shown in Figure 2.12. A 
nonlinearity of about 3.5% and about 1.6 % was observed for an amplitude based and a 
frequency based output respectively. An accelerometer using 3 weakly coupled resonators was 
demonstrated in [63,64]. Following this, an accelerometer using 4 weakly coupled resonators 
was demonstrated in [65]. In [66], an accelerometer using 2 weakly coupled resonators was 
investigated. An amplitude ratio output was proposed for enhanced sensitivity and resolution.  

A RLC circuit based approach was used in [67,68] to form two weakly coupled resonators and 
measure changes into the capacitance. This research was done in the context of capacitance 
sensors. A sensitivity of about 300 times higher was shown in capacitance measurement for 
coupled resonators as compared to the method based on frequency shift output in [68]. Figure 
2.13 shows a circuit representation of two weakly coupled resonators and theory model results. 
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(a) 

 
(b) 

Figure 2.13 (a) A circuit network of two RLC components, representing two series resonant 
tanks. A capacitor Cc is the coupling capacitor, coefficient of coupling is set by the ratio 

C/Cc. (b) frequency response of the system for three values of perturbation [67,68]  

The role of asymmetry in the design of devices and its influence on sensitivity was investigated 
in [69,70]. It was shown that asymmetry in devices can lead to even higher sensitivities than 
reported in the literature. A design using combs were used to allow large vibration amplitudes 
of resonators thereby increasing the signal to noise ratio.  

A mode localization based resonant MEMS tilt sensor with a linear measurement range of 3600 
was reported in [28]. The input tilt angle caused changes of the mode shape of both 
accelerometers that were used in this work. An amplitude ratio based sensitivity of about 169 
times higher than frequency shift was reported with nonlinearity of 4.5%.  

A research on the linear sensing range for mode localized sensor was done in [56]. Algebraic 
summation of eigenstates (normalised eigenvectors) was proposed as a novel output metric to 
extend the linear sensing range of mode-localized sensors. In [71], it was proposed that if the 
resonators were driven simultaneously, a linear sensing range across the veering point can be 
extended if amplitude difference, rather than ratio is chosen as an output metric. Figure 2.14 
shows simulation and measurement for the amplitude difference readout. 
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(a) (b) 

Figure 2.14 The simulated (a) and measured (b) amplitude difference (AD) amplitude ratio 
(AR) of the 2nd mode under the Out-Driven scheme [71] 

 

A study utilized two DoF coupled resonators to theoretically estimate a ultimate detection limit 
(resolution) [72]. A prototype was electrically characterised and shifts into the eigenstates 
(normalized amplitudes) were deduced from the measured response. A theory estimate for the 
various intrinsic and extrinsic noise sources (namely mechanical-thermal noise, momentum-
exchange noise, and noise fluctuations arising from sensor’s interface circuit such as electronic 
preamplifier) was calculated. It was concluded that, an electronic interface circuit has a major 
contribution and it acts as a dominant factor in resolving the minimum possible shifts into the 
output of a sensor. Figure 2.15 shows measured shifts for three samples that were used in this 
research. Resolving the lowest possible shifts into the mode amplitude was also attributed to 
the coupling factor, κ, with the claim that lower κ leads to the higher resolution. It was claimed 
that the ultimate detection limits as derived in this work might surpass that of resonant sensors 
based on frequency shift output.  

 

(a) (b) 



47 
 
 

 

(c) 

Figure 2.15 Limits to mode-localisation in a weakly coupled resonators (a) fabricated 
prototype (b) measurement setup in open loop and (c) measured response [72]  

 

In the work reported by Tao et al, inverse eigenvalue analysis was performed for an array of 
five square plate coupled resonators [73,74]. In this method, two sets of eigenvalues (before 
and after perturbation) were obtained, by which system matrix for the coupled resonators was 
extracted. With this method, it was claimed that a coupling ratio and a spring constant and 
sensitivity could be characterised. In [75], a technique to couple an electrical resonator to an 
array of MEMS resonators was introduced. Two sets of eigenvalues were measured by 
connecting/disconnecting the electrical resonator.  

Mode-localized sensors are also noticeable for common mode rejection properties as reported 
in [20,76]. As reported in [76], amplitude ratio based output showed maximum error of 2.74 % 
for a pressure range of 2.6 to 20 Pa. In [77], immunity to temperature fluctuations (between 
35°C and 60°C) in weakly coupled MEMS resonators was reported.  

A work on characterizing the nonlinearity of coupled resonators as a sensor has been reported 
by few research groups. In [78], it was postulated that loci veering of amplitude ratio over a 
range of stiffness perturbations generate nonlinearities, thus limiting the linear sensing. It was 
proposed that algebraic summation of amplitude ratio of two vibration modes can extend the 
linear sensing range (thus minimizing the nonlinearity error) of the mode-localized sensors. An 
electrical test and characterization of a prototype was done using two and three coupled 
resonators.  

A research work in [79,80], proposed to operate a weakly coupled resonators beyond the 
threshold (commonly known as a bifurcation point in MEMS resonators) of a linear operating 
region. A sensitivity and a noise floor were characterized in the nonlinear region to benefit in 
resolving the lowest possible shifts into the output metric. In [80], sensor was operated in closed 
loop configuration. In [81], two weakly coupled resonators, biased in a strong nonlinear region 
of operation showed improved resolution in the output metric (amplitude and frequency). An 
amplitude and frequency stability was characterised for a coupled resonators operating at 
various bifurcation points. A prototype was characterised in a closed loop mode. 
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 In [82], an improved output response of a weakly coupled resonators was shown by operating 
the device at the specific operating point. A working region for the device was selected where 
mechanical nonlinearity of the resonators and the electrical nonlinearity of the electrostatic 
coupling cancelled. It therefore enhanced the output current amplitudes by 4 times, while 
preserving the trend of amplitude variations as a function of stiffness perturbations. 

A research on the noise floor optimization in weakly coupled resonators was done in [83]. A 
mode-localized sensor was proposed to be operated in an optimal operating region to benefit 
in resolving the lowest possible shifts in the output metric (amplitude ratio in this work). Two 
parameters, coupling strength and stiffness mismatch were attributed to the maximum possible 
resolution. 

A research reported in [84], provided a theoretical study and simulations to conclude that 
resolution of a weakly coupled sensor is independent of the coupling factor. This research 
claimed to show contradiction with the findings in [72], where, it was postulated that lower 
coupling factor leads to improved resolution, and ultimate resolution (i.e. measurement limit 
imposed by noise processes in the system) is linearly proportional to the coupling factor.  

 

Figure 2.16 Simulated spectrum of amplitude ratio fluctuations when the system is subject 
to independent white noise perturbations. Simulation parameters are F=1, ω=1, Q=1000, 

ε=0 [84,85] 

 

A work in [84] was extended and a prototype developed in [85] was characterised in both open 
and closed loop. An investigation on influence of a mechanical-thermal noise on the ultimate 
resolution of a sensor was carried out. Figure 2.16 shows a simulated power spectral density 
estimate of amplitude ratio noise. It was reported that for amplitude ratio based measurements 
of mode-localised sensors; a resolution is independent of coupling strength. It was concluded 
that lowering the coupling factor leads to enhancement in sensitivity for an amplitude ratio 
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based output. However, at the same time, it also increases an influences of an additive noise 
processes (e.g. thermo-mechanical noise of a sensor) and thus it compensates the gain in 
sensitivity (due to lower coupling strength) and thus impedes an improved resolution.  

A resolution of a mode-localised sensor was compared with resolution of a single resonator 
that provides frequency shift output. It was concluded that mode-localised sensor (in open and 
closed loop case with all output metric in [84,85]) still do not break the ultimate limit set by 
the measurement of an oscillation frequency of a single resonator. No experimental verification 
was provided to justify the claims, however.  

A circuit based simulations for self-oscillation of mode localized sensors was reported in [86]. 
In [87,88], results with experiments were reported. Figure 2.17 shows a prototype and 
measurements reported in [88]. A linear amplitude ratio based sensitivity about 391 was 
reported. A real time monitoring of mode localization effect and frequency shift was presented 
in this work.  

  

(a) (b) 

Figure 2.17 (a) Oscillator schematics including the optical micro-graph of the prototype 
mode-localized resonant sensor and (b) amplitude ratios variations for varying the 

normalized stiffness perturbations [88] 

A recent research on the long-term stability of output metric (amplitude ratio shift and 
frequency shift) was carried out in [15,89]. It was shown that for long-term, amplitude ratio is 
more stable and preferable in order to resolve the stiffness perturbations and for a short-term 
frequency shift output can be utilized to resolve changes in the stiffness perturbations. A 
measurement over a long integration time was done for a prototype arranged in the open loop 
and closed-loop configuration.  

A noise analysis performed in this work emphasized the dominance of external electronics in 
setting the noise floor. This research work can be seen as an optimization of a work done in 
[72]. A noise floor for an amplitude ratio based output was determined to be about 4.4×10-

3/Hz0.5. In [89], An amplitude ratio sensitivity to stiffness perturbations of 5250 was determined 
for the device operating in the linear region. Amplitude and frequency stability of a mode-
localized sensor were characterized in a closed loop setup.  

In [90], a prototype was characterised for varying power levels of a AC drive signal and its 
impact on the amplitude ratio was investigated. It was found that in/near the veering zone, 
amplitude ratio exhibits minimum variations against changes in the input AC drive signal. This 
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effect was seen as a pathway to high-resolution long term measurements in mode localized 
sensing.  

In all of the electrically or mechanically coupled resonators referred so far, a sensor 
performance was determined either by an amplitude based and/or frequency based output. A 
work carried out in [91–93], an output metric based on phase change was proposed. A 
“mutually injection-locked oscillators” (MILOs) based on two synchronized oscillators were 
discussed. This work was shown to operate on the principle of differential resonant sensing. 
Here, the phase difference between the resonators serves as an output metric to mismatch in 
stiffness or mass, thus providing a differential measurement of a physical quantity of interest. 
Due to the similarity of a working principle, this study of MILO was called to be analogous 
with the mode-localized sensors. 

Summary 

In this chapter, basics of a MEMS resonator are reviewed. A principle of electrostatic actuation 
and capacitive sensing is presented. An in-depth literature converge in the context of a coupled 
resonators, with emphasis on its applications in sensing is provided. This literature review was 
used as a foundation stone in modelling and designing our coupled resonators for fabrication 
using the state-of-the-art micromachining using laser.  
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Chapter 3 

3 Theory and Design 
In this chapter, an analytical part and the formation of a theory of our design is presented. First, 
a design procedure for the millimetre (mm) scale electromechanical transducer is described. 
Following this, two such MEMS resonating elements were electrically coupled to form a two 
degree of freedom (DoF) coupled resonators. A theoretical model for two degrees of freedom 
(DoF) and three DoF coupled resonators is prepared based on the governing set of equations 
of motion. Design equations were used to determine various performance parameters such as 
mode frequencies, mode amplitude ratio, sensitivity, etc.  

3.1 Device geometry and design parameters  

This section covers a design and a model for a macro-scale device that uses electrostatics to 
form capacitive resonating sensor. This principle of electrostatic actuation and capacitive 
sensing was applied to design and model a weakly coupled two DoF resonating sensor device. 
For this study, we can refer a micro-design that is presented in [18,23,58,59] and present few 
modifications into our scaled-up macro-design presented in this chapter. Geometric features of 
our design are scaled-up. And, a critical analysis is done on the basis of the magnitude of net 
electrostatic forces that are produced, the material used for fabrication, electro-mechanical 
transduction factor, coupling ratio for coupled sensor application, motion sensing output signal, 
etc. In the micro-device presented in [18,23], we calculated that nominal overlap area for 
actuation and therefore the net actuation force (for a given gap of 4.5 µm and a DC voltage of 
60 V) is about 7.92×10-9 m2 and 1.3198×10-5 N respectively. Therefore, the initial effort was 
taken to produce the net excitation/drive force in our macro-device to be of a similar order of 
magnitude. 

Figure 3.1(a) shows a representative graphic view of a two DoF electrostatically coupled 
resonating sensor prototype depicting all geometric features. In this design, a lowest possible 
kerf-width (capacitive air gap) of about 60 µm has been fabricated by laser micromachining. A 
detail on fabrication is reported in the following chapters of this thesis. Usually in a micro-
device, often a gap, d realized photo lithographically for electrostatic transduction is in the 
range of few µm [30]. Fundamentally, this would pose a severe restriction onto realizing a 
movable capacitor and/or relevant devices with an arbitrarily large gap, which, in our case, is 
60 µm. In essence, the net electrostatic force for actuation would be low (assuming (a) 
displacement of a proof mass, x<<d and (b) other parameters such as geometric features and 
applied voltages of a design are of similar scale as in micro-design). This situation therefore 
virtually rules out a possibility to electrostatically actuate and thus sense any motion using a 
device with larger gaps. To circumvent this issue while attesting the benefits of using laser 
micro machining to manufacture such device, geometric features of this design were scaled-
up, making it a millimetre (mm) scale-device. By doing so, it is possible not only to produce a 
net excitation/drive force of about same order of magnitude as in conventionally fabricated 
micro-devices but also a motion out of such device can reliably be sensed capacitively. A 
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design parameters are given in Table 3.1 for a refereed micro-size [18,23] and this scaled-up 
movable plate capacitor. Figure 3.1 (b) depicts a 3D view of a design to relate with the 
parameters given in Table 3.1. 

 

 

(a) (b) 

Figure 3.1 (a) A perspective view schematic of a two DoF weakly coupled resonators 
highlighting the entire necessary feature. Red dotted lines indicate parallel kerf-widths to 
be machined through entire device thickness for capacitive transduction. The shaded area 

in dark blue indicates material to be ablated during machining. As shown, the DC voltages 
V+ and V− to be applied not only to polarize the individual micro-machined gap capacitors 
but also couple them through this electric potential difference. (b) 3D view of the design. 

 

Table 3.1:Design parameters for a developed prototype 

Parameters Reference[18] Scale-up 
factor 

This design 

Thin plate length, Lp (µm) NA NA 60000 
Thin plate width, Wp (µm) NA NA 1500 

Proof mass side length, L(µm) 360 27.77 10000 
Kerf-width (gap), d(µm) 4.5 13.30 60 
Device thickness, h(µm) 30 33.33 1000 

66.66 2000 
Suspension Beam design 

Beam length, Lb(µm) 350 40 14000 
Beam width, Wb(µm) 5 200 1000 



53 
 
 

Materials used 
 Silicon Aluminum Stainless steel 

Young’s modulus of elasticity, E (Pa) 170×109 70×109 200×109 
Density, (kg/m3) 2330 2700 7850 

 

3.1.1 A MEMS electromechanical transducer design 

Based on the design parameters as given in the Table 3.1, an effective value of a proof mass 
was calculated to be 5.5×10-4 g. As shown in Figure 3.1, a nominal overlap area for capacitive 
transduction is determined to be 6×10-5 m2. This is also the transduction area at electrode 
1/electrode 2 (Note that electrode 1/electrode 2 is also depicted as drive/sense electrodes in 
Figure 3.1 (a)) as well as area coupling the two masses. Using the same dimensional values 
given in Table 3.1, a model in COMSOL Multiphysics software [94] was built (A COMSOL 
model and simulations are presented in Chapter 4). An eigenfrequency analysis was performed 
in COMSOL and a resonator frequency (2483 Hz) and a mode shape of a single resonator was 
determined. A COMSOL simulated eigenfrequency value was used and a value of effective 
stiffness was extracted as 
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A nominal capacitance value for this design is calculated as follows: 
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Note that this is the nominal capacitance at the electrode 1/electrode 2 as well as the capacitance 
coupling the two masses. For a device thickness, h=2 mm, C0 = 1.77×10-11 F. Assuming a DC  

voltage Vdc=200 V is applied for the polarization, a net electrostatic force at DC, can be 
calculated as 
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With the introduction of a DC voltage, an effective stiffness of the transducer becomes 
keff=k+ke, where,  
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(3.4) 

Therefore, an effective value of a spring constant is calculated as 
5 51.34 10 (-98.377) 1.339 10 /eff ek k k N m      .  

A displacement of a proof mass, x for this applied force for a given spring constant is calculated 

as
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. This value of x is 0.036% of the nominal capacitive 

air gap, d, which is 60 µm in our design.  

Assuming an AC signal of 5 V in magnitude at the resonant frequency is applied along with a 
DC voltage, Vdc. Therefore, a net electrostatic force is given as 
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(3.5) 

A displacement of a proof mass, x for this applied force for a given spring constant and quality 

factor Q=2000 is calculated as
-6

-6
5

2000 147 10
2.592 10

1.339 10
e

eff

QF
x m

k

 
   


. This value of x is 

4.32% of the nominal capacitive air gap, d, which is 60 µm in our design. It is to be noted that 
in micro device [18,23] a DC voltage of 50 V was applied to bias the device and to also form 
an electrical coupling between the proof masses. This exerted an attractive net actuation force 
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of magnitude 4.33 ×10-6 N that caused about 90 nm displacement of a proof mass which is 2 % 
of the effective air gap (4.5 µm) that forms this movable capacitor.  

For a designed geometry and selected material, natural resonant frequency of the single 
resonator (i.e. without coupling) was theoretically calculated as 2.483×103 Hz. Figure 3.2 
shows the plot for resonant frequency, f as a function of r, (r is ratio of suspension beam width 
Wb to the beam length Lb). Computations are shown for two values of device thickness i.e. h=1 
mm and h=2 mm. In order to keep about the same order of magnitude of resonant frequency as 
in [18,23], we scaled-up an effective mechanical spring constant of the suspension beams 
attached to the relatively large proof mass (5.13×10-4 g). 

For this design, beam width Wb = 1 mm and a beam length Lb =14 mm is chosen as shown in 
Figure 3.1(b). Smaller ratio leads to a design that is more compliant towards direction of 
motion. However, it also pushes the design towards sub-kHz resonant frequency for a given 
size of a proof mass, which is 0.51 mg in this design. As shown in Figure 3.1 (a), only two 
suspension springs were attached to each of the proof mass. This was done to not only to 
enhance the displacement amplitude for an applied actuation/drive force but also to further aid 
in reduction of otherwise inevitably higher motional resistance (owing to the gap of 60 µm).  

 

Figure 3.2 resonant frequency variation as a function of ratio, r. 

Through our COMSOL simulation as reported in section 3.4, we found that in order to make 
the system compliant in the direction of motion, flexible beams formed with a smaller width 
and longer length (referring to Figure 3.1 and Table 3.1) are of advantage in addition to using 
a softer material such as aluminium. Lower effective value of a spring constant also means 
lowering the restriction on the net actuation force (lower applied voltages) to attain same order 
of a displacement of a proof mass for a fixed gap and area. Also, through our analytical study, 
( referring to the expression of motional resistance in section 3.1.2 and Table 3.2 below) we 
found that to facilitate sensing, the smaller value of an effective mechanical spring constant is 
beneficial to keep motional resistance below 10 MΩ for quality factor Q = 2000. 
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Two thin plates of 60 mm length and 1.5 mm width are attached to the proof mass in an aid to 
enhance an actuation and sensing out of the device. A device that was finally fabricated (more 
on the device fabrication is given in chapter on fabrication) is supported by only two springs 
to further enhance the sensitivity for an applied force. Two such devices electrostatically 
coupled will form coupled resonating sensor. Coupling strength between two proof masses is 
determined by the plate overlap area and potential difference between them for a designed 
capacitive gap. An overlap area for transduction and capacitance of perturbation electrode are 
calculated as follows: length of a perturbation electrode were designed to be 2 mm therefore 
making the overlap area to be about 2×10-6 m2. A resultant capacitance for the same is Cper = 
2.951×10-13 F. 

3.1.2 A motional resistance estimation in our design 

In electrostatically transduced resonators, motional resistance, Rx is directly proportional to the 

4th power of a capacitive air gap. It is expressed as 
4

2 2 2

eff

x
dc

d k M
R

V A Q
 [95,96]. A calculated value 

of Rx is about 8 MΩ in a refereed micro-sensor design [18]. If the dimensional features were 
kept same as in micro-design, value of Rx would be orders of magnitude high owing to the gap 
of 60 µm of this design. Therefore, it was necessary to scale-up a nominal overlap area for 
sensing side of this macro capacitor in order to measure an output signal and changes into it 
subject to externally applied disturbances in various sensing applications. As a result, a 
structure as shown in Figure 3.1 employs thin plates of 1.5 mm wide attached to the either side 
of proof mass and nominal area of this sensing/actuation macro-capacitor was increased 
eventually taking it to the level of 5×10-5 m2. To keep the geometric symmetry for a two DoF 
weakly coupled resonant sensor, similar scaling up of nominal area (via attachment of thin 
plate) was done at the driving side of the macro-capacitor. During the design phase, it was 
supposed that there is virtually no control over other parameters such as relative permittivity, 
ε, DC voltage, V+=200 V used in the computations to polarize this macro-capacitor and also to 
establish a electrical spring between the proof masses for coupled resonating sensor, and an 
assumed value of quality factor, Q = 2000.  
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Figure 3.3 A variation in a resonator motional resistance for a) a varying beam width, Wb 
and b) a varying DC voltage, Vdc. 

All these factors influence a motional resistance in a positive way (i.e. decrease it to the 
magnitude similar to micro-sensor discussed earlier). To further scale-down down the motional 
resistance, suspension springs (as described earlier in section 3.1.1) attached to the proof mass 
were designed to be more compliant in the direction of motion (making them 14 mm longer, 1 
mm wider and hence softer, refer Figure 3.1). This design optimization eventually matched the 
value of motional resistance to be same order of magnitude as that in micro-sensor design that 
was refereed [18,23]. Figure 3.3 shows how motional resistance would scale down as a function 
of geometric variations and/or a DC voltage used for polarization in this design. 

Table 3.2 shows calculations based upon theory and COMSOL model developed (COMSOL 
simulations are presented in chapter 4) for this macro-capacitor design for two different device 
thickness, h. 

Table 3.2: Detailed calculation for the device. (h represents device thickness) 

Design of a MEMS transducer for weakly coupled resonators 

Calculations 
Micro-design 

[18,23,59] 
Macro-design 

h=1 mm h=2 mm 
Nominal capacitance of a parallel plate 

@ driving/sensing ports, C0(F) 
1.56×10-14/ 
1.82×10-14* 

8.854×10-

12/8.854×10-12 
1.77×10-

11/1.77×10-11 
Natural frequency of a single resonator, 

theory/FEM f(Hz) 
≈13700 2483 

Effective overlap area @drive/sense 
electrodes, A(m2) 

7.92×10-

9/1.54×10-9 
6×10-5/6×10-5 

1.2×10-

4/1.2×10-4 
Effective mass, m(g) 6.64×10-9 5.5×10-4 1.1×10-3 

Effective spring constant, Km (N/m) 55.73 1.34×105 2.681×105 

Magnitude of applied AC voltage, (V) 10×10-3 
5 
 

Applied potential difference for a 
electrostatic actuation, Vdc (V) 

50 200 

Net DC force @electrode 1, FDC (N) 4.918×10-6 3×10-3 5.9×10-3 
Resulting displacement of a proof mass, 

(FDC / Km), x(m) 
≈91×10-9 ≈22×10-9 

Net change in capacitance, ∆C (F) 3.65×10-16 3.25×10-15 6.5×10-15 
Capacitive gradient at drive/sense 

electrode, (F/m) 
4.09×10-9 1.59×10-7 3.18×10-7 

Net AC force @ resonance, Fe(N) 1.96×10-9 1.47×10-4 2.95×10-4 
Resulting displacement of a proof mass, 

(Fe / Km), x(m) 
≈183×10-9** ≈2.592×10-6 

Transduction factor at drive/sense 
electrode, η 

1.96×10-7 5.9×10-5 

Motional resistance, Rx (Ω) 8×106** 4.93×106 2.46×106 
Quality factor, Q 5000 2000 

Design of a weakly , electrostatically coupled resonator 
Negative electrical coupling spring, Kc 

(N/m)*** 
-1.9238 -393.511 -787.022 
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Natural frequencies of coupled system, 
in-phase/out-of-phase, f (Hz) 

13752/13750 2482/2474 

* Design employed 3 sets of a gap varying interdigitated fingers plus differential sense 
configuration 

** For a quality factor Q=2000 
***For an applied DC voltage of 50 V 

3.1.3 Choice of material from a design perspective  

Aluminium was selected as material for manufacturing as it is relatively soft (young’s modulus, 
E=70 GPa) and has a relatively lower density ρ = 2700 kg/m3 as compared to other commonly 
found metals such as steel, copper, brass, etc. Although usage of all these other mentioned 
materials for device making may also be advantageous as these material generally are 
incompatible to be used with the typical micro (MEMS) fabrication processes [33]. 
Aforementioned property of aluminium makes it more compliant towards flexural bending in 
such scaled-up geometry. Moreover, it is relatively less expensive than other common metals 
available. From manufacturing perspective, it was necessary to make the design free from heat-
induced effects and structural cracks (residual stress) that may cause a device geometry to bend 
if the feature sizes in the pattern being machined are very thin i.e. below sub-mm size. 
Preferring aluminium for this application also offered a convenience towards further lowering 
the resistance to motion (relatively lower material density, and modulus of elasticity contribute 
in lowering the effective mass and effective mechanical stiffness respectively). 

3.2 A coupled resonator design (scaled-up architecture) 

We can refer back Figure 3.1 that shows a schematic diagram for the two electrically coupled 
resonating elements. In regard with the two coupled resonators design, a DC voltage, V+=200V 
is applied to the proof mass M1 and electrode 1 is held at ground potential. Also, a DC voltage 
of equal magnitude but opposite polarity, V-=-200 V is applied to the proof mass M2 and 
electrode 2 is initially held at ground potential.  
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(3.7) 

With the introduction of a DC voltages into the system, a mechanical spring Km1 and Km2 of 
both the proof masses become softer (commonly referred as spring softening effect in the 
literature) and effective value of a mechanical springs of both the proof masses can be written 
as keff1=km1+ke1, keff2=km2+ke2. A value of electrical stiffness, ke1 and ke2 can be calculated as 
given in equations (3.6) and (3.7) respectively: Here, note that electrical spring has a negative 
effective value and ke1=ke2 and therefore, keff1=keff2. It is to be noted that electrode 2 being held at 
ground potential sets an operating/bias point of this design. 

As proof mass M1 is held at V+ and proof mass M2 is held at V- , a potential difference is 
established between the two that sets the coupling spring constant, Kc in a two DoF weakly 
coupled resonators. A value of a coupling spring constant is calculated as  
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Figure 3.4 Variation of coupling spring constant, Kc as a function of thin plate length that is 
attached to either side of each of the proof mass in a coupled resonating sensor. With 

higher device thickness, h, it is beneficial to create a larger electrostatic force between the 
gap coupling two proof masses. 

 

This value of Kc is for device thickness h=1 mm. Higher device thickness yields higher negative 
effective value as provided in Table 3.2. A negative effective value of Kc determines the 
parametric sensitivity (by lowering Kc) but it also may result in  mode merging [17,18,97]. A 
corresponding coupling factor for the calculated value of Kc is calculated as
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Figure 3.4 shows a variation in a coupling spring constant with parameters as indicated. 

In this macro-device, a coupling voltage of ±200 V is used and an effective value of coupling 
spring is computed to be -393.51 N/m (negative sign indicates the electrostatic coupling being 
established). As discussed in 3.1.1, two thin plates are added to the either side of the proof 
masses and thus the effective overlap area is increased to enhance a coupling between two 
masses. This increases an electrostatic force between the two proof masses for the given gap 
and applied voltages. 

The lower value of coupling spring constant, Kc is useful in enhancing the mode amplitude 
based sensitivity of the device for an applied perturbation into the system. However, it also 
makes it difficult to selectively identify and lock to the in-phase or out-of-phase mode of 
interest as in such situation two resonating mode frequency signals are likely to merge. In this 
scenario, a higher quality factor is desirable as it assures lower -3 dB bandwidth of the 
individual mode and therefore there is relaxation on the mode frequency difference. This 
difference is required to be at least twice the value of -3 dB bandwidth of a particular mode to 
restrict two modes being merged [18,54,98]. 
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(a) (b) 

Figure 3.5 Resonant mode frequencies of a device as a function of a) a varying DC voltage 
used in the system and b) a normalized coupling factor. Out-of-phase mode frequency 

always precedes in-phase mode frequency due to negative effective value of a coupling 
stiffness between the two proof masses. As seen, a specific value of coupling factor helps 

attain a adequate mode-frequency difference. 

Theoretical resonant mode-frequencies when system is balanced (∆k=0) is calculated as  
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(3.10) 

A corresponding frequency difference is calculated as  

 _ 0 _ 0 2482 2474 7.3diff ip opf f f Hz    
 

(3.11) 

Figure 3.5 (a) shows variations into the mode frequencies as a function of a DC voltage and 
Figure 3.5 (b) depicts a variation in resonant mode frequencies as a function of a normalized 
coupling factor, κ. Figure 3.6 shows a graph of mode-frequency difference as a function of a 
coupling factor in weakly coupled resonators. 
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Figure 3.6 Mode-frequency difference as a function of coupling factor in weakly coupled 
resonators. 

3.2.1 Design of a perturbation electrode 

To apply an electrostatic force/perturbation, it is preferred to place electrodes in the locations 
as shown in Figure 3.1(a). A DC voltage, Vper can be applied to the external electrode reserved 
to apply perturbations. This voltage, Vper along with a DC bias voltage, Vdc present on to the 
body of the device creates an electrical spring directly proportional to the voltage difference 

between these two. A stiffness perturbations in this case can be calculated as  2

3

A
k v

d


   , 

where ∆v refers a potential difference applied between the proof mass and the reserved 
electrode as shown in Figure 3.1(a). This action exerts an electrostatic force to modulate a 
stiffness of the resonator. This force is in the direction of motion of the beams and vibrating 
proof masses unlike that of [23] where electrostatic force is applied transverse to the direction 
of motion (i.e. along with the length of a beam). In our design, it is expected that, due to 
moderately designed stiffness (1.247×105 N/m) in the direction of motion, a relatively larger 
force could be exerted into the factory-made kerf-width (gap) between suspension beams and 
adjacent electrodes. It is expected that it would manifest adequate sensitivity and/or resolution 
while avoiding nonlinearity and device instability owing to the larger gap of 60 µm in our 
device. It is anticipated that for applying perturbations, placing electrodes in the direction 
transverse to the motion indicates relatively higher effective (>>1.247×105 N/m) stiffness of 
the beams that would likely deteriorate the mode amplitude based sensitivity and/or resolution 
of this coupled resonating sensor system. With this analysis, we can determine that, such 
macro-size sensor could be useful in measurement of relatively larger forces in applications 
where its micro-sensor counterpart may prove to be vulnerable. In the prototype that was 
fabricated, a DC voltage, Vper was applied to electrode 2 (refer Figure 3.1(a)) to apply stiffness 
perturbations. This was done to increase the transduction area by one order of magnitude (6×10-

5 m2) as compared to the earlier case where a DC voltage can be applied to the reserved 
electrode of 2 mm long as shown in Figure 3.1(a). Stiffness perturbations in this present case 

can be calculated as  2

3

A
k v

d


    , where ∆v refers a potential difference applied between 

the electrode 2 and proof mass 2 as shown in Figure 3.1. A corresponding normalised stiffness 
perturbations can be calculated as δk=∆k/keff. 
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3.3 Theoretical transfer function of our design  

Here, we derive a transfer function of our design as follows:  

3.3.1 A two DoF coupled mass-spring-damper system 

We can refer back to Figure 2.6 (c) that shows a lumped parameter model of a two DoF 
mass-spring-damper system in the context of coupled resonators.  

It shows proof masses, iM  with individual mechanical spring constant, 
imK and damping 

coefficients, ic  (i=1, 2). Two proof masses are coupled through another spring, cK  as shown. 

A normalized displacement of the proof mass,
imX  in response to the applied force, f  is 

expressed as
0

i

i

i
m

x
X

X
 ; (i=1, 2) where, 0i

X  is the position of the proof mass at static 

equilibrium condition. Following assumptions hold true for a symmetric device- 

1 2M M M  ,
1 2m m mK K K  and 1 2c c c  . Force vectors 1f and 2f acting on the proof 

masses are the harmonic excitation (drive) forces that cause displacements, 1x and 2x , assumed 

to occur at one frequency. A set of governing motion of equation are given as follows:  

When system experiences imbalance into the initial symmetry i.e. 0k  , governing equation 
of motion for the two-coupled proof masses as shown in Figure 2.6 (c) is given as follows: 

 1 1 1 2 2 1( ) ( ) ( )c m c cMx c c x K K x cx K x f t          (3.12) 

 2 2 2 1 1 2( ) ( ) ( )c m c cMx c c x K K k x cx K x f t            (3.13) 

By operating the device under vacuum, we can mitigate the impact of (a) damping force of 
individual proof mass and (b) damping force that occurs between two proof masses, hence we 
can assume 1 2 0cc c c   . Therefore, equations (3.12) and (3.13) are modified as below: 

 1 1 2 1( ) ( )m c cMx K K x K x f t     (3.14) 

 2 2 1 2( ) ( )m c cMx K K k x K x f t       (3.15) 

By applying a Laplace transformation to equations (3.14) and (3.15), we can obtain the 
following: 

 11 1 12 2 1( ) ( ) ( ) ( ) ( )H s X s H s X s f s   (3.16) 

 22 2 21 1 2( ) ( ) ( ) ( ) ( )H s X s H s X s f s   (3.17) 

where, 

  2
11( ) m cH s s M K K    (3.18) 

 12 21( ) ( ) cH s H s K   (3.19) 
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  2
22 ( ) m cH s s M K K k      (3.20) 

In equation (3.17), we set 2 ( ) 0f s  , and derive an expression for 1( )X s  and 2 ( )X s to use these 

values back in equation (3.16) to obtain an output transfer function, as follows: 

 1 22
1

1 11 22 12 21

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

X s H s
H s

f s H s H s H s H s
 


 (3.21) 

 2 21
2

1 11 22 12 21

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

X s H s
H s

f s H s H s H s H s
 


 (3.22) 

Similar procedure can be applied to obtain an expression for 1
3

2

( )
( )

( )

X s
H s

f s
 and

2
4

2

( )
( )

( )

X s
H s

f s
 . Using the values of 11( )H s , 12 ( )H s  21( )H s and 22 ( )H s derived earlier in 

equation (3.18) through (3.20), we can obtain  
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 (3.24) 

respectively, where, ( )m cK K K   . Using s j , equations (3.23) and (3.24) can be 

modified to attain 
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  

 
      

 (3.26) 

A denominator of equations (3.25) and (3.26) is given by 

 4 2 2 (2 ) 0M M K k K        (3.27) 

where, 2 2
cK K K k K      . Equation (3.27) is called as characteristic equation of this two 

DoF coupled system. Roots of equation (3.27) provide poles and zeros (resonance and anti-
resonance frequencies respectively).  
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(2 ) 4 ( )

2
c

op

M K k M K K M k

M
 
     

  (3.29) 

where, 2
ip  and 2

op  are in-phase and out-of-phase natural mode frequencies of the device. With 

∆k = 0, equations (3.28) and (3.29) take the form 2
ip

K

M
  and 2 2 c

op

K K

M
 

 . Dividing 

equation (3.25) by equation (3.26), we obtain a ratio of amplitudes  

 
2

1

2

( )( )

( ) c

M K kH j

H j K



   

  (3.30) 

We can refer equations (3.28) and (3.29) to obtain simplified expressions for the pole 
frequencies given as  

2

2
ip

k K K K

M
  

   
 ;

2

2
op

k K K K

M
  

   
 . Substituting these values in place of 

ω in equation (3.30), we can obtain the expression for mode amplitude ratio as a function of 
stiffness perturbation, k as follows: 

 
2 2
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With 0k  , equation (3.31) takes the form as  

 
1 1

2 2

( ) ( )
1; 1

( ) ( )
ip op

ip op

H j H j

H j H j

 
 

    (3.32) 

thus representing initial balanced condition of a two coupled resonating devices. 

3.3.2 A three DoF coupled mass-spring-damper system 

Figure 3.7 shows a lumped parameter model of a three DoF mass-spring-damper system in 
the context of coupled resonators.  
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Figure 3.7 A lumped parameter model for a three DoF coupled resonators 

It shows proof masses, iM  with individual mechanical spring constant, iK  and damping 

coefficients, ic  (i=1, 2, 3). Proof masses M1 and M2 are coupled through another spring, Kc1 

and proof masses M2 and M3 are coupled through another spring, Kc2 as shown. A normalized 
displacement of the proof mass,

imX  in response to the applied force, f  is expressed as

0
i

i

i
m

x
X

X
 ; (i=1, 2, 3) where, 0i

X  is the position of the proof mass at static equilibrium 

condition. Following assumptions hold true for a symmetric device: M1 = M2 = M3 =M, Km1 
= Km2 = Km3 =Km, c1 = c2 = c3 =c. Force vectorsf1 , f2 and f3 acting on the proof masses are 
the harmonic excitation (drive) forces that cause displacements, x1, x2 and x3 , assumed to occur 

at one frequency. We assume that Kc1 = Kc2 = Kc, 
1 2c c cc c c  .A set of governing motion of 

equation are given as follows:  

When system experiences imbalance into the initial symmetry i.e. 0k  , governing equation 
of motion for the three-coupled proof masses as shown in Figure 3.7 is given as follows: 

 1 1 1 2 2 1( ) ( ) ( )c m c cMx c c x K K x cx K x f t          (3.33) 

 2 2 2 1 1 3 2( ) ( 2 ) ( )c m c c cMx c c x K K x cx K x K x f t           (3.34) 

 3 3 3 2 2 3( ) ( ) ( )c c m cMx c c x K K k x cx K x f t            (3.35) 

By operating the device under vacuum, we can mitigate the impact of (a) damping force of 
individual proof mass and (b) damping force that occurs between proof masses, hence we can 
assume

1 21 2 3 0c cc c c c c     . Therefore, equations (3.33) through (3.35) are modified as 

below: 

 1 1 2 1( ) ( )m c cMx K K x K x f t     (3.36) 
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 2 2 1 3 2( 2 ) ( )m c c cMx K K x K x K x f t      (3.37) 

 3 3 2 3( ) ( )c m cMx K K k x K x f t       (3.38) 

By applying a Laplace transform identities, an expression for the output transfer function can 
be derived similar to as derived in section 3.3.1 for two DoF mass-spring-damper system. More 
on a model based on three coupled resonators can be found in [7,37]. 

3.4 COMSOL design (A finite element model) 

In this section we analyzed a mode shape and resonant frequencies of our design using 
COMSOL Multiphysics [94] Figure 3.8 shows a COMSOL mode shape simulation for a 
designed geometry of a weakly coupled resonator. A small mechanical beam placed between 
the two resonating elements emulates an electrostatic coupling, as this is difficult to include in 
the COMSOL model. The two simulated mode frequencies are 2483.9 Hz and 2490.9 Hz for 
mode 1 (in-phase) and mode 2 (out-of-phase), respectively. Due to negative effective value of 
a coupling spring, Kc however, mode 2 (out-of-phase) precedes mode 1 at 2476 Hz as our theory 
calculations suggest. 

  

(a) (b) 

Figure 3.8 A COMSOL mode shape simulation for a structure, (a) mode 1 (in-phase mode) 
and (b) mode 2 (out-of-phase mode). These two distinct modes are separated by a distance 
of approximately 7 Hz. An individual resonating element is coupled to its neighbour by a 

mechanical beam thus emulating an electrical coupling spring in the actual fabricated 
prototype 

 

3.5 Performance parameters 

For a 2-DoF weakly coupled resonator sensor, relative changes for amplitude ratio, eigenstate 

and resonant frequency are expressed as 0
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response. (i=1, 2) [17,21,22,49,98]. An effective stiffness of the electrostatic coupling spring 

between the two resonators is 
2 0

3
( )c

A
K v

g


   , where ∆v refers the potential difference 

applied between the two masses. Sensitivity expressions for all the relevant output metric can 
be expressed as: 
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, where,
iRS , 

jiaS and 
if

S  denote the 

theoretical maximum sensitivity for amplitude ratio, amplitude and frequency for jth resonator 
(j=1, 2) at ith mode of the frequency response (i=1, 2), respectively. Based on our design values, 

we found
i i iR a fS S S  .  

Table 3.3 shows calculated values of the design and performance parameters for two DoF 
weakly coupled resonators.  

As can be seen from Table 3.3, an intrinsic higher value of mechanical spring constant of a 
device contributes to further enhancing sensitivity to vibrational mode amplitude variations for 
a given coupling spring constant whereas sensitivity to resonant frequency variation is lowered. 
In our device, mechanical spring constant is designed to be in the order of 1.247×105 N/m. 
While higher mechanical spring constant of the design yield an enhanced mode amplitude 
sensitivity to external quantity to be measured, one has to be careful in the design that lower 
value of mechanical spring is desirable not only for an electrostatic actuation but also to reliably 
sense the motion of a device. Hence, there is a trade-off between value of effective mechanical 
spring constant and attaining mode amplitude based sensitivity of the device. As one of the 
operating case, in the simulation (refer to following chapter 4 on simulations), we excited both 
the proof  

Table 3.3 Calculations for performance parameters (h represents device thickness)  

Parameters 
Theoretical estimate 
h=1 mm h=2 mm 

Amplitude ratio sensitivity, 
iRS

2

eff

c

K

K
  135* 

Amplitude sensitivity, 
iaS

4
eff

c

K

K
  23.73* 

Frequency sensitivity, 
if

S  0.284* 

Coupling ratio, κ (normalized) -0.0032 

Effective coupling stiffness, Kc (N/m) -393.51 -787.02 

Effective mass, m (g) 5.13×10-4 1×10-3 

Effective mechanical stiffness, Keff (N/m) 1.247×105 2.495×105 
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Natural frequencies of a coupled system, mode 1/mode 2, fi (Hz) (i=1,2) (when δk 
= 0) 

2483/2476 

* Calculation for a finite value of a quality factor Q ≈ 2547. 

masses in the out-of-phase mode. We found that it was difficult to resolve in simulation very 
small variations (0.0001 Hz in theory) into the resonant mode frequency subject to applied 
perturbations, ∆k. It is only after a larger ∆k is applied, we could see a slight variation (0.005 
Hz) in the frequency output of a system. While, this could be a disadvantage towards a sensor 
using single resonator. However, designing the inherently larger mechanical stiffness of 
coupled resonating sensor benefit in conveniently resolving variations into the mode 
amplitudes subject to even relatively smaller values of stiffness perturbations, ∆k. Sensitivity 
to mode amplitude variations is found to be orders of magnitude higher to sensitivity to 
frequency variations (refer chapter on simulations and experiments).  

3.5.1 Mode frequencies as a function of a perturbation 

For a two DoF coupled resonator sensor, a characteristic equation given in equation (3.27) in 
section 3.3.1 can be referred. By putting ω2=r, and setting ∆k=0, equation (3.27) takes the form 
as follows 

 2 2 2 22 0cr M MK r K K      (3.39) 

Two roots of this characteristic equation are the natural eigenfrequenies and can be derived as 
follows 
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Therefore, we may write 
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Equation (3.41) is called the first mode (in-phase) and equation (3.42) is called the second 
mode (out-of-phase). Note that due to negative effective value of Kc, mode 2 precedes mode 1 
in the frequency response.  

Figure 3.9 shows how eigenvalues veer away as a function of stiffness perturbation for varying 
values of coupling spring, Kc. A veering zone narrows for a smallest value of a coupling spring. 
Figure 3.10 depicts variations in the mode frequencies as a function of applied stiffness 
perturbations. It also shows how mode frequency difference can be attained for a specific value 
of stiffness perturbation. This is particularly useful when there is a mode merging either due to 
lack of adequate quality factor and/or coupled resonator sensor is designed with a significant 
weaker coupling spring for the sake of increasing the parametric sensitivity. It has also been 
shown that a separate bias voltage can be applied which may cause an adequate mode-
separation in the frequency response [18,23]. Figure 3.11 shows how amplitude ratio output 
for both the modes varies as a function of applied perturbations into the stiffness.  

 

Figure 3.9 Eigenvalue loci veering 
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(a) (b) 

Figure 3.10 (a) Mode-frequency variations as a function of stiffness perturbations. (b) 
Mode-frequency difference as a function of stiffness perturbations 

Figure 3.12 shows variations in the different form of an output for coupled resonators. It is to 
be noted that these plots are presented for a condition where it is assumed that no damping  

 

Figure 3.11 Variation in the amplitude ratio output as a function of stiffness perturbations 
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(a) (b) 

Figure 3.12 Comparative output performance as a function of stiffness perturbations (a) 
absolute values (b) in percentage. A comparative performance for all the outputs for 

damping coefficient (in Ns/m) 0( ); 0c Q k      

 
source exist into the system. Therefore, the shifts into the different outputs are likely to 
deteriorate for a finite value of a quality factor, Q as a case in the practical system. In addition, 
it can be noted that amplitude ratio based shifts are higher than any other output shifts. Using 
an amplitude ratio based shifts are advantageous due to the common mode rejection capability. 
More on this is reported into the following chapter 4 on simulation where, we have presented 
models for a finite value of Q. 

3.5.2 Structural damping in coupled resonators  

In weakly coupled resonators, damping plays an important role. In our theoretical model, we 
investigate the impact of a damping on the behaviour of coupled resonators and its output 
response as a sensor.  
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(a) (b) 

Figure 3.13 Output response of our weakly coupled resonators under practical operating 
conditions with (a) damping coefficient, c set to 0.0016 Ns/m (Q ≈ 5000) and (b) for 

damping coefficient, c set to 0.0031 Ns/m (Q ≈ 2547). M1 and M2 denote proof mass 1 and 
2 respectively, while δk is applied stiffness perturbations (normalized) 

Figure 3.13 shows an output response of the two weakly coupled resonators as a function of 
damping and a stiffness perturbation. (a) Damping coefficient, c set to 0.0016 Ns/m (Q ≈ 5000) 
and (b) damping coefficient, c set to 0.0031 Ns/m (Q ≈ 2547). Note that these same values of 
damping coefficients are used in the Simulink model we have developed, and is presented in 
the following chapter 4 on simulation. 

In the frequency response, in order to avoid a mode-overlap [54], following condition is to be 

satisfied: 
31 2 2

dBBWf f f    where, 1 2f f  is the minimum frequency difference and 
3dBBWf is 

the maximum 3dB bandwidth of ith mode (i=1, 2). In our design, to resolve a mode frequency 

difference, 
3dBBWf  ≤ 3.546 Hz is required. In other words, for this design, we estimate that 

minimum required quality factor, 
m in 6 98iQ   

3

min
maxdB

i
i

BW

f
Q

f

 
  

 
would be required if two 

distinct modes are to be observed. Figure 3.14 illustrates the theoretical model behaviour for a 
two DoF weakly coupled resonators with damping coefficient c >0.0114 Ns/m (Q < 698) also 
depicting mode-overlap. As seen in the Figure 3.14, with decrease in damping (increase in 
quality factor), two distinct modes can effectively be resolved. Other studies have demonstrated 
an operation of a coupled resonating sensors operating even at atmospheric pressure [70], with 
the measured quality factor as low as 5 [58,59]. In summary, for our design we establish this 
condition of operation as follows: Q ≥ Q i_mismatch > Qimin. Here, Q i_mismatch (≈ 2547) is the 
quality factor at which we make sure jth (j = 1, 2) resonator vibrates at the same frequency at 
the ith (i = 1, 2) mode of the frequency response. Qimin is the minimum quality factor to make 
sure two modes can effectively be resolved in the frequency response for a fixed coupling 
factor.  
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(a) (b) 

Figure 3.14 Theory model for our two DoF weakly coupled resonating sensor illustrating 
an impact of a damping for (a) resonator 1 and (b) resonator 2. With higher damping (lower 

quality factor), two distinct modes overlap. 

 

3.6 Dynamic response of our design 

In this section, we propose a theory to analyze a dynamic response of our design for two 
coupled resonators. We refer back Figure 3.1 (a) for this analysis. With the applied bias 
voltages as shown in Figure 3.1 (a), we recall that a net change in capacitance per unit 

displacement is 
 2 2

( )
C A A

x d
x dd x

 
 

 
  , 

mK  is the mechanical stiffness of the 

resonator and 
eK is the resulting electrical spring stiffness due to the applied DC voltage for 

polarization and it is given as 
20

3
( )e dc

A
K V

g


 . An effective spring stiffness is given as

eff m eK K K  . For a static case, i.e. an effective stiffness perturbation, ∆k is not a function 

of time and can be calculated as  
 

 

20
3

20
3

( )dc p

A
k V

g

A
V V

g





  

  

 (3.43) 

where, pV is the DC voltage applied on electrode 2 (refer Figure 3.1 (a)) to alter the stiffness 

of the resonator 2. When p dcV V , 0k  . We can apply a dynamic or time-varying 

perturbation (sinusoidal signal) on electrode 2 to time-modulate the stiffness of a resonator 
2. Note that a net electrostatic force in this case remains the same given as 

 2

3e ac dc

A
F V V

g


  . Here, ∆k is now a function of time and we can write

20
3

(t) ( )
A

k V
g


  , 
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where V is a potential difference between a DC polarization voltage 
dcV  (applied on proof 

mass M2) and an externally applied time-varying signal applied on electrode 2. We can write 

this time-varying signal as sinper perV t  ( pV is the amplitude of an applied time-varying 

signal and p is the angular frequency (rad/sec) of this signal). Here, we note that p d  , 

where p is the angular frequency (in rad/sec) of externally applied time-varying signal as a 

perturbation and 
d is the angular frequency (in rad/sec) of applied net time-varying 

electrostatic driving force.  
 
To simplify, we can write 

 

20
3

20
3

2 2 20
3

( )

( sin )

( sin 2 sin )

dc p p

dc p p dc p p

A
k t V

g

A
V V t

g

A
V V t V V t

g






  

  

  

   

 (3.44) 

We note from (3.44) that ∆k we have components of this stiffness perturbation at three 

frequencies: a ∆k at DC, ∆k at the ωp due to the term 2 sindc p pV V t  and ∆k at twice ωp due 

to square term 2 2sinp pV t . A ∆k at the ωp can be written as 

 
0

3
( ) (2 sin )dc p p

A
k t V V t

g

    (3.45) 

From (3.45), we note that ∆k (t) is a function of amplitude Vp of applied low frequency 
signal and its frequency, ωp.  
 
Therefore, with 

mK being the mechanical stiffness of the resonator 2 and ( )k t  being the 

electrical spring stiffness, effective stiffness can be evaluated as follows: 
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 (3.46) 

Keff @ ωp is 
 

 0
3

( ) (2 sin )eff m dc p p

A
K t K V V t

g

    (3.47) 

Equation (3.47) infers how spring constant is time modulated by an applied sine wave of  
magnitude Vp and frequency ωp. At the same time, effective spring force as a function of 
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time is given as ( ) ( ) ( )s effF t K t x t . With this derived expressions we can analyze a 

dynamic response of our macro-scale coupled resonator system.  
 
Summary 
In this chapter, we presented a systematic design approach of our macro-scale two weakly, 
electrically coupled resonators for stiffness sensing applications. A state-of-the-art in our 
case is fabricating coupled resonators using laser micromachining. Details of fabrication is 
discussed in chapter 5. We found a trade-off amongst design/performance parameters such 
as spring constant (sensitivity), resonant frequencies, motional current and device size. An 
optimized design solution was then proposed based on this trade-off. We derived a 
theoretical transfer function model for our two coupled resonator system to monitor mode-
frequencies and amplitude ratio as function of stiffness perturbations. For our scaled-up 
structure, we determined the maximum theoretical device sensitivity. Amplitude ratio based 
sensitivity is 135, which is comparable to that attained using a MEMS two DoF coupled 
resonators. We also have introduced a theory to analyse the coupled resonator’s response to 
the low frequency signal applied to time modulate a stiffness of one of the resonators.  
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Chapter 4 

4 System level models and simulation 
In this chapter, we propose and develop system level models using SIMULINK, to analyse our 
multi-domain dynamical systems consisting two scaled-up coupled resonators. Our proposed 
models are for variety of operating conditions, such as finite quality factor, varying coupled 
electrostatic spring strength, operation with in-phase and out-of-phase mode, open loop and 
closed loop operation. We determined the sensitivity of our proposed design (in both 
open/closed loop circuit) for stiffness sensing application Moreover, we also have theoretically 
estimated the impact of fundamental noise processes into our system that govern the ultimate 
resolution of the device for various sensing applications.  

4.1 A Simulink model  

Figure 4.1 depicts a system level model for our two weakly and electrically coupled mass-
spring-damper system.  

 

Figure 4.1 A system level model (using SIMULINK) for a two coupled resonators to 
evaluate its performance as a sensor 

 

Table 4.1 shows parameters for a model under investigation. A values of the parameters used 
in this model are obtained through calculation as given in Table 3.1 and Table 3.2 in chapter 3. 

During simulation, we operate the coupled system in the linear mode, (i.e. xji << d). Here, xji is 
the vibrational displacement amplitudes of jth resonator (j = 1, 2) at the ith (i = 1, 2) mode of 
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frequency response, and, d is the nominal capacitive air gap. A steady-state time response for 
a coupled resonator is then analysed for applied stiffness perturbations, δk. 

As such, we have built two system level Simulink models. One is the open loop (being 
discussed here) and other is the closed-loop (discussed in section 4.10 ). In both these models, 
a coupling spring constant, Kc = -393.51 N/m (or a coupling factor, κ = 3.2×10-3 
(dimensionless)) is established with proper DC polarization voltages. A disorder into the 
system, ∆k is separately  

Table 4.1 A system-level model parameters  

System 
parameters 

Value Unit Description 

m 5.5×10-4 g Proof mass of each resonating element 

keff1=keff2=keff 1.339×105 N/m 
Mechanical spring constant of proof mass 1 

and 2 

Kc -393.5 N/m 
Electrostatic spring between the two 

resonators 

κ  0.0032 (unitless ) Effective coupling factor 

cmax 0.0031 Ns/m 
Damping coefficient limit for our coupled 

resonators design. ( Q ≈ 2547) 

vac 5 V 
AC drive voltage provided by the signal 

generator in open/closed-loop configuration 

dcV  200 V 
DC voltage used to polarize a macro-size 
capacitors and to also establish a coupling 

between the resonators 

ε 
8.854×10-

12 
f⋅m−1 Permittivity of free space 

gap 60 µm Capacitive air gap of transduction 

Parameters for a closed-loop configuration (using Phase-locked-loop, (PLL)) for our 
design  

Fvco
 

(ωr/(2×π)) 
2482/2474 Hz 

Quiescent/free running frequency of voltage-
controlled oscillator (VCO) in PLL* 

Kvco 1 Hz/v Input sensitivity of a VCO 

vac 5 V 
AC drive voltage provided by VCO of phase-
locked loop (PLL) system for auto-tracking 

output metric 
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* In-phase/out-of-phase 

 

introduced to alter the effective stiffness (thus causing stiffness imbalance in the system) of 
one of the resonator (resonator 2 in our case). A stiffness perturbation, ∆k in our design is 

chosen such that c effk K K   . We recall from the previous chapter 3 that the initial 

resonant frequencies (∆k = 0 N/m) of the weakly coupled system using pair of two resonators 
(2 DoF) are given as follows [17,99]: 

1

k

m
   and 2

2 ck k

m



 , where, ω1 is the in-phase mode frequency and ω2 is the out-of-

phase mode frequency. As noted from the above equations, out-of-phase mode occurs first (as 
verified and shown in section 4.3) due to the negative effective value of a spring coupling the 
two resonators. It is to be noted that for our design, the value of a spring constant coupling the 
two masses i.e. Kc is much smaller (referring Table 4.1) than the individual effective spring 
constant, keff of any of the two resonators.  

4.2 Operating conditions in our design  

In this section, we present a frequency and time characterization of our design. In the frequency 
domain, we applied the Fourier transform to obtain power spectrum of our time-domain output 
signals. We simulate the model shown in Figure 4.1 and obtain graphs for various operating 
conditions as explained below:  
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Figure 4.2 Simulated power spectrum of our design across the frequency range of interest. 
Two resonant peaks are seen to be separated by about 7 Hz. Operating conditions are c = 0 

Ns/m, (Q→∞), ∆k = 0, κ = -0.0032, unit force, F=1 N exerted on proof mass M1 

 

Figure 4.2 shows a simulated spectrum of our design across a range of frequencies of interest. 
As we predicted in theory in chapter 3, two resonant modes are seen to be separated by ≈ 7 Hz 
for a fixed value of a coupling spring, Kc established between the two resonators, (when ∆k = 
0 N/m). Simulation conditions are as reported in section 4 below: 

4.2.1 Case I  

c = 0 Ns/m, (Q→∞), ∆k = 0, κ = -0.0032, net electrostatic driving force applied to proof mass 
M1.  

Figure 4.3 shows time-plot of a net excitation force that is applied onto one of the resonators 
in our design. A magnitude of this force is kept constant during all the operating condition. A 

value of this force is set as per 2
2e

A
F V

d


  as given in Table 3.2 in Chapter 3. We applied the 

same magnitude of this force (as shown in Figure 4.3) during all the operating conditions in 
time characterization of our model. 

 

Figure 4.3 Steady-state time-response for a net applied electrostatic force at the out-of-
phase excitation frequency, ωop, 2474 Hz. A maximum value of this force is simulated to 

be ≈ 149 µN. (peak-to-peak is 295 µN) 

 

Figure 4.4 shows a time plot for an out-of-phase and in-phase mode displacement outputs of 
our two electrically coupled resonators. A maximum value of the displacement can be given as 
xji for the jth (j =1, 2) resonator at the ith (i = 1, 2) mode of frequency response. Therefore, we 
can write the simulated values as follows: x11 = 1.788 µm, x21 = 1.756 µm, x12 = 1.74 µm and 
x22 = 1.756 µm. Here, for the case when c = 0 Ns/m (Q→∞), we note that x11 ≈ x21, and x12 ≈ 
x22. We also note that displacement amplitude of jth resonator at the ith mode of response are 
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approximately equal, i.e. xj1 = xj2 (j = 1, 2). We have also verified such behaviour of two 
coupled resonators shown in Figure 4.2. 

Figure 4.5 shows a corresponding time plots for a motional currents when the system is excited 
at the out-of-phase and in-phase mode frequency. A maximum value of the motional current 

can be given as 
jimoti  for the jth (j =1, 2) resonator at the ith (i = 1, 2) mode of frequency. 

Therefore, we can write the simulated values as follows: imot11 = 820 nA, imot 21 = 800 nA, imot 12 

= 800 nA and imot 22 = 806 nA. Here, for the case when c = 0 Ns/m (Q→∞), we note that imot11 ≈  

 

 

(a) 

 
(b) 

Figure 4.4 Steady-state time-response for displacement x1 and x2 from mass M1 and M2 
respectively, (a) at the out-of-phase excitation frequency, ωop, 2474 Hz. (b) at the in-phase 

excitation frequency, ωip, 2482 Hz.  
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imot21, and imot12 ≈ imot22. We also note that motional current of jth resonator at the ith mode of 
response are of same order of magnitude, i.e. imotj1 = imotj2 (j = 1, 2). 

Figure 4.6 shows a time plot demonstrating a mode-localization effect for the output 
displacement amplitudes xji for the jth (j =1, 2) resonator at the ith (i = 1, 2) mode of frequency 
response. A maximum stiffness perturbation that we applied is ∆kmax = -251.8 N/m, or δkmax = 
-0.0019 (normalized). Note that excitation frequency is a function of ∆k. It was assumed that it 
is an undamped system i.e. damping coefficient, c = 0 Ns/m, (Q→∞). As can be noticed from 
Figure 4.6, there is an amplitude change of a jth resonator at the ith mode of response.  

 

(a) 

 
(b) 

Figure 4.5 Steady-state time-response for motional current im1 and im2 from mass M1 and 
M2 respectively, (a) at the out-of-phase excitation frequency, ωop, 2474 Hz (b) at the in-

phase excitation frequency, ωop, 2482 Hz.  
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(a) 

 
(b) 

Figure 4.6 A mode-localization effect in our macro-scale coupled resonators (a) out-of-
phase and (b) in-phase mode. x1 and x2 are amplitude of displacement for resonator 1 and 2 

respectively. 

 

Following this analysis, we applied a range of stiffness perturbations to modulate the effective 
stiffness of resonator 2 in our model. We then recorded the relative shifts in to the amplitude 
ratio, and mode frequencies as shown in Figure 4.7. From this graph, a maximum amplitude 
ratio sensitivity to stiffness perturbation is about 159 when our system is driven in out-of-phase 
mode.  
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(a) (b) 

Figure 4.7 (a) Output metric for our design of two DoF coupled resonators for the 
following operating condition: damping coefficient, c = 0 Ns/m; A proof mass M1 is driven 

at out-of-phase frequency, ωop which is a function of ∆k, (b) representative equivalent 
model 

 

In the lumped element model as shown in Figure 4.7 (b), we can set c1 = c2 = cc = 0, however, 
in a practical resonant system, there exist several other forces, which may damp the oscillating 
behaviour of a system [100]. Therefore, we model our coupled oscillatory system for real 
operating condition and include a realistic, net value of a damping coefficient into our Simulink 
model. We therefore propose the following operating conditions given as case II in section 
4.2.2 below. 

4.2.2 Case II 

c = 0.0031 Ns/m, (Q ≈ 2547), ∆k = 0, κ = -0.0032, excitation force applied to mass M1. 

For the prototype designed in this work, a finite value of a quality factor, Q ≈ 2547 is required 
(refer the condition Q ≥ Q i_mismatch > Qimin we established in section 3.5.2 in chapter 3).  

Figure 4.8 (a) and (c) shows a time plot for an out-of-phase and in-phase mode displacement 
outputs of a two electrically coupled resonators. A maximum value of the displacement can be 
given as xji for the jth (j =1, 2) resonator at the ith (i = 1, 2) mode of frequency. Therefore, we 
can write the simulated values as follows: x11 = 0.419 µm, x21 = 0.394 µm, x12 = 0.836 µm and 
x22 = 0.804 µm. Here, for the case when c = 0.0031 Ns/m (Q ≈ 2547), we note that x11 ≠ x21, and 
x12 ≠ x22. We also note that displacement amplitude of jth resonator at mode 1 is not equal to 
the displacement amplitude of jth resonator at mode 2, i.e. xj1 ≠ xj2 (j = 1, 2). This is the 
observation for a finite value of a quality factor in our macro-scale two coupled resonators. 
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Figure 4.8 (b) and (d) shows a corresponding time plots for a motional currents when the system 
is excited at the out-of-phase and in-phase mode frequency, respectively. A maximum value of 

the motional current can be given as 
jimoti  for the jth (j =1, 2) resonator at the ith (i = 1, 2) mode 

of frequency. Therefore, we can write the simulated values as follows: imot11 = 195 nA, imot 21 = 
183 nA, imot 12 = 384 nA and imot 22 = 370 nA. Here, for the case when c = 0.0031  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4.8 Steady-state time-response (a) and (b) at the out-of-phase excitation frequency, 
ωop, 2474 Hz, (c) and (d) at the in-phase excitation frequency, ωip, 2482 Hz. x1 and x2 are 

displacements, im1 and im2 are motional current from mass M1 and M2 respectively. 

 

Ns/m (Q ≈ 2547), we note that imot11 ≠ imot21, and imot12 ≠ imot22. We also note that motional 
current amplitude of jth resonator at mode 1 is not exactly equal to the motional current 
amplitude of jth resonator at mode 2, i.e. imotj1 ≠ imotj2 (j = 1, 2).  
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Figure 4.9 Simulated power spectrum of our design across the frequency range of interest 
for finite value of a quality factor. Two resonant peaks are seen to be separated by about 7 

Hz.   

Figure 4.9 shows a plotted graph of the power spectrum of our design for the two operating 
conditions: 1) c = 0 Ns/m, (Q→∞), ∆k = 0, κ = -0.0032, electrostatic driving force, F = 1 N 
applied to proof mass M1. 2) c = 0.0031 Ns/m, (Q ≈ 2547), ∆k = 0, κ = -0.0032, excitation force, 
F = 1 N applied to mass M1. As seen in Figure 4.9, for a finite value of Q, output signal level 
of the jth resonator at the ith mode drops. Moreover, amplitude of the jth resonator at mode 1 is 
smaller than amplitude of the jth resonator at mode 2.  Outputs are the motional current signals. 

Figure 4.10 shows a time plot demonstrating a mode-localization effect for the displacement 
amplitudes xji for the jth (j =1, 2) resonator at the ith (i = 1, 2) mode of frequency response. A 
maximum stiffness perturbation that is applied is. ∆kmax = -251.8 N/m, or δkmax = -0.0019 
(normalized). Note that excitation frequency is a function of ∆k. A response is obtained for a 
damping coefficient, c = 0.0031 Ns/m, (Q ≈ 2547).  

A maximum value of the displacements in this case are xji for the jth (j =1, 2) resonator at the ith 
(i = 1, 2) mode of frequency. Therefore, we can write the simulated values as follows: x11 = 
310 nm, x21 = 380 nm, x12 = 1.04 µm and x22 = 0.75 µm. A maximum value of the motional 

current can be given as 
jimoti  for the jth (j =1, 2) resonator at the ith (i = 1, 2) mode of frequency. 

Therefore, we can write the simulated values as follows: imot11 = 142 nA, imot 21 = 174 nA, imot 12 

= 480 nA and imot 22 = 345 nA. 



88 
 
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 4.10 A mode-localization effect in coupled resonators (a) and (b) out-of-phase and 
(c) and (d) in-phase mode. x1 , x2 are amplitudes of displacement and im1, im2 are motional 

currents for resonator 1 and 2 respectively, c = 0.0031 Ns/m, (Q ≈ 2547), κ = -0.0032 

 

Following the analysis in section 4.2.2 above, we applied a range of stiffness perturbations to 
modulate the effective stiffness of resonator 2 in our model. We then recorded the relative shifts 
(for Q ≈ 2547) in to the amplitude ratio, mode amplitude and mode frequencies as shown in 
Figure 4.11. A maximum sensitivity of amplitude ratio shift to stiffness perturbation of about 
134.54 is obtained. A maximum sensitivity of amplitude shift to stiffness perturbation of about 
23.73 is obtained. A maximum sensitivity of frequency shift to stiffness perturbation of about 
0.284 is obtained.  

A maximum sensitivity value of 134.54 (for amplitude ratio output for a finite quality factor of 
2547) may be compared with that calculated maximum theoretical sensitivity of 158 (for 
amplitude ratio output when Q→∞). Note that one such reason of variation in the quality factor 
is the ambient pressure drifts. Therefore, this design confirms a robustness (to a certain extent) 
of our design against varying effective value of a quality factor. 

For our macro-scale design, a sensitivity of amplitude ratio output to stiffness perturbations is 
comparable to that achievable with MEMS structures of two coupled resonators reported in 
[17,21,22,98].  
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Figure 4.11 A comparative performance for all the outputs for c = 0.0031 Ns/m (Q ≈ 2547); 
∆k ≠ 0, κ = -0.0032. A representation for a frequency shift output is shown 10× times 

scaled up to illustrate a comparison among other outputs. A reasonable match was 
observed between the simulation and theory. Magnitude of δk used in theory and/or 

simulations are same as used during the experiments. A proof mass M1 is driven at out-of-
phase frequency, ωop which is a function of ∆k 

 

We applied the net excitation force on the proof mass M1 first at the out-of-phase mode 
frequency and recorded corresponding variations in the amplitude ratio based output to the 
applied stiffness perturbation. A maximum simulated sensitivity in this case is about 135 (refer 
Figure 4.11). Later, we applied the net excitation force on the proof mass M1 at the in-phase 
mode frequency and recorded corresponding variations in the amplitude ratio based output to 
the applied stiffness perturbation. A maximum simulated sensitivity in this case is about 177 
and a graph showing it is presented in Figure 4.12. Therefore, we found that amplitude ratio 
based sensitivity to the applied stiffness perturbation is larger for the in-phase mode than its 
out-of-phase mode counterpart for a given operating conditions as presented in section 4.2.2 
above. Owing to the higher output signal level (referring Figure 4.9), in-phase mode offers 
higher sensitivity to applied disorder in our design.  

Note that the maximum theoretical amplitude ratio based sensitivity to the stiffness 

perturbation in our macro-design was determined from the expression, iR
S

2

eff

c

K

K
 given in [49] 

and it is calculated to be about 170 in our design. We however observe that 1) this expression 
of effective sensitivity has no dependence on the quality factor as we demonstrate through our 
simulation model, 2) for a finite value of a quality factor effective values of sensitivity differ 
as we have shown. Therefore, a more realistic expression to determine the sensitivity needs to 
be derived.  
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Figure 4.12 A comparative performance for the amplitude ratio based output metric, for c 
= 0.0031 Ns/m (Q ≈ 2547); ∆k ≠ 0, κ = -0.0032. A representation for a frequency shift 
output is shown 10× times scaled up to illustrate a comparison among other outputs. A 

proof mass M1 is driven at out-of-phase frequency, ωop first and then at the in-phase 
mode frequency, ωip (mode frequenies being a function of ∆k) 

 

 

4.3 Frequency response of our design  
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Figure 4.13 A simulated frequency response of our design  

 

Figure 4.13 represents a frequency response obtained through the transfer function of our 
design we have derived in section 3.3.1 of chapter 3.  Operating conditions are those reported 
in section 4.2.2 above. As seen, for a finite value of a quality factor, mode 1 (out-of-phase) 
signal drops to relatively lower level than its mode 2 (in-phase) signal. Both modes are seen to 
be separated by about 7 Hz. A phase difference of about 1800 at mode 1, and phase difference 
of about 00 at mode 2 confirm the functionality of our scaled-up weakly, electrically coupled 2 
DoF resonators.  

4.4 Impact of Q, Kc and δk in our design  

In this section, we attempt to carry a spectral analysis of our system for variety of operating 
conditions such as impact of structural damping (alternatively say Q), varying strength of 
electrostatic coupling, Kc and applied stiffness perturbation, δk. We thereby propose a 
generalized design method for this scaled-up geometry fabricated using laser machining.  

(a) (b) 

Figure 4.14 Simulated output response showing impact of structural damping (a) resonator 
1 and (b) resonator 2, operating conditions are F= 1N, Q varying from infinity to about 8, 

Kc = -393.51 N/m, δk = 0, Y-axis is log scale 

 

From Figure 4.14, we can infer that with increase in the structural damping, that may stem from 
various damping sources including an atmospheric pressure, an output response (motional 
current output) of both the resonators start to diminish. This is the case for a fixed value of a 
coupling factor Kc = -393.51 N/m in our design. Damping coefficient in our model was set as 
a variable to have following effective values: 0, 1×10-6, 1×10-4, 1×10-3, 1×10-2, 1×10-1, 1, all in 
Ns/m. These values correspond to effective quality factor, Q as follows: ∞, 8.84×106, 8.84×104        
8.84×103, 859, 85, 8.5 respectively. For a quality factor of about 859 (referring light green 
curve in Figure 4.14), we observe ith mode (i = 1, 2) of the jth resonator (j = 1, 2) starts to show 
up and two modes can distinctly be resolved. This validates the theoretical condition we derived 
in 3.5.2 in chapter 3.    
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(a) (b) 

Figure 4.15 Simulated output response showing impact of structural damping (a) resonator 
1 and (b) resonator 2, operating conditions are F= 1N, Q varying from infinity to about 8, 

Kc = -100 N/m, δk = 0, Y-axis is log scale 

 

From Figure 4.15 we observe that with relatively lower value of a coupling factor, Kc = -100 
N/m, two modes appear as combined one (referring light green curve in Figure 4.15) for the 
same value of a quality factor of about 859. In other words, a higher quality factor is needed to 
resolve two distinct modes if the coupling spring becomes smaller. Figure 4.16 presents this 
comparative analysis. 

 

Figure 4.16 Simulated output response (a) resonator 1 and (b) resonator 2, operating 
conditions are F= 1N, Q is about 2547, varying Kc, δk = 0, Y-axis is log scale. 
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From Figure 4.16, we can observe that for the given set of operating conditions, with a Q of 
2547, Kc = -397 N/m, two distinct modes for both the resonators can effectively be resolved.  

Figure 4.17 presents a plot showing an effect of applied stiffness perturbations on the output 
response of either resonators at the two distinct modes.  

 

(a) 
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(b) 

Figure 4.17 Operating conditions are F= 1N, Q is about 2547, Kc = -393.51 N/m, δk ≠ 0, Y-
axis is log scale 

 

Note that observed power levels in our spectral analysis should be scaled by the factor 1/149 
µN for the accurate estimation of the signal power levels of our design. 

4.5 Noise analysis in our design 

In this section, we attempt to model an impact of a noise into our macro-size two weakly 
coupled resonator system. Through mathematical analysis and simulations obtained through 
our Simulink model, we attempt to quantify an effective noise floor in our design. Following 
this, we therefore propose a finest possible resolution for our device. 

4.5.1 Noise in a mechanical sensing system 

In a typical MEMS resonator system, electronic circuits (typically a current to voltage 
converter, also called transimpedance amplifier) is used for readout and processing of the 
electrical signal (output motional current from a resonator) provided by the sensing element. A 
total noise level of the system is therefore due to the combined effect of the mechanical–thermal 
noise in the mechanical domain, the electrical noise of the (resistive) mechanical sensing 
element [100] and the input referred noise of the readout circuits [15,84,85,100]. An input 
referred noise is obtained by dividing the estimated output referred noise by the circuit gain.  

In a typical MEMS system, noise from a readout circuit dominates the noise performance [6]. 
However, the details of the mechanical–thermal noise should also be considered relevant, and 
a noise source (mechanical or electronic) that determines the detection limit of the sensor 
should be analysed.  

4.5.2 Noise floor in a mode-localized sensor 

In order to understand the impact of a system noise on the performance of a coupled resonator 
as a mode-localised sensor, we added a noise source (with calculated equivalent noise power 
as given in the following sections) into our model and analysed the response for the ultimate 
detection limit, i.e. resolution of our sensor. We used fixed design value of a coupling factor 
and a finite value of a net damping force (i.e. effective value of a quality factor). 

4.5.3 Thermo-mechanical noise in our design 

In this section, we attempt to model and quantify a magnitude of a thermal-mechanical noise 
in our design. Small moving parts in MEMS are especially susceptible to mechanical noise 
resulting from molecular agitation.[100]. In ultra-low level signal detection, mechanical-
thermal noise plays an important role in setting up the effective noise floor of a sensor system, 
and, thus a minimum detection limit. In the context of a coupled resonators as a sensor, it has 
been concluded in [84,85] that it is a thermal-mechanical noise that governs the ultimate 
detection limit of a coupled resonating sensor. We model a mechanical-thermal noise source 
in our macro-scale 2 DoF weakly coupled resonators and quantify its impact on the resolution 
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(i.e. lowest possible detectable physical quantity) with the two output metric (amplitude ratio 
and amplitude) of our device.  

In our design, we state that jiX  is the amplitude variations for a jth resonator (j =1, 2) at the ith 

mode of a frequency response (i =1, 2) due to the noise induced into the system. Therefore, we 
get an expression of the following output metric (considering a system involving an intrinsic 
(mechanical) and extrinsic (electronic) noise sources). Therefore, we derive a minimum 

resolvable amplitude ratio shift as 01

2 0min minji ji

nR RX

X R

  
 

 
and a minimum resolvable 

amplitude shift is   0
min

0 min
ji

ji

nA A
X

A


 . Therefore, we investigated (through our Simulink 

model) a power spectral density (PSD) of an amplitude noise of jth resonator (j = 1, 2) at the ith 

mode of the frequency response (i = 1, 2). We modelled an effect of a mechanical noise by 
adding a force term into the governing set of equations of motion (for 2 DoF) as follows 

 1 1 1 2 2 _( ) ( )c m c c noise rmsMX c c X K K X cX K X F           (4.1) 

 1 1 1 2 2 _( ) ( )c m c c noise rmsMX c c X K K X cX K X F           (4.2) 

A spectral density of a noise forcing term is given as 
_ d e n s i t y 4   n o is e Bk T cF  /N Hz  [100,101]. 

Here, kB is the Boltzmann constant (≈ 1.380×10-23 Joule/Kelvin), T is the temperature (300 
Kelvin) and c is the damping coefficient (c = 0.0031 Ns/m in our case). As observed, the spectral 
density of a mechanical noise force depends on temperature and the magnitude of mechanical 
damping. We calculated the power spectral density (PSD) of mechanical noise force generator 
as below.  

 

 _densi

2

ty

23

23 2

4  

4 1.380 1 300 0.0031

5

0

.136 10 /

noise BF k T

H

c

N z

  





  


  (4.3) 

Assuming a measurement bandwidth of 10 Hz, an average (mean square) value of a mechanical 
thermal noise force generator will be  
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An effective rms amplitude of this mechanical noise forcing term then is 

 

_rms _

22 2

11

5.136 10

2.26 10

noise noise avgF F

N

N







 

 

  (4.5) 

A noise forcing term with the calculated average value, 
_noise avgF  = 5.136 ×10-22 N2 was added 

as an excitation force in to the Simulink model.  

  
(a) (b) 

Figure 4.18 Simulated power spectrum density (PSD) of an displacement noise of resonator 
1 and 2 subject to mechanical-thermal noise forcing term on resonator 1. (a) Kc = -393.5 N/m 
and (b) Kc = -1000 N/m. Simulation conditions are those reported in section 4.2.2, case 2.  

 

A noise PSD (in dB/Hz) for displacements x1 and x2 was plotted as shown in Figure 4.18. 
Simulations were run for the varying strength of a coupling between two resonators in our 
design with the conditions as given in 4.2.2. A resultant displacement noise PSD (due to noise 
forcing term) is -582.2 dB/Hz (at mode 1) and -572.2 dB/Hz (at mode 2) (referring Figure 4.18 

(a)) which correspond to an equivalent magnitude jX  of 7.76×10-30 m2/Hz (at mode 1) and 

2.45×10-29 m2/Hz (at mode 2) respectively. Assuming a measurement bandwidth of 10 Hz, an 
average (mean square) value of a mechanical thermal noise of jth resonator at the ith mode (j, i 
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= 1, 2) will be _ji avg jiX X df  . As observed from Figure 4.18, noise magnitude is lower for 

mode 1; therefore, we compute a best-case estimate for average noise power for this mode 
given as  

Figure 4.19 Simulated power spectrum density (PSD) of an displacement amplitude noise in 
resonator 1 and 2 for varying coupling strength, Kc.  
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  

 

  (4.6) 

An effective rms value of a mechanical-thermal noise, 
_rmsjiX  in our design then is (for mode 1)  

 

1_rms 1_

29 2

15

7.762 10

8.81 10

j j avgX X

m

m







 

 

  (4.7) 

Note that during the analysis, we hold on to the condition Q ≥ Q i_mismatch > Qimin, as set out in 
section 3.5.2 in chapter 3 to ensure that modes in our design can effectively be resolved during 
the analysis. 
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Figure 4.19 explains the comparative PSD plot of mechanical thermal noise of our design for 
two coupling stiffness, Kc = -393.5 N/m and Kc = -1000 N/m. From Figure 4.19, we can infer 
that with lower coupling strength, mechanical-thermal noise amplitude of our design decreases 
(≈ -3 dB gain in displacement noise amplitude for either mode with Kc = -393.5 N/m).  

In [72], for a reported MEMS 2 DoF architecture, it was postulated that lower coupling factor 
leads to improved resolution, and ultimate resolution (i.e. measurement limit imposed by noise 
processes in the system) is linearly proportional to the coupling factor. Our calculations 
supplemented by the simulations (Figure 4.19) confirms this for our scaled-up 2 DoF structure. 
However, a research reported in [84], has provided a theoretical study and simulations to 
conclude that ultimate resolution of a weakly coupled sensor is independent of the coupling 
factor. This research shows contradiction with the findings in [72] and the results reported in 
this section of thesis. 

A theoretical estimation of effective noise current for our device (due to intrinsic mechanical-

thermal noise) is 
jimot X i jii X , where , 

i , and jiX  are transduction factor, angular 

frequency and the maximum displacement amplitude of the thj resonator (j=1,2) at the thi  mode 

of the frequency response (i=1,2), respectively [53,72]. By determining the jiX , (refer equation 

4.7) we quantified the effective mechanical-thermal noise current (i.e. corresponding variations 

in the motional currents, 
jimot Xi  due to noise forcing term). Since, a thermal noise amplitude of 

the mode 1 is relatively lower (referring Figure 4.18), we do the computation for the best case 
as below.  
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 
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 

  (4.8) 

Equation 4.8 signifies the lower limit of detecting the change in the quantity to be measured 
(∆k in our case). Furthermore, a higher quality factor can further improve this detection limit.  

In our design, we conclude that any variation in the modal amplitudes is resolvable only so 

long as the simulated/measured individual rms amplitude shifts, xji (
jimoti ) is greater than the 

rms amplitude fluctuations, jiX (
jimot Xi ) induced by noise in the system, i.e SNR ≥ 1 

(referring to equation 4.8). 

4.6 Modelling the impact of electronic noise in our design 

Figure 4.20 (a) represents the schematic representation of transimpedance amplifier that may 
be realized using OPA 381 [102] integrated circuit (IC) as an interface circuit to our coupled 
resonator design. Two such ICs may be deployed for motional current pick-up into each output 
channel of the coupled resonator output. Figure 4.20 (b) is the equivalent noise model for the 
interface circuit used as transimpedance amplifier. We estimated noise contributions from each 
of these sources by superposition and nodal analysis.    
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(a) (b) 
Figure 4.20 (a) OPA 381 interface with our sensor design (b) equivalent noise circuit to 
evaluate circuit dominant noise.  

 

An expected variation in the current arising from the intrinsic and extrinsic noise sources were 
theoretically evaluated as explained in Table 4.2. The impact of thermomechanical noise on 
the theoretically calculated motional current is evaluated by first estimating the displacement 
due to thermal noise (refer section 4.5.3) and then calculating its corresponding current 
variation as detailed in Table 4.2. 

Table 4.2 Noise calculations  

Sr. 
No. 

Noise sources 
Effective 

noise current 
(Arms) 

Expression used 

1 Mechanical thermal-noise 4.9×10-15* 
jiX i jii X  

2 Feedback resistance 4.06×10-13 
4 B

f

k T B

R

  

3 
Input voltage noise of a pre-

amplifier 
4.34×10-13 

2

2 21 / 1.57x
n x

f

R
v R B

R

 
    

 
 

4 
Input current noise of a pre-

amplifier 
9.92×10-14 2 1.57ni B   

 
* best-case calculation for the out-of-phase mode as it shows the lower noise 

amplitude 
** factor 1.57 is the roll-off rate of a filter (1-pole) [103]. 

 

Note that an amplifier (OPA 381) [102] we choose in our analysis has an input current noise 
density ≈ 20 fA/Hz0.5, and an input voltage noise density ≈ 70 nV/Hz0.5. We converted this 
spectral density of input current noise and input voltage noise-assuming measurement 
bandwidth B =10 Hz, as follows: 
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Inoise (rms) = spectral density of current input noise (in A/ Hz0.5) × √B × 1.57  
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  (4.9) 

Vnoise (rms) = spectral density of voltage input noise (in V/ Hz0.5) × √B × 1.57  
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  (4.10) 

We can evaluate the impact of noise on the motional current output 
jimoti  of jth resonator (j=1, 

2) at the ith mode of a response (i=1, 2) in the presence of an applied ac signal vac (refer Figure 
4.1). This ac voltage signal together with the DC voltage, Vdc exerts a net electrostatic actuation 
force at the resonant frequency.  

An impact of a feedthrough capacitance [57] may further be added into our model. This may 
adversely influence the maximum shifts (thus sensitivity) and lowest possible resolvable shifts, 
(thus resolution) in the output metric for a given quality factor, Q into our two DoF coupled 
resonant system. 

In order to evaluate the impact of the electronic preamplifier (OPA 381) noise on the minimum 

shifts into the output metric (and thus quantify measurand
mink in our case), we re-expressed all 

noise components as equivalent currents and evaluated the effect of noise on the simulated 
motional current.  

We can use a simple circuit analysis of operational amplifier to be used a transimpedance 
amplifier to calculate total input referred current noise [104,105]. Evaluating the preamplifier 
noise when modelling the jth resonator as a current source results in [72] 

 
2

2 2 2 2 4
1 /noise noise x B

j j n n x
f f

R k T
i i i v R

R R

  
          

     (4.11) 

where, noise
ji (rms) is the noise current from the jth resonator at the ith mode of response. Rx is the 

motional resistance (4 MΩ for a Q ≈ 2547 with other parameters being constant, refer section 
3.1.2 in chapter 3 for the expression of a motional resistance), Rf is the effective value of a 
feedback resistor used in the circuit (1 MΩ) in our case. kB is the Boltzmann constant (≈ 
1.380×10-23 Joule/Kelvin) and T is the temperature (300 Kelvin). Terms in and vn represent the 
input current noise and input voltage noise of the trans-resistance amplifier (OPA 381) 
considered for the analysis (refer equation 4.9 and 4.10). Term df is the integration bandwidth 
of 10 Hz. Given that resonator has a bandpass filtering characteristics, frequency range of 10 
Hz around the resonator’s mode frequencies, f_ip and f_op) has been taken for computations for 
optimum noise estimation. Larger integration bandwidth will account for higher noise levels. 
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Therefore, solving equation 4.11, we can get an effective theoretical noise floor (due to 
electronic readout) of our design ≈ 1.56 ×10-13 Arms. (Equivalent to -256 dB. Equation 4.11 can 
be compared to equation 4.8 to see that though mechanical-thermal noise sets the ultimate noise 
floor of our design, it is an electronic noise that dominates the overall performance (electronics 
noise exceeds mechanical noise by two orders of magnitude). A total noise (mechanical 
resonator + electronics) in our system is then estimated by vector sum of the uncorrelated noise 
sources i.e. It

2 = I1
2 + I2

2, where, I1 is effective mechanical noise current and I2 is effective 
electronic readout noise current. From equation 4.8 and equation 4.11, It is calculated to be ≈ 
1.56 ×10-13 Arms. An effective electronic noise current spectral density (in a 10 Hz bandwidth) 

is 
13 141.56 10  4.933 10

10
/rmsA

Hz
A Hz    . An equivalent noise power spectral density is 

227 2.43 10 /A Hz  (-532 dB/Hz).  

We recall from section 4.2.2, maximum theoretical displacement amplitudes, jix (as derived 

from the Simulink) are xj1 ≈ 0.419 µm (mode 1) and xj2 ≈ 0.836 µm (mode 2). Corresponding 

theoretical motional current amplitudes, 
jimoti are 

1 _ 12 192
jmot op ji f x nA     (mode 1) and

2 _i 22 384
jmot p ji f x nA     . We observed that calculated values for motional current 

amplitudes are in agreement with the simulated values. Furthermore, with additional 
amplification factor (Rf   = 1 MΩ, a feedback resistor in preamplifier OPA 381), we get a total 

output voltage, 
jioutV  of 

1 1 max0.192 0.135
j jout mot f rmsV i R V V    (mode 1) and 

2 2 max0.384 0.271
j jout mot f rmsV i R V V     (mode 2). A calculated input-referred electronic 

noise current is ≈ 1.56×10-13 Arms (mode 1). Therefore, output referred noise voltage, noise
jiV  is 

1.56× 10-13× Rf ≈ 156 ×10-9 Vrms. 

4.6.1 Noise analysis in SPICE  

   

 
(a) 
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(b) 

 
(c) 
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(d) 

 
(e)  

 
Figure 4.21 (a) OPA 381 interface with our sensor design (b) equivalent input noise current 
for varying feedback gain, (c) output noise voltage for varying feedback gain, (d) total 
integrated output noise in rms for varying feedback gain, and (e) output noise density for 
varying Rx and fixed Rf  of 1Meg. 

 

Figure 4.21 (a) shows schematic of OPA381: Precision, Low Power, 18 MHz Transimpedance 
Amplifier we used in circuit simulator program for the noise analysis. As seen each resonator 
in the coupled array of a mode-localized sensor were modelled as an equivalent current source 
for the purpose of noise analysis. A design operates with a single 5V DC supply. Ctotal 
represents the total input capacitance consisting of the resonator’s parasitic capacitance (Cp ≈ 
6.5pF) plus the parasitic common-mode and differential-mode input capacitance (2.5pF + 1pF 



105 
 
 

for the OPA381) at the input node of the amplifier.  Cf  as shown in Figure 4.20 (a) is optional 
to prevent gain peaking. Rx and Rf  are equivalent motional resistance (in either output channel 
of coupled resonator) and feedback resistor of amplifier respectively.  

Figure 4.21 (b) shows spectral density of input noise current (in A/Hz0.5) for varying feedback 
gain, Rf in the circuit. As given in Table 4.3, a good agreement was found between theory and 
simulation done using a circuit simulator. Figure 4.21 (c) shows output voltage noise (in 
V/Hz0.5) of the circuit for varying feedback gain, Rf in the circuit. Output voltage noise will be 
less for using lower feedback gain in the circuit. Figure 4.21 (d) shows total output noise 
voltage (rms) in the circuit. Figure 4.21 (e) attempts to evaluate output voltage noise density 
for varying range of structural damping loss, modelled by varying motional resistance, Rx. Rx 
is varying from 3.98 MΩ (Q ≈ 2547) to 60 MΩ (Q ≈ 400). It is seen that output voltage noise 
remains relatively insensitive to the varying quality factor in the resonators. Table 4.3 shows a 
comparative noise analysis of our system. A reasonable match is obtained between theory and 
simulation.  

Table 4.3 Comparative noise analysis of our design 

Comparative noise analysis 
Sr. No.   Theory  SPICE simulation 

(refer graphs) 
1 Input noise current 

density (A/√Hz) 
4.933×10-14  44×10-14 

3 Output noise voltage 
density (V/√Hz) 

4.93×10-8 1.49×10-9 

4 Total* voltage noise 
(Vrms)  

156 ×10-9 228×10-9 

* Integrated over a 10 Hz measurement bandwidth from the simulated graph 
** Note that noise bandwidth and measurement bandwidth are two different terms 

 

4.6.2 Resolving the lowest possible shifts (i.e. resolution) in our design 

The minimum resolvable shift in the voltage amplitudes of our two DoF mode-localized sensor 
were derived using the following equation [72]: 

 
ji

noise
ji

out

V

V
   (4.12) 

where, noise
jiV represents the output refereed noise voltage of the jth coupled resonator at the ith 

mode. 
jioutV represents the noiseless deterministic output voltages (determined from the 

theoretical expression given as
ji jiout mot fV i R  , where,

jmot i i jii x ). Therefore, for the jth 

resonator lowest possible resolvable mode amplitude shift, 
1

1

j

noise
j

out

V

V
 for mode 1 is 
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2

2

j

noise
j

out

V

V
 for mode 2 as 

9
7156 10

5.756 10
0.271




  

(dimensionless). Similarly, minimum resolvable shift in the amplitude ratio readout, Ari (i = 1, 

2) is 
11 21

2 2

611 21 1.481 10
noise noise

out out

V V

V V


   
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 (dimensionless) for mode 1 and 
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noise noise
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V V


   
        

   
(dimensionless) for mode 2. Here, noise

jiV  and 
jioutV are the 

corresponding noise and output voltages of the jth-coupled resonators at their associated ith 
mode of the frequency response. Since rms amplitudes of output voltage (essentially a motional 
current) at the mode 1 for jth resonator is relatively closer (worst-case signal-to-noise (S/N) 
ratio) to the rms noise amplitude, it gives us possibility to determine the worst-case lowest 
possible shift (thus resolution) of our design (thus resolution). The effective resolution 
(theoretical) of our design for amplitude ratio based readout is ≈ 3.89×10-7 which may also be 
compared to the theoretically calculated resolution (≈ 6×10-3) in MEMS coupled resonator 
design in [72].  

4.7 Influence of coupling strength on the effective noise floor  

In this section, we show how electrostatic spring strength coupling the two resonators influence 
the effective noise floor. Therefore, we attempt to set a generalised guideline in design of 
coupled resonators for sensing applications. For the analysis, we considered the coupling 
factor, κ that separates two modes by about 7 Hz and a quality factor, Q of about 2547. 

  
(a) (b) 

Figure 4.22 Simulated power spectrum density (PSD) of the motional current output signal 
in a two weakly macro-scale coupled resonator for the following operating condition, Q = 

2547, κ = -0032, δk = 0, F =1 N  
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Figure 4.23 Simulated power spectrum density (PSD) of the motional current output signal 
for varying coupling strength, Kc. electrostatic drive forcing term set to unity 

 

Figure 4.22 shows a simulated spectrum of both the resonators for an electrostatic forcing term. 
As observed, with the given set of operating conditions, motional current output signal from 
resonator 2 offers relatively lower noise floor as compared to resonator 1 and is independent of 
the coupling strength (refer Figure 4.22 (a) and (b)). In addition, it is beneficial to utilize output 
of jth resonator at mode 2 as it offers a higher amplitude and thus maximum shifts (sensitivity). 

From Figure 4.23, we can infer that smaller coupling strength in our design leads to reduced 
noise floor (about -12 dB gain in noise floor) for the resonating output of the jth resonator (j = 
1, 2).  

4.8 Equivalent circuit Models in SPICE  

We also perform analysis of our two coupled mass-spring-damper physical system by drawing 
the electrical equivalent circuit and use a software circuit-analysis program to determine the 
response. Since the mechanical dampers translate to electrical resistors and the Johnson noise 
of resistors is well known, we can estimate an effective mechanical-thermal noise into our 
system. Figure 4.24 illustrates a simplistic equivalent circuit representation for our two coupled 
resonators. Equivalent parameter values for electrical components such as Rm, Lm and Cm  are 
computed using the formula as presented in chapter 1, section 1.1.1 above. A shunt coupling 
capacitor, Cc here represents an equivalent electrostatic coupling we used in the mechanical 
design. Cper models the applied stiffness perturbations. Voltage sources, V1 and V2 represent 
equivalent applied forces F1 and F2 respectively.  
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(a) 

 

b) 

 
(c) 

Figure 4.24 A SPICE analysis: (a) Equaivalent circuit model for our design, (b) Simulated 
graph of the motional current output signal for fixed coupling strength, Kc, left side of the 
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graph is magnitude and right side of the graph is phase, (c) frequency response as a 
function of varying (negatively increasing) coupling strength, Kc varying from -393.51 N/m 

to -1000 N/m. 

 

Values of all the electrical components are as depicted in Figure 4.24 (a). Quality factor is taken 
to be about 2547 as derived in the condition in case II of section 4.2.2 above. This value of the 
quality factor provides a motional resistance of about 3.87 MΩ keeping all other parameters 
constant in equation of motional resistance as given in section 3.1.2 above. For the operation, 
V2 is set to 0V and only V1 is in action thus representing the condition of driving the resonator 
1 with force F1. Due to the coupled action (owing to coupling spring constant), both resonators 
start resonating at the mode frequencies as captured in the frequency response shown in Figure 
4.24 (b). Note that SPICE also verifies the working principle of our design as already explained 
in section 4.3 above. Figure 4.24 (c) shows simulated plots of the frequency response of both 
the resonators for varying coupling strength between them. Coupling capacitor is varied in the 
range of Cc = -2.2135×10-12 F, Cc = -2.4135×10-12 F, Cc = -2.6135×10-12 F, Cc = -2.8135×10-

12 F (value negatively increasing and thus increasing the strength of electrostatic coupling).   

Figure 4.25 An effect of applied perturbations into the coupled resonator model for c = 
0.0031 Ns/m, (Q ≈ 2547), ∆k ≠ 0, κ = -0.0032. Applied negative stiffness perturbations 

vary from -98.37 N/m to -238.37 N/m. 
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Figure 4.26 An effect of varying structural damping showing eventually modes being 
merged. Effective quality factor varies from 2600 to 10. 

 

 

Figure 4.27 Simulated output response of the resonators for varying perturbations. 
Perturbation applied range from: Cper = -6.324e-12 F to Cper = -2.480e-12 F. Perturbation 

range from -51.62 N/m to -132.16 N/m. An extracted value of the quality factor, Q from 
the model is about 410. 

 

Figure 4.25 shows an effect of applied stiffness perturbations into the coupled resonator 
electrical model. Applied equivalent negative stiffness perturbations is shown in Table 4.4.  

Table 4.4 Calculation for applied stiffness perturbations 

Sr. No.  Cper (F) ∆k (N/m) 
1 -8.85×10-12  -98.37 
2 -6.14×10-12  -141.66 
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3 -5.23×10-12  -166.25 
4 -4.51×10-12  -192.82 
5 -3.45×10-12  -251.84 

 

Figure 4.26 shows an effect of an effect of varying effective structural damping showing 
eventually modes being merged. Effective quality factor varies from 2600 to 10. Figure 4.27 
shows simulated output response of the resonators for varying perturbations. Perturbation 
applied range from: Cper = -6.324e-12 F to Cper = -2.480e-12 F. Perturbation range from -51.62 
N/m to -132.16 N/m. An extracted value of the quality factor, Q from the model is about 410. 

4.9 Amplitude stability of output signals 

Figure 4.28 shows a model built using Simulink incorporating an effective noise power that 
stem from the electronics. A noise source is added into the readout path of both the resonators. 
An equivalent noise power used in our model here represents theoretically estimated effective 
rms noise current (refer Table 4.2) with all the accountable noise sources in each of the readout 
path (resonator + electronics). Model parameters set are same as given in Table 4.1 and 
simulations are run for the operating conditions as follows: c = 0.0031 Ns/m (Q = 2547), δk = 0 
(normalized), proof mass M1 driven by net electrostatic force at the resonant mode frequency, 
ωi (i = 1,2). As explained in section 4.6 above, a motion current output from each of the 
resonator is converted to amplified voltages (by factor Rf = 1MΩ), voutj (j = 1, 2).  

 

Figure 4.28 A model for the noise analysis in a coupled resonators  

 
Figure 4.29 shows a simulated effective noise floor in one of the output readout path 
(resonator 1 in our case). An effective value of noise current is ≈ 0.7 × 10-13 Arms that is a 
reasonable match with what we estimated in theory (≈ 1.56 ×10-13 Arms) of our design. (refer 
Table 4.5) 

Table 4.5: Noise estimation in macro-scale coupled resonator design 
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Noise floor estimate for our design 
Sr. No.  Theory calculation Simulation  
Noise current (Arms)* 1.56 ×10-13  ≈ 0.7 × 10-13 
 

 

 

Figure 4.29 Simulated effective noise floor in either of the output channel. A simulated 
value of effective noise current is ≈ 0.7 × 10-13 Arms (equivalent to -263 dB for reference 

load of 1 Ω) 

Figure 4.30 shows steady-state time plots of output signals (motional current outputs) in our 
design with increased noise levels in the system (≈ 100 pArms). Output signals for both the 
modes are shown. We therefore computed the relative shifts into the amplitudes of im1 and im2 
at the in-phase mode for range of applied perturbations into the stiffness. We subsequently 
determined the sensitivity in the presence of a noise for a given set of operating conditions as 
given in case II of section 4.2.2. As observed from Figure 4.30, in-phase mode provides 
relatively higher amplitudes of motional current output signals (for a given Q ≈ 2547). This 
resulted in higher amplitude ratio based sensitivity (for the in-phase mode) to the applied 
stiffness perturbations. Moreover, in-phase mode showed better amplitude stability as 
compared to its out-of-phase mode counterpart. Therefore, it is recommended to choose to lock 
to the in-phase mode of this device for variety of sensing applications.  

Figure 4.31 captures a mode-localization effect at the in-phase mode frequency, in the presence 
of a noise into the system for applied stiffness perturbation, δk = -0.0019 (normalized). As stated 
earlier, amplitudes of motional currents, im1 and im2 at the in-phase mode frequency are higher 
and thus relatively stable as compared to its out-of-phase mode counterpart. Therefore, we can 
infer that with increasing noise floor in the system, while the amplitudes and hence the relative 
shifts are difficult to resolve in either resonators at the out-of-phase mode, an in-phase mode 
can be utilised in this situation to determine sensitivity and/or resolution for a given operating 
conditions. 
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(a) 

 

(b) 

Figure 4.30 Simulated time-plots of a motional currents im1 and im2 at (a) in-phase mode 
frequency, (b) out-of-phase mode frequency. Operating conditions are δk = 0 and (Q 

=2547). Added noise level is ≈ 100 pArms  
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Figure 4.31 Mode-localization at the in-phase mode frequency, in the presence of a noise 
into the system. δk= -0.0019 (normalized) Q=2547 approximately. In-phase mode chosen 

because it showed better amplitude stability as compared to its out-of-phase mode 
counterpart 

4.9.1 Spectral analysis 

  

(a) (b) 
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(c) (d) 

Figure 4.32 Simulated power spectrum of our design across the frequency range of interest. 
(a) and (b) with less noise current, (c) and (d) with increased noise current, operating 

conditions is given in case II in section 4.2.2. 

Figure 4.32 illustrates a power spectrum of our design for the motional current outputs for the 
condition c = 0.0031 Ns/m, (Q ≈ 2547), ∆k = 0, κ = -0.0032, excitation force F ≈ 149 µN applied 
to mass M1. Signal power levels at the resonant frequencies are determined with and without 
noise added to the system. A value of an effective noise power used in the Simulink block is ≈ 
1×10-26 W and ≈ 1×10-24 W for two cases respectively as shown in Figure 4.32. Figure 4.33 
represents the similar representation as in Figure 4.32 except that Y-axis scale is logarithmic.  

  

(a) (b) 



116 
 
 

  

(c) (d) 

Figure 4.33 Simulated power spectrum of our design across the frequency range of interest. 
(a) and (b) with less noise current, (c) and (d) with increased noise current, operating 

conditions is given in case II in section 4.2.2. Y-axis is log-scale. 

 

  

(a) (b) 

Figure 4.34 Simulated PSD and power spectrum plot: For an effective output referred noise 
(left y-axis) and signal power output (right y-axis) for (a) mode 1 and (b) mode 2 in our 

two scaled-up weakly coupled 2 DoF architecture 

 

Figure 4.34 presents PSD curves (left Y-axis) of an effective output referred noise power and 
power output signal for jth resonator at the mode 1 and mode 2 of the frequency response, 
respectively. We used MATLAB to estimate the signal's total average power by "integrating" 
under its PSD curve. A calculated average power for noise is ≈ 1× 10-7 W (equivalent to 
effective output referred noise voltage of 3.16× 10-4 Volts). Note that, actual estimated noise 
floor (both in theory and simulation) is ≈ 1× 10-13 Amp (1× 10-26 W), which, post amplification 
(by factor 1 MΩ), provides a output referred noise voltage ≈ 1× 10-7 Volts (1× 10-14 W). A 
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calculated average signal power is ≈ 0.2 Volts (0.07 W) for resonator 1 and 0.254 Volts (0.064 
W). All our calculations are for a reference load of 1Ω. 

 

Figure 4.35 Amplitude noise PSD in our design  

 

Figure 4.35 shows a PSD plot of an effective output referred noise plotted against a normalized 
frequency. This corresponds to the estimated amplitude noise in either channel of the resonator 
output. 
 

4.10 Closed-loop arrangement  

Figure 4.36 depicts a system-level model we developed for our design in a closed loop 
configuration. A simple phase-locked-loop (PLL) circuit was utilized to model the effect of 
resonant mode-frequency tracking in our system. For better locking to the corresponding 
modes, we amplified the motional current outputs by factor 1×106. Motional current output 
from the resonator 1 was used as a reference signal to the phase-detector block of the PLL.  

In the closed-loop arrangement, we made sure that a net electrostatic force (time varying) that 
is exerted on the proof mass M1 is of the same order in magnitude as in the case with the open-
loop (refer Figure 4.3). We then applied the range of stiffness perturbations in to our model 
and simulated the time-plots of the motional currents of the jth resonators at the in-phase mode 
of the frequency response. As explained in the previous section 4.9 above, an in-phase mode 
was chosen for the simulation at (Q ≈ 2547) as it offers higher signal level and thus higher 
shifts against applied stimulus perturbations (sensitivity) and/or resolution in our design. We 
then recorded the steady-state motional current amplitudes of the jth resonator as a function of 
applied stiffness perturbations (mode-localization effect in our macro-scale two weakly 
coupled resonators).  
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Figure 4.36 Simulink model for a closed loop arrangement 

4.10.1 Design of a PLL 

A phase-locked loop (PLL) in our design consist of phase-detector, low pass filter and a voltage 
controlled oscillator (VCO). A (VCO) output frequency is given as  

 )  ( vco ctrl o u tF K V F     (4.13) 

where, Kvco is the voltage sensitivity of the VCO (Hz/V), Vctrl is the control voltage, and, Fout is 
the free-running frequency of the VCO [106].  

In our design, applied stiffness perturbation range (∆kmin = -98.3 N/m to ∆kmax = -251.8 N/m). 
For this range, we computed maximum theoretical variation in the mode-frequencies to be 1.3 
Hz and 1 Hz for the out-of-phase mode and the in-phase mode, respectively. In both the modes, 
lowest possible frequency shift is 0.1 Hz. This requires the VCO sensitivity to be about 1 Hz 
for frequency tracking in our design. We calculated parameter Kvco from the above expression 
and determined its value to be 1 Hz and found (through simulation) that VCO frequency is 
scaled appropriately subject to applied perturbations in the system.  

Table 4.6 below provides simulated mode-frequency shifts for both open and closed-loop case. 

Table 4.6 A frequency tracking table for the comparative purpose. 

Parameters 
Frequency of output signal im1/im2 (Hz) 

Sr. 
No. 

∆k 
(N/m) 

δk 

(normalized) Open-
loop 

Closed-
loop 

VCO output frequency in 
closed-loop (Hz) 

1 0 0 2482 2484 2484 
2 -98.3 7.88×10-4 2482 2484 2484 
3 -141.6 1.134×10-3 2482 2483 2483 
4 -166.6 1.331×10-3 2482 2483 2483 
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5 -192.8 1.544×10-3 2481 2483 2483 
6 -251.8 2.017×10-3 2481 2483 2483 

*In-phase mode was chosen as it offered higher output signal level 
 

Operating condition are (Q ≈ 2547); ∆k ≠ 0. A proof mass M1 is driven at in-phase frequency, 
ωip that is a function of ∆k, in both the circuit configuration. An in-phase mode was chosen for 
the operation since motional current amplitudes of both the resonators were found to be 
oscillating with higher amplitudes at this mode relative to the oscillation amplitudes at the out-
of-phase mode). This resulted in higher amplitude ratio based sensitivity to stiffness 
perturbation for in-phase mode as compared to the out-of-phase mode.  

Note that maximum amplitude ratio based theoretical sensitivity 
2 eff

k

k


 as derived in [49] can 

be determined for our design and it is about 170 for amplitude ratio based output.  

Figure 4.37 shows a comparative performance for amplitude ratio based outputs in open and 
closed loop. Sensitivity in closed-loop configuration is seen to be enhanced due to closed-loop 
operation. A plot shown in Figure 4.37 shows a similar trend as demonstrated in [15], where, 
a sensitivity of amplitude ratio to the stiffness perturbation is seen higher in closed loop as 
opposed to in open loop. A good agreement was found between open loop and closed loop 
simulated graphs. From the graph, linearity for stiffness sensing applications also seems to be 
improved in closed loop arrangement. 
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Figure 4.37 A comparative performance of our design in closed-loop and open loop circuit 
arrangement. Graphs obtained from the simulation of a model of our macro-scale coupled 
resonators.  

 

Summary  

In this chapter, we developed system-level models for our macro-scale coupled resonators for 
stiffness sensing applications. A model was simulated for variety of operating conditions such 
as quality factor, coupling coefficient between resonators, etc. An in-phase mode of a design 
exhibited higher amplitude ratio based sensitivity (about 187). This sensitivity is comparable 
to that achieved with 2 DoF MEMS coupled resonator architecture. We developed models to 
determine an impact of intrinsic and extrinsic noise sources in our design. We theoretically 
derived a noise floor of our design and found a good agreement of our calculations with the 
simulations. With the derived noise floor of our design, we also theoretically calculated 
minimum resolvable shifts (1.21 ×10-7) in the output metric and thus resolution (≈ 4.8×10-3) of 
our macro-scale design. These values are also comparable to that achieved with MEMS 
coupled resonators. A closed-loop configuration of our design showed enhanced amplitude 
ratio based sensitivity and linearity to the applied stiffness perturbations as compared to when 
operated in open loop for the associated in-phase mode of operation.   
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Chapter 5 

5 Fabrication 
In this chapter, we explore the possibilities to fabricate our design prototype using state-of-the-
art nonconventional micromachining technology. In general, we utilized fabrication platform 
at the University of Liege and from the manufacturing service provided by Synova, Inc. We 
then compared the fabrication outcome from both these places. We then carried out test and 
electrical characterization of our developed prototype and initial measurements are presented.  

5.1 Overview of fabrication techniques 

Here, various emerging and nonconventional yet high-tech fabrication methods and their 
overview is presented. These methods are particularly useful in creating various 
devices/structures particularly with range of new materials, which can otherwise be a challenge 
to process in a typical clean room used for micromachining. Potentials and demerits are studied 
and best machining method to develop our application is justified through technical reasoning.  

5.1.1 Wire-electro-discharge machining (EDM) 

In electro-discharge machining (EDM) category, micro-wire EDM process also appears to 
offer a smallest electrode wire diameter up to 20 µm [35]. A stainless steel with 100 µm 
thickness, a kerf-width of 30.8 µm (thus aspect ratio defined as the quotient of workpiece 
thickness to kerf-width of about 3) was shown in [107]. Usage of wire-EDM technique was 
shown for slicing silicon into wafers [108] with a kerf width of > 140 µm. A hexagonal 
microelectrode arrays (with tungsten carbide as a workpiece) with side length of 40 µm (with 
aspect ratio of 17.5) was also reported in [109]. In industry [110], a service is available to 
machine kerf-width of > 100 µm into variety of materials with larger thickness, thus leading to 
very high aspect ratio. We studied that while wire-EDM offers a potential to fabricate a high 
standing structure, it however falls short in capabilities to machine a below 100 µm capacitive 
gap (kerf-width) as thickness of a metal workpiece increases (for e.g. > 1 mm). This limitation 
poses a challenge to perform electrostatic transduction on to device under our consideration. In 
addition, EDM is associated with slow ablation process, time-consuming preparation, and 
expensive consumables (e.g. EDM wire) [111].  

5.1.2 Additive manufacturing (3D printing) 

In the area of additive manufacturing, we reviewed the printing methods in the context of 
fabricating a planer structures. A metal-insulator-metal capacitors was fabricated on a flexible 
structure using inkjet printing method [112]. A millimetre scale parts were made using 3-D 
inkjet printing [113]. A 3D printed coils/inductors were demonstrated in [114,115]. In [115], a 
coils, helical springs on a silicon substrate, a butterfly 3D structure on a plastic structure were 
printed. A capacitive touch sensor fabricated using aerosol jet based additive printing method 
was shown in [116]. A capacitive humidity sensor [117,118] was also reported by inkjet print 
method. A micro-scale interdigitated capacitive humidity sensor on paper substrate [119] was 
shown. An air-gap MEMS switches on plastic lamination for RF power transmission was 
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demonstrated in [120]. Using printing method, microelectromechanical relay [121], a strain 
gauge [122], relay switch [123] was also reported.  

An additive manufacturing such as 3D printing [124] seemed promising technology in realizing 
our prototype. However this method, usually involves deposition of a conducting ink (for e.g. 
silver nanoparticles) supplied by annealing process as a following or combined step for printing 
the structures (for e.g. metallic) on a substrate (e.g. plastic). Printing methods also has issues 
such as lateral resolution, structural thickness control [125]. Moreover, in our observation, 
there is no encouraging literature available on printing a moving planer structure (based on 
electromechnical transduction) with sufficiently high aspect ratio. This is central idea of our 
work presented in this thesis.  

5.1.3 Laser micromachining 

Laser micro-machining is a widely-used manufacturing process, wherein a laser beam is 
focused to melt and vaporize unwanted materials from the workpiece [126]. Conventional dry 
laser micro-machining is an efficient manufacturing process because of its high lateral 
resolution, low heat input, and high flexibility [38]. The benefit of laser micromachining is the 
possibility to utilize new materials to enhance device performance [36]. Creating micro-
cuts/trenches using a laser is a function of laser machining parameters such as speed, power, 
focus, etc. We found that laser machining has been used for making micro-cuts, drilling holes, 
engraving or forming embroidery onto a piece of a material [35–39,126]. Laser machining has 
also been used in creating channels for microfluidic applications [40–42], and realizing micro-
optical devices using photoresist [43]. A lowest possible kerf-width, > 200 µm, (with steel as 
a workpiece) was reported in [127]. A narrow kerf width (< 0.4 mm) in [128], ≈ 200 µm in 
[129], ≈ 103 µm in [130] and, > 300 µm in [131] was demonstrated. Fibre metallic laminates 
up to 10 mm thickness were cut using abrasive waterjet process resulting in a kerf-width of ≈ 
500 µm [132]. A laser cutting of aluminium, titanium, and steel using a water jet guided laser 
was demonstrated in [133] resulting in kerf-width between 100-120 µm, thus giving high aspect 
ratio of 12.5 in steel, 39.2 in titanium, and 66.7 in aluminium. An aspect ratio of 5.7 with a kerf 
width of 35 µm post cutting 200 µm stainless steel was shown in [134].  

For the reasons explained in 5.1.1 and 5.1.2 above, neither wire-EDM, nor printing method is 
preferable to fabricate a micro-gap capacitive transducer featuring electrostatic actuation and 
capacitive sensing in the same device. As a industrial solution[111,135,136], we eventually 
resolved to use direct laser writing (DLW), a state-of-the-art laser technology that 
simultaneously offered us a required relatively lower micro-gap (≈ 60 µm ) into the thick (up 
to 2 mm) piece of metals (aluminium and stainless steel). This leads to high standing parallel 
capacitive walls in our fabricated prototype, to favour an electrostatic actuation and capacitive 
sensing in resonators.   

Using a state-of-the-art laser technology provided by Synova Inc. [136] we developed our first-
generation device prototype of an electrostatically coupled two DoF resonating sensor. This 
laser technology offered us numerous advantages such as high-aspect-ratio (> 33) with a 
reasonable mechanical precision, parallel kerf walls (i.e. no V-shape), unlike in [137,138], 
relatively smooth cutting surfaces, etc. [136]. A prototyping fabrication method as proposed 
here can be particularly useful when there is no cleanroom access and there is a requirement 
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for quick prototyping with materials other than silicon. This can potentially also be extended 
for small or medium-scale series production. 

To our knowledge, this is the first time that direct laser writing (DLW) is used to manufacture 
a capacitive resonating device/sensor. 

5.2 Fabrication at the University of Liege  

First, we report on the fabrication activity that was carried out in the clean room of Microsys 
laboratory at the University of Liege. An outcome of this activity is also reported in this chapter.  

It was envisaged that fabricating a micrometer size capacitive gaps for electrostatic 
transduction could be a challenging with the fabrication method other than traditional silicon 
micromachining. Therefore, we researched other alternative microfabrication methods as 
explained in sections 5.1.1 through 5.1.3 above. 

 

 

(a) (b) 

 

(c) 

Figure 5.1 Sample prototype preparation at the University of Liege through laser ablation 
method. (a) top view , (b) bottom view, and (c) side view 
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Figure 5.1 explains a fabrication procedure for the prototype fabricated using laser machining 
at the University of Liege. Initially, a printed circuit board (PCB) was manufactured with 
copper tracks to facilitate an electrical connection with the outside measuring equipment. A 
piece of metal (aluminum with the thickness of 0.5 millimeter) was glued on top of this PCB 
as can be seen from Figure 5.1 (a). According to our theoretical calculations, an aspect ratio 
(i.e. the quotient of workpiece thickness to capacitive gaps) of about 5 was anticipated post 
fabrication. This means, we expected to machine a trenches (through the thickness of a metal 
workpiece) of about 100 micrometers into the aluminum of 500 micrometer thickness. Total 
size of a prototype is 30 mm2. Total size of a PCB as a substrate is 45 mm × 37 mm. As 
Compared with few micrometers capacitive gap size in MEMS devices, we needed to scale-up 
a cross-sectional capacitive area to keep the same order of capacitance as in MEMS. All related 
computations and analysis on this is explained in chapter 3.  

In Microsys clean room, we attempted to fabricate a kerf width of required size. For this, 
various parameters of laser machining equipment such as laser wavelength, pulse duration, and 
power was varied. Figure 5.2 shows optical images of the developed prototype highlighting 
various features.  

 

 
 

(a) (b) 
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(c) (d) 

 

(e) 

Figure 5.2 Optical images of a fabricated prototype at the university campus highlighting 
various device features. (a) metal ablated area, (b) proof masses with beam suspension, (c) 

electrode to apply electrostatic drive force to proof mass 1, (d) electrode to apply 
perturbation and (e) kerfs (also called capacitive gaps) 

 

Figure 5.3 shows optical images for the capacitive gap measurements at various location of a 
developed prototype. A measured gap in this prototype is > 240 µm. In addition, we can notice 
that there is inconsistency in the size of a gap at several locations on the prototype. This large 

size of a capacitive gap implies that force of actuation, Fe ≈  2
2e

A
F V

d


  at the resonance  

 

(a) 
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(b) 

Figure 5.3 Measurement of a laser cuts (capacitive gaps) in a fabricated prototype 

 

would be low for the designed area, polarization voltages, etc. Further scaling-up in area and/or 
applied voltages was not possible given the limitation on the minimum size of a gap that we 
achieved post fabrication. 

Figure 5.4 shows a finished part of out prototype highlighting front and backside. Theoretically, 
it is possible to actuate electrostatically this device for a coupled resonance as intended. 
However, for similar magnitude of polarization voltages as in MEMS, i.e. 50 V in [23], net 
actuation force would be low ( in the nN range) for a fabricated capacitive air gap of > 240 
micrometres and transduction area of about 7 mm × 0.5 mm (proof mass length × thickness of 
this prototype). Moreover, computed motional resistance in this fabricated prototype (for a 
quality factor of about 2500), is approximately 1011 Ω. Based on our computations, even when 
we intend to scale-up the applied voltages to several hundreds of volts (thus higher net actuation 
force), a signal detection above the induced effective noise floor in this system would be a 
challenge in this developed prototype.  
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(a) (b) 

Figure 5.4 A picture of a finished prototype (a) front view and (b) back view 

 

5.3 Fabrication with the outside company  

After studying the outcome of our fabrication at the University of Liege, and, our research on 
several other micromachining possibilities as explained in 5.1.1 through 5.1.3 above, we 
approached to a laser micromachining service industry, Synova Inc. [111] and opted to 
fabricate our prototype with this company. This company offered us to fabricate a relatively 
smaller and consistent laser cuts thus leading to a capacitive gaps (about 60 micrometers). In 
addition, it also allowed us to fabricate a structure with high aspect ratio (> 33).  

5.3.1 3D AutoCAD file  

Post analysis of our design and computations, we discussed the fabrication plan with this 
company (Synova Inc.) and agreed to submit them an engineering drawing file of our design. 
Figure 5.5 presents an AutoCAD diagram that was created using a Freecad software [139]. We 
maintained accuracy and consistency in modelling all the features of our design. Designed kerf-
size or capacitive gaps for transduction are ≈ 60 µm. A total size of a drawn pattern is about 80 
× 61.3 mm2. All dimensions are in millimetres (mm). Two metals such as aluminium and 
stainless steel were used for the fabrication purpose.  

Figure 5.6 depicts a 3D finalized pattern that was modelled using a Freecad software [139]. A 
design consists of a parallel plate capacitors (with about 60 µm gaps) to fabricate a structure 
for two coupled resonators (referring to Figure 5.6 (a)). Figure 5.6 (b) represents a 3D view of 
the same design. A design file (with .dxf, .iges and .stl format) was sent to the manufacturing 
company [111]. A choice of fabricating a structure with only two proof masses was made due 
to the following reasons. A) it was a feasibility test supplied by high development cost of about 
800 CHF as supposed by the manufacturing company, and II) adding more resonators in this 
already scaled-up structure would further have increased the total size of a device which would 
not fit the vacuum chamber of a fixed size during the test in the laboratory.  
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Figure 5.5 An AutoCAD diagram (created using Freecad software [139]) showing all the 
dimensions for the device features. All dimensions are in mm 

 

 

(a) (b) 

Figure 5.6 A device prototype pattern drawn using Freecad software [139], (a) A pattern 
showing the micro-size capacitive gaps to be fabricated, (b) a 3D representation. 

 

60 µm trenches 
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5.4 A PCB design for a developed prototype  

Figure 5.7 displays a printed circuit board (PCB) development plan for our. All the 
dimensions are in mm. A distance of 10 mm were kept from the boundary of our prototype 
design. Total PCB size is 100 × 80 mm2. 

 

 

 

(a) (b) 

Figure 5.7 A printed circuit board plan for the developed prototype. (a) drawing pattern and 
(b) 3D view 

 

5.5 Auxiliary laser cutting for a developed prototype  

Post fabrication of our prototype, a supplementary cutting as depicted in Figure 5.8 to 
electrically isolate sub-parts or components was done using simple dry laser cutting method. 
This cutting was done using the facility (Optec WS Flex laser machine) [140] in the clean room 
environment of Microsys laboratory [141] at the University of Liege.  

Device  
Boundary 
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(a) 

 

(b)  

Figure 5.8 A pattern developed using AutoCAD software to perform a supplementary laser 
milling at the indicated locations on the finished part 

 
Accuracy and consistency was required during this cutting, as we needed to make sure that 
after separating the sub-parts (features such as beams, electrodes 1 and 2, anchors, etc.) no two 
components are electrically short with any other component in the whole part. A basic open 
circuit test was done using a digital multimeter (DMM) after laser milling of sub-components 
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of a part. Post laser cutting device was cleaned using ethanol solution in the clean room of 
Microsys, followed by drying of the part by air gun to remove any debris that may cause the 
short circuit of the sub-components during the DMM test.  

5.6 Assembly plan 

Figure 5.9 shows a fabrication flow line for our prototype design. First, a device was machined 
out of a two metals, i.e. aluminium and steel of 1 mm and 2 mm thickness each. Parallel kerf-
widths of 60 µm were machined. Post machining, the part was immersed in an ultrasonic bath 
to remove any debris/residues that may get into the kerf-gaps during the material ablation 
process. A piece of an epoxy laminate (FR4) was utilized to provide a support base for the 
device. This base was made hollow at the centre to facilitate suspending the moveable part of 
the device. A prototype device was glued on FR4 base (with Loctite 3609 adhesive[142]) and 
kept under 150°C for about 2 minutes in order to form a good adhesion between a device and 
a laminate. Further laser milling was done on the device to electrically isolate subsections. 
Aluminum wedge wire-bonding [143] was used to electrically connect subcomponents of the 
device to copper tracks on the FR4 base. Soldering was used to electrically connect copper 
tracks to the header connectors. 

  
(a) (b) 
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(c) (d) 

Figure 5.9 Fabrication flow line of our prototype. (a) Fabricated part as received from the 
manufacturer, (b) PCB arrangement to support the part as a base, (c) part glued on top of 
the PCB, and (d) finished part with supplementary laser cutting to electrically isolate sub-

parts of a device.  

 

5.7 Finalized part  

We utilized a state-of-the-art laser microjet (LMJ) technology provided by Synova Inc. 
[136,144] and developed our first-generation device prototype of two DoF electrostatically 
coupled resonators. Input parameters (as provided by the manufacturer) for laser cutting of our 
parts are as follows: - Laser source operating at 532 nm, average Power ≈ 10 W, and pulse 
width: between 100 - 400 ns. This LMJ technology offered us numerous advantages such as 
reasonable mechanical precision, parallel kerf walls (i.e. almost no V-shape), unlike in 
[137,138], relatively smooth cutting surfaces, etc. For our application development, we found 
laser-assisted machining (for our finished parts) to be alienated from thermal damage, 
oxidation, and micro-cracks. All these aspects are beneficial and effective for the development 
of electro-mechanical based transducers and/or devices.  

Figure 5.10 shows a photograph of the prototype ready for test and electrical characterization 
with (a) a top view and (b) bottom view. Another reason to scale-up the device geometry is 
from manufacturing perspective. It was necessary to make the prototype being machined free 
from heat-induced structural cracks (residual stress [145]) that may cause a device geometry to 
bend if the feature sizes in the prototype being machined are thin, i.e. below sub-millimeter 
size. A bottom side of the prototype illustrates the central open area to facilitate device 
displacement when subjected to electrostatic actuation force. A boundary is shown to 
mechanically clamp the device by gluing [142] during laser writing. The total size of a 
prototype device is 80×60.18 mm2.  
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(a) (b) 

Figure 5.10 Photograph of a prototype fabricated out of aluminum with thickness, h =1 
mm). Ablation zone is an area from where metal has been removed. (a) front view: 

suspension beams are attached to proof masses at one end and other ends of the beams are 
fixed on to the base laminate. An electrical connection between device and copper tracks is 

done through aluminum wedge bonding technique. Copper tracks are subsequently 
connected to the header connector pins through a wire soldering. (b) back view: a device is 
fixed onto epoxy laminate (which has a central cut as shown) to allow displacement with 
the established mechanical boundary conditions. Dashed rectangle shapes indicates the 

high velocity locations where gap measurements was done.  
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5.8 Fabricated parts  

Figure 5.11 shows photographs of a fabricated prototype (a) side view, (b) top view and (c) 
bottom view. As seen, a metal thickness of 2 mm is shown from which all the components of 
the part were machined through laser ablation process. A finished part was glued on to the 
PCB, which offers a base for the part and provides a platform for electrical test and 
characterization of a device. A capacitive micro size air gaps through the entire thickness of 
the metal was machined by the laser technology to facilitate electrostatic actuation and 
capacitive sensing in mechanical resonators. A prototype is of two electrically coupled 
resonators for stiffness sensing application.  

 

 
 

(a) (b) 

 
(c) 

Figure 5.11 photographs of a fabricated prototype (a) side view, (b) top view and (c) 
bottom view.  

 

5.9 Optical microscopic view and Gap measurements 

Figure 5.12 shows the images of the fabricated device acquired through a optical microscope 
(Leica micro-system digital microscope and imaging system [146]). As seen, we have formed 
parallel kerfs with no thermal damage resulting in a high-quality cut. This technique also 
offered us effective removal of debris from the kerf, preventing contamination and burrs and 
thus leaving clean surfaces. We achieved a cutting ratio of up to 1:33 (kerf width: depth). We 
observed no deformation of the geometry during and after the machining process. 
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(a) (b) 

  

(c) (d) 

Figure 5.12 Images of the prototype (aluminum with 1 mm thickness) acquired through 
Leica microscope. (a) The top portion, showing electrodes reserved to apply external 

stimulus to alter the stiffness of the beams of the proof masses. (b) Middle portion showing 
proof masses separated by a micro-size kerf-width. (c) A close-up view of a clean sharp 

laser-cut thus forming parallel kerf. (d) Close-up view of one of the measured kerf-width. 
(One between the two proof masses) 

 

Figure 5.13 shows the images of laser cuts (effective kerf widths) acquired through an optical 
microscope (Leica micro-system digital microscope and imaging system). Nearly parallel kerfs 
with no thermal damage was observed. This is an acceptable quality cut for our capacitive 
resonator device. As shown in Figure 5.10 (a), firstly, an effective kerf-width at the arbitrary 
locations on the red dotted lines (refer 3.1 (a) in chapter 3 for illustration) was measured. A 
study on width variation for a laser cut at these locations was carried out. A lowest gap size for 
Al (h =1 mm) is ≈ 50.81 µm and for SS (h = 1 mm), it is ≈ 54.29 µm. As shown in Figure 5.13 
(b), we also measured an effective kerf-width and variations at the locations shown by dashed 
rectangle shapes L1-L3 on Figure 5.10(b). These locations, (with 5× magnification as shown) 
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are the maximum velocity locations (refer mode shape in Figure 3.8 in chapter 3) of our design 
subject to applied electric force. A statistical  

   
Al (h=1 mm) 

(i) (ii) (iii) 

   
SS (h=1 mm) 

(iv) (v) (vi) 

   
SS (h=2 mm) 

(vii) (viii) (ix) 
(a) 

  
(i) (ii) 

Al (h=1 mm) 
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(iii) (iv) 

SS (h=1 mm) 
(b) 

Figure 5.13 Microscopic images to present quality of laser cut and width variation 

 (a) width at the arbitrary locations on the red dotted lines (refer Fig.1 (a) for illustrations 
and follow red lines from left) - (i) on line 2 at bottom, (ii) on line 3 at top, (iii) on line 2 at 
top and (iv) on line 3 at centre. (b) a kerf width measurement with 5x magnification at the 
dashed spots (depicted in Fig. 5 (b)) for 3 fabricated parts, (i-iii) Al with h = 1 mm, (iv-vi) 

SS with h = 1 mm and (vii-ix) SS with h = 2 mm.  
 
analysis providing a measure of variance of a laser cuts for all cases is given in Table 5.1. 
Values of kerf-width in Table 5.1 are in µm.  
 

Table 5.1 Width variation for a laser cut 

Kerf-width variation at arbitrary locations 

Fabricated 
part 

Samples 
Kerf-width   

Mean Median Minimum Maximum 
Std. 

deviation 
Al (h=1 mm) 10 66.63 69.59 54.29 75.78 7.27 
SS (h=1 mm) 8 55.88 55.52 50.81 60.99 3.81 

Effective kerf-width variation at locations L1-L3 
Fabricated 

part* 
Line on Fig. 

5.10(b) 
Mean Median Minimum Maximum 

Std. 
deviation 

Al (h=1 mm) 
L1 65.79 66.7 61.8 69.6 2.57 
L2 64.85 64.45 61.3 69.1 2.54 
L3 65.49 65.45 63.1 69.4 2.01 

SS (h=1 mm) 
L1 64.75 64.4 61.6 68.4 2.03 
L2 64.97 63.55 61.8 68.8 2.66 
L3 65.08 65 61.4 68.7 3.36 

SS (h=2 mm) 
L1 66.27 66.8 62.6 69.1 1.99 
L2 65.5 64.95 63.6 69.9 1.99 
L3 64.76 64.85 61.8 67.3 2.01 

*for a length of a dashed rectangle shapes, 10 samples used 
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Summary 

A proposition in this chapter attempts to explore the state-of-the-art technological 
advancements in nonconventional micromachining methods with emphasis on laser 
micromachining. We demonstrate the potential of laser machining to create micro-size kerf-
widths (capacitive gaps) through material ablation. This technique can be used to fabricate 
devices based on electrostatic actuation and capacitive sensing. 

A prototyping fabrication method as proposed here can be particularly useful when there is no 
cleanroom access and there is a requirement for quick prototyping with materials other than 
silicon. This can potentially also be extended for small or medium-scale series production. 
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Chapter 6 

6 Electrical test and characterization 
In this chapter, we present the electrical test and characterization of our fabricated prototype. 
A detailed experimental methodology is provided. Initial experiments and measurements are 
presented for stiffness sensing applications.  

6.1 A description of the experimental methodology 

Figure 6.1 shows a schematic illustration of an experimental set-up used. We give here a 
detailed description of the experimental methodology as follows: As shown in Figure 6.1, 
notations used are,  

1) R1, R2 are resonators operating in vacuum.  

2) V+ and V- are the DC voltages applied to the resonators.  

4) Vac is the applied AC voltage with the frequency sweep generated by the reference 
oscillator of the lock-in amplifier.  

5) d is the air gap for electrostatic actuation and capacitive transduction.  

3) Vper is the DC voltage used to apply electrostatic force (across its coupling gap, d) to 
resonator R2 

6) C is the capacitor of 1 µf, 250V rating used to block DC bias voltages applied to the 
resonators and let the time-varying motional current output be recorded. 

7) Cf1, Cf2 and Ccf   are the corresponding coupling capacitors and offer path for feedthrough 
currents in our set-up. 

First, a fully assembled coupled resonator device (as shown in Figure 5.10) was placed inside 
a vacuum chamber (refer appendix C to see vacuum chamber used showing access to all the 
feedthrough). Electrical connections to and from the device were made as shown in Figure 6.1. 
A DC power supplies and measuring instrument/s (lock-in amplifier) were initially kept turned 
OFF. An electrical power to a vacuum chamber was switched ON to lower the operating 
pressure for the resonator unit placed inside it. A DC Power supply 1 was switched ON and a 
low DC voltage (in the range of 0 to 10V) was applied to the inputs of the DC-to DC high 
voltage (HV) converter (with its centre tap option connected to the DC ground) to generate 
variable DC high voltages (up to +/- 200V) at its output terminals. This DC high voltage of 
equal magnitude but opposite polarity (+/- 200V) was applied to the two resonators as V+ and 
V-. An AC voltage of 5 V in magnitude was applied to the input port named Vac of the structure 
and a frequency sweep was performed (from lock-in amplifier) in the frequency range of 
interests. Post observing the resonance on lock-in screen, a DC voltage (in the range of 0 to 
120V) from another power supply 2 was applied to the input port named Vper to introduce 
perturbations into the system. A resonant output signal from the body of resonator 2 was fed to 
one of the channel of the lock-in amplifier as shown. Figure 6.1 (b) explains through schematic 
diagram the possible feedthrough path engaged during our experiment methodology. 
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Capacitors Cf1, and Cf2 provides the feedthrough current for our signal readout. Figure 6.1 (c) 
maps the representative electrical equivalent condition for the mechanical transducers and/or 
sensor.  

 

(a) 
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(b) 

 

(c) 

Figure 6.1 (a) A schematic representation of an experimental set-up, (b) illustrates the 
schematic representation of our design also highlighting possible feedthrough paths in the 
circuit, and (c) an equivalent circuit model representing the experimental condition for 
signal measurement.   

An actual device operation and associalted analysis supplied by mathematical calculations for 
device paramenters is presented as follows:  As seen in  
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Figure 6.2, an electrical characterization of a device was carried out in a vacuum chamber with 
at a pressure level ≈ 375 µTorr (which was the minimum achievable level with the available 
equipment). A compact DC to high voltage DC converter unit was used to generate high 
voltages for operation. On the body of a proof mass M1, a DC voltage V+ = 200V was applied 
while electrode 1 (as shown in  

Figure 6.2) was held at DC ground potential. This created an electrical spring between electrode 
1 and a proof mass M1 owing to the potential difference between them. Similarly, a DC voltage 
of V- = −200V was applied to the proof mass M2. An electrode 2 was initially connected to a 
DC ground. This created another electrical spring between mass M2 and electrode 2. Here, 

1 2e e ek k k  , where 
1e

k and 
2e

k are electrical spring constants of two proof masses M1 and M2 

respectively, created due to the introduction of DC voltages into the system. This action 

softened the inherent mechanical springs, 
1 2m m mK K K   of both the proof masses thus making 

effective values of the spring constants as
1 2eff eff effK K K  ; eff m eK K K  . As proof mass M1 

was DC biased at V+ and proof mass M2 at V- respectively, it established another electrical 
spring, Kc between the two proof masses thereby electrically coupling the two. On electrode 1, 
a sinusoidal voltage of 5V in magnitude was applied to exert a net electrostatic force on proof 
mass M1 and thus put the coupled device into resonance. An output signal was recorded directly 
from the body of the resonator 2 by means of a lock-in amplifier (series eLockIn204/2 from 
Anfatec) which was used as a pick-off circuit for our device. The lock-in amplifier facilitates 
ultra-low current and voltage input noise measurements. The lock-in amplifier also has a pre-
amplification stage before further signal processing; the measured signal is essentially a voltage 
with an amplification factor of 1 MΩ to the input current. A DC voltage (in the range of 0V to 
120V) was applied as a perturbation on electrode 2 (refer  

Figure 6.2) to induce stiffness disorder, ∆k on proof mass M2. The stiffness perturbations were 

calculated as  2
3

A
k v

d


    , where, ε, A, and d are the relative permittivity, nominal overlap 

area and capacitive gap respectively. ∆v refers to the difference between the voltages applied 
on the body of a proof mass, M2 and electrode 2. A designed device as shown in Figure 5.12 
(a) also possess electrodes reserved to which an external electrical force may be applied to alter 
the stiffness of one of the resonating elements. During the experiments however, we applied 
an external stimulus on electrode 2 (for enhanced transduction) and recorded corresponding 
variations in the vibrational amplitudes of the resonator 2. 
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Figure 6.2 A set of DC voltages were applied as illustrated. As shown in the inset, DC to 
high voltage DC converter was used between a power supply and prototype. An AC drive 

signal was applied (through the internal reference oscillator of lock-in amplifier) to 
electrode 1 as shown. A frequency sweep around estimated mode-frequencies was 

performed and output signal (amplitude-frequency response) was recorded through a lock-
in amplifier. In our case, a signal form the body of resonating proof mass, M2 was 

recorded 

6.2 Device measurements  

 

 
(a) 
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(b) 

 

 

Figure 6.3 (a) With AC = 5V, (b) with AC = 2V. A DC voltages, +200V and -200V were 
applied to proof mass 1 and 2 respectively. Stiffness perturbation was applied to the 

resonator 2 and an output was recorded from the resonating proof mass 2. Variations in the 
vibration amplitudes were prominently observed, and (c) SPICE simulated frequency 

response from the practical circuit model. 

 

Figure 6.3 shows a measured amplitude-frequency plot of device fabricated out of aluminium 
with thickness, h =1 mm. Two datasets of measurements were generated with i) AC drive 
voltage set to 5V, Figure 6.3 (a) and ii) 2V, Figure 6.3 (b). As estimated by theoretical 
calculations, SIMULINK model and COMSOL simulation, first eigenmode (in-phase mode 
frequency) should appear at 2483 Hz whereas the second eigenmode (out-of-phase mode 
frequency) should occur at 2476 Hz (with δk=0). However, as discussed in simulation part 
(section 3), sufficient quality factor is needed, if these two distinct modes separated by about 7 
Hz are to be resolved. As a result, in the frequency response, only one resonance peak is seen 
around estimated frequencies. Perturbations were applied to alter the effective stiffness of the 
resonating proof mass 2 and an output signal from the body of the resonating proof mass 2 was 
recorded. Corresponding changes in the amplitude of an output signal of the resonating proof 
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mass 2 were resolved (at the first peak in the response). A simulated response as seen in Figure 
6.3 (c) from the equivalent circuit model was found to be matching with the experiment. 

6.2.1 Operating point 

A weakly coupled resonating sensor is characterized by a veering point/loci from where 
eigenvalues (mode frequencies) and eigenvectors (vibration amplitudes) of this electrically 
coupled system rather abruptly change, subject to a perturbation injected into the system 
[17,18]. In an ideally symmetric system, this reference point should occur when there is no 
applied stiffness perturbation (∆k = 0). During our measurement, as shown in Figure 6.4, this 

veering point/loci occurred at ∆k = -98.377 N/m or δk = -7.98×10-4 (normalized) ( k
eff

k

K
 

 ). 

Therefore, this is the operating point of the device; around this point, relative changes into the 
amplitude and frequency were resolved. In our case, a change in the vibration amplitude was 
observed as the magnitude of an applied stiffness disorder (normalized) was increased (from 
δkmin = -7.98×10-4 to δkmax = -2.017×10-3).  

 
(a) (c) 

 
(b) (d) 

Figure 6.4 Measured vibrational amplitude variations into the output signal of a resonating 
proof mass 2 for two operational cases, (a) and (c) - when an AC drive signal is set to 2V 

and, (b) and (d) - when an AC drive signal is set to 5V 
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Figure 6.5 shows a comparative performance among output metric. A SPICE model as shown 
in Figure 6.1 (c) was built to model real experimental condition. In the SPICE model, 
parameters such as nonuniformity of the transduction gaps, d in the fabricated device were 
altered (increased by about 10 %). This resulted in reduced transduction factor, η (at the drive 
and sense port), and relatively smaller strength of coupling spring. Kc. Simulations were run in 
SPICE for varying effective damping loss (quality factor). A corresponding shifts in the output 
signals were recorded until model was found to be fitting to the experimental curve as shown 
in the Figure 6.5. An extracted quality factor from the model is about 410. 

 

Figure 6.5 Sensitivity to amplitude [0.547% max. shifts in amplitude] was observed to be 
one order of magnitude higher as compared to sensitivity to frequency [0.038% max. shifts 

in frequency] (subject to measurement errors)  

 
Summary 
 
In this work, we explore the possibility to apply new manufacturing technique to fabricate 
devices based on capacitive change. We utilized state-of-the-art laser micro milling to machine 
micro-size kerf-widths, (referred as a capacitive gap in MEMS) to perform electrostatic 
actuation and capacitive sensing. The benefit of laser micromachining is the possibility to 
utilize new materials, which may contribute to enhance device performance. A prototyping 
fabrication method as proposed here can be particularly useful when there is no cleanroom 
access and there is a requirement for quick prototyping with materials other than silicon. This 
can potentially also be extended for small or medium-scale series production. 

About device: Based on the design and chosen materials, we demonstrated a two DoF coupled 
resonators for stiffness sensing application. It is to be noted that due to damping, two distinct 
modes could not be resolved and device shows the resonance with two modes being merged as 
the analytical work predicted. A number of studies have demonstrated coupled resonators 
operating with this situation (i.e. when modes are overlapping each other) [58,59]. A state-of-
the-art laser micromachining was used to make µm size trenches with the parallel sidewalls up 
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to 2 mm height (aspect ratio > 33). This fabrication approach has not been reported in the 
relevant literature, particularly for fabricating an electronic device that performs 
electromechanical transduction in capacitive gap resonators.  

As estimated by theory and simulation models (b)), the sensitivity of amplitude ratio for 
stiffness perturbation is higher than other forms of the output. Experimentally derived 
maximum shifts in the amplitude and frequency are 0.547% and 0.038%, respectively (owing 
to the low output signal level). For a finite value of a quality factor, Q ≈ 2547, maximum shifts 
(refer Figure 6.5) into the amplitude ratio, amplitude and frequency are 27%, 4.95% and 
0.404% respectively.  

Owing to the designed effective value of a mechanical spring (1.248×105 N/m) of an individual 
resonating element of the coupled device, induced frequency shifts are low. Therefore, 
variations in the frequency could not accurately be resolved during the electrical 
characterization and are subject to measurement errors. However, a high value of mechanical 
spring can benefit in increasing the shifts and hence the sensitivity to amplitude and amplitude 
ratio along with detecting minimum resolvable stiffness. It is worth mentioning that an 
amplitude ratio can be used as a sensor output for which we have estimated a maximum 
sensitivity (for a finite value of Q) to change in stiffness of about 135. Similarly, a maximum 
sensitivity that can be attained for amplitude change based output is 23.73 (refer Table 3.2). A 
signal amplification to enhance the signal-to-noise ratio is expected to enhance the sensitivity 
for an amplitude based output and thus minimum detectable stiffness. Importance of the quality 
factor in coupled resonating sensors is briefly discussed, i) addressing its role in separating 
individual modes in the measured frequency response, ii) increasing the sensitivity and 
resolving minimum changes in the measurable quantity. At present, a minimum detectable 
stiffness perturbation is δkmin = -7.98×10-4 (normalised) which is expected to improve with the 
enhanced signal to noise ratio. 
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Chapter 7 

7 Discussion, conclusion and future 
direction 

In this thesis, a transduction principle based on sensing the vibrational pattern of the resonators 
coupled in 1-dimensional (1-d) array is introduced and is discussed in detail in the context of 
our research. Potential applications of coupled resonators for sensing applications are then 
addressed. The most fundamental and central aspect of coupled resonators such as sensitivity, 
resolution (minimum detectable shift in the measurand), noise floor, etc. was determined to be 
an objective of this research. For the first time, a state-of-the-art laser micro-machining method 
is introduced. This method is proposed to fabricate a range of devices based on capacitive 
change with emphasis on fabricating coupled resonator architecture. An importance of this 
micromachining method is explained over conventional micromachining method in terms of 
flexibility, quick prototyping, ease with the process, range of available materials, etc. 

A theoretical transfer function model for our design is derived based on the governing set of 
equations of motion. A model developed using COMSOL Multiphysics is also given to 
determine the mode shape and mode frequencies of our design.  

Design and optimization scope through fabrication 

A fundamental work on developing a resonant transducer and/or sensor using high-tech laser 
micromachining is reported. A new fabrication strategy to manufacture devices is presented. 
Given the transduction gap of about 60 µm that we strategically fabricated for our prototype, 
we have attained a best trade-off amongst structure size, resonant frequency, cost, and resonant 
output signal. In general, with MEMS devices, capacitive gap is usually in the range of 2-5 µm. 
Therefore, in order to exert a same magnitude of net electrostatic drive force as in MEMS, we 
needed to scale up device transduction area and applied voltages. With the progress in the state 
of the art in laser micromachining or any other nonconventional micromachining technology 
for that matter, to machine trenches < 60 µm, with a reasonable aspect ratio in to a piece of 
metals, semiconductors or conducting ceramics, it is anticipated that device/structure size can 
further be scaled down. A two coupled resonator structure was patterned for machining. For a 
larger proof mass (due to scaling-up) and designed resonant frequency of output signal (above 
kHz region), an effective device spring constant, Km on the order of 105 N/m, resulted for our 
design. This higher value of spring constant is also attributed to the suspension size, mechanical 
boundary conditions, and manufacturing feasibility as quoted by the manufacturer.  

Given that in capacitive resonators, motional resistance is inversely proposition to the 4th power 
of a transduction gap, fabricating a smaller gaps (for a  given applied drive force), with our 
proposed direct laser write (DWL) method would further assist in enhancing an output signal 
and thus device performance for that matter.  

Future optimization will account for optimizing on the performance of a transducer and/or 
sensor. For this several design optimization steps can be taken such as scaling down (to some 
extent) the effective spring constant of our design, Km, which at present, is on the order of 105 
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N/m. This would cause higher displacement (output signal) for a given drive force, and thus 
assist in reducing further overall size of a device. This action however, has a limit that, reducing 
Km largely will push the resonant frequency of our design below sub-kHz region, and, therefore, 
resonant output signal is prone to the low-frequency noise. Moreover, as detailed in chapter 3, 
device amplitude ratio based sensitivity is directly proportional to effective spring constant of 
our design. Therefore, a trade-off is required to attain best performance. 

In the context of fabrication, optical characterization for device gap measurement is presented. 

Model developments  

A research on the most fundamental and crucial aspects of the coupled resonators is presented 
and realistic system level models are developed estimating device sensitivity, resolution and 
noise floor. Importance of the quality factor in coupled resonating sensors is briefly discussed, 
i) addressing its role in separating individual modes in the measured frequency response, ii) 
increasing the sensitivity and resolving minimum changes in the measurable quantity. 

Proposed models are exploited to address variety of operating conditions, such as finite quality 
factor, varying coupled electrostatic spring strength, operation with in-phase/out-of-phase 
mode, sensitivity in open loop/closed loop mode. A closed-loop configuration of our design 
showed enhanced amplitude ratio based sensitivity (about 187) and linearity to the applied 
stiffness perturbations as compared to when operated in open loop for the associated in-phase 
mode of operation.  

Noise floor in our system 

Models are exploited to determine an impact of intrinsic and extrinsic noise sources in our 
design. Theoretical expression for mechanical-thermal noise and electronic noise is obtained. 
A mechanical-thermal noise source is identified as an ultimate limit of detection. It is observed 
that lower coupling strength leads to decrease in the mechanical-thermal noise floor. A 
theoretical estimation of effective noise current for our device (due to intrinsic mechanical-
thermal noise) is found to be about 

1

154.29 10
jmot X rmsi A  (best case). Furthermore, it is found 

that a higher quality factor of a system could further improve this detection limit. An effective 
theoretical noise floor (due to electronic readout) is determined to be ≈ 1.56 ×10-13 Arms. It is 
concluded that though mechanical-thermal noise sets the ultimate noise floor of our design, it 
is an electronic noise that dominates the overall performance (electronics noise exceeds 
mechanical noise by two orders of magnitude). An effective noise floor of our design is derived 
and a good agreement between calculations and the simulations was found. With the derived 
noise floor, theoretically calculated minimum resolvable shifts (1.21 ×10-7) in the output metric 
and thus resolution (≈ 4.8×10-3) of our macro-scale design is determined. These values are 
comparable to that achieved with MEMS coupled resonators. Influence of coupling strength 
on effective noise floor is also studied and it is found that smaller coupling strength in our 
design leads to reduced noise floor (about -12 dB gain in noise floor). In terms of noise, it is to 
be noted that power supply voltages used to polarize the resonators will also induce a noise in 
to the system. Therefore due to varying power levels, it is likely that it will affect the accuracy 
of measurements (i.e. ultimate detection limit) amidst varying noise level. Therefore, this issue 
requires future research.  
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Possibilities for mode-localized sensor 

A mass sensor based on the frequency shift output signal, with a ultra-high resolution (on the 
order of ×10-18 gram) has been shown [147]. It uses NEMS high-frequency single resonator. 
Therefore, it remains a subject of continuing research whether and how coupling the resonators 
in the context of sensing the mass at these or ever-lower scale would eventually be able to 
surpass resonant sensor with only one resonators. In our design, we have demonstrated through 
our realistic system-level modelling approach to attain the lowest possible shift approximately 
×10-7 for the quantities refereeing the stiffness change. A resolution for the frequency shift 
output is reported to be better than 1 ppm [19,148]. Therefore, it is worthwhile to investigate 
how coupled resonators whose output is amplitude shift can provide resolution on the similar 
or even better scale. At present, this issue is being investigated worldwide. It is anticipated that, 
coupled resonators with ultra-high sensitivity and resolution go hand in hand. 

On prototype fabrication 

The state-of-the-art technological advancements in nonconventional micromachining methods 
with emphasis on laser micromachining is explored. The high-tech laser micromachining is 
proposed as a novel fabrication platform to develop transducers and/or sensors based on 
capacitive transduction. A high aspect ratio (> 33) with range of supplied 
conducting/semiconducting materials to fabricate devices/sensor using laser micro machining 
is demonstrated for the first time. A fabrication outcome at the University of Liege and the 
outside manufacturing service is explained in detail. The potential of laser machining to create 
micro-size kerf-widths (capacitive gaps) through material ablation was demonstrated. A 
prototyping fabrication method as proposed is put forward to be utilized when there is no 
cleanroom access and there is a requirement for quick prototyping with materials other than 
silicon. This can potentially also be extended for small or medium-scale series production. 

Owing to the new fabrication platform (state-of-the-art laser micromachining), and in the 
context of coupled resonators as reported, we have proposed realistic system level models of 
this new class of sensor. We investigated whether and how this development as proposed in 
this thesis offers any performance benefits in terms of sensitivity, resolution (detection limit), 
noise floor, etc.  

Electrical test and characterization of fabricated prototype is given. Experiments are performed 
for stiffness sensing applications. A detailed description of the experimental methodology is 
given followed by actual measurement results as obtained from the experiments. Role of 
operating point in the sensor operation is also discussed. A measured amplitude-frequency plot 
of device fabricated out of aluminium with thickness, h =1 mm is given. Two datasets of 
measurements are generated. A minimum detectable stiffness perturbation, δkmin = -7.98×10-4 

(normalised) is reported. 

In conclusion, key contributions from this thesis are highlighted as follows: 

a) State-of-the-art laser micromachining as a novel fabrication platform to develop transducers 
and/or sensors (featuring high aspect ratio) based on electrostatic actuation and capacitive 
transduction.  
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b) A theoretically derived sensitivity estimation to stiffness perturbations is of the similar order 
in magnitude to that attainable using 2-DoF MEMS architecture.  

c) Estimation of an effective noise, taking into account all the possible noise sources of errors, 
in the context of a developed prototype.  

d) Reporting of an improved resolution (about four orders high in magnitude) as compared to 
the resolution attainable using 2-DoF MEMS architecture.  

e) This sensor is able to resolve a minimum stiffness perturbation (normalized), 

min

47.98 10k
  which is of the same order to that achievable in MEMS based weakly coupled 

resonators. 

Future direction 

Given that, this thesis also proposes a novel fabrication technique (laser micro machining) to 
fabricate electrostatically actuated and capacitively transduced devices, this platform could be 
utilized to develop any mass-spring-damper physical systems (including coupled resonators as 
a sensor), on the similar path silicon resonators using conventional MEMS fabrication have 
been developed in past few decades. Capacitively transduced resonators for that matter can be 
fabricated exploiting a flexibility high-tech laser micro machining can offer such as choice of 
materials other than silicon.  

Potential applications that can be developed range from 1) single resonators as a device for 
timing reference and testing its long-term and short-term stability of frequency shift based 
output signal, 2) single resonators used for sensing applications such as mass sensing, 3) an 
array of resonators (coupled resonators as proposed in this thesis) in sensing applications. 

Given that, resonant frequency of silicon resonators has a reasonable temperature variation and 
therefore differential architecture (i.e. coupled resonator) has been proposed in sensing 
applications. It offers an immunity against temperature variation. A resonator with materials 
other than silicon can be fabricated using DLW method. Its temperature stability can be 
modelled and characterized and further be compared with the temperature stability of a coupled 
resonators. This will also reveal what is the real advantage of coupled resonators and whether 
there is any other merits (other than enhanced parametric sensitivity). Moreover, many 
researchers across the world are approaching this new transduction principle for a new class of 
resonant sensing applications. Therefore, it is a need of a time to develop a low power, low-
noise interface circuity, preferable with CMOS-MEMS one chip integration platform.  

This research initiative can navigate a way in developing a variety of devices/sensors using 
direct laser writing (with an emphasis on miniaturization) based on capacitive change. 
Additional benefit is that range of novel materials (metals, conducting ceramics, and 
semiconductors) can be used to serve the demanding and quick prototyping applications in 
automobile, biomedical, and Internet-of-things (IoT) applications. This work focussed on a 
fabrication using a laser micromachining and demonstrated the working prototype. A result 
with aluminium has been presented.  
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Appendix A 
MATLAB SCRIPT TO ESTIMATE POWER SPECTRAL DENSITY AND 
DETERMINE AVERAGE SIGNAL POWER  

Fs=50e3 % %Nyquist frequency  
x=vout2; % Signal variable 
yyaxis left  
periodogram(x,hamming(length(x)),[],2*Fs,'centered','psd') 
[Pxx, F] = periodogram(x, 
hamming(length(x)),[],2*Fs,'centered','psd'); 
power_freqdomain = bandpower(Pxx,F,'psd') 
% power in time-domain 
power_timedomain = sum(abs(x).^2)/length(x) 
grid on  
hold on  
 

MATLAB CODE FOR DEVICE PARAMETER COMPUTATIONS 
clc; 
clear all; 
close all; 
 
%proof mass design parameters 
 
L = 10e-3 %side length 
lp = 60e-3 % Plate length 
lw = 1.5e-3 %Plate width 
 
%suspension beam design parameters 
 
lb=14e-3 %Beam length 
wb=1e-3 %Beam width 
h=1e-3 % Thickness 
E=70e9  
rho=2700  
epsi=8.854e-12; 
  
d=60e-6 %Gap 
 
% effective mass 
m1=rho*h*(l^2) 
m2=rho*h*lp*lw 
m3=rho*h*lb*wb 
m=m1+m2+m3 
 
%Cross-sectional area of the parallel plate 
A=lp*h % Transduction area at drive/sense as well as coupling 
area of two masses 
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k=m*(2*3.1415*2483.2)^2 %k1=k2=k % is the frequency determined 
by FEM for one device of a pair 
 
C0=epsi*A/d % Nominal capacitance at driving/sensing electrode 
or between the two masses  
 
%Natural frequency  
w=sqrt(k/m); 
f=w/(2*3.1415) 
  
%Force@resonance 
Vdc = 200 
vdc1= vdc; % A DC voltage difference applied between proof 
mass 1 and electrode 1 
vdc2=-vdc; % A DC voltage difference applied between proof 
mass 2 and electrode 2 
  
ke1=-(epsi*A*(vdc1-0)^2)/(d^3) % electrical spring ke1=ke2=ke 
ke2=-(epsi*A*(vdc2-0)^2)/(d^3)  
keff1=k+ke1; % effective spring constant keff1=keff2=keff 
keff2=k+ke2;  
keff=keff1 
  
%Net force@DC 
Fdc=(1/2)*epsi*A*vdc^2/(d^2) 
  
% net displacement, x=Fdc/k 
xdc=Fdc/keff % displacement at DC 
  
C=epsi*A/(d-xdc); 
deltaC=abs(C-C0) % Net change in capacitance  
  
%Force@resonance 
vac=5; % AC voltage magnitude 
Fer=(epsi*A*vdc*vac)/(d)^2 
  
% net displacement@ resonance, x=Q*Fdc/k 
Q=2547; % Assumed value of a quality factor 
x=Q*Fer/keff % displacement at resonance 
dcdx=(epsi*A)/(d-x)^2; % capacitance gradient at drive 
electrode 
  
%Effective coupling stiffness 
deltav1=(vdc1-vdc2)  
kc=-(epsi*A*deltav1^2)/(60e-6)^3 % electrical spring at drive 
electrode 
%kc=-100 
cfactor=(kc/keff) 
  
%transduction factor 
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eta1=epsi*A*vdc/d^2 % at driving/sense electrode 
 
% A motional resisitance in a capacitive transducer  
Rx=(d^4*sqrt(keff*m))/(vdc^2*epsi^2*A^2*Q) 
  
%damping coefficient  
c=0.0031% 
vper=-200 
f_per=1; 
w_per=2*pi*f_per; 
 
%Area and capacitance of perturbation electrode 
perL=2e-3; 
Aper=perL*h 
Cper=epsi*Aper/d 
deltav2=abs((vper-vdc2))  
dk=-(epsi*A*deltav2^2)/(d)^3 
del=dk/keff 
  
% The variation in the eigenstates owing to an induced 
perturbation in the stiffness of one of the resonators  
eigenstate=abs(dk/(4*kc))% (u-u0/u0) 
% Relative shift in the resonant frequency for the same 
induced 
%perturbation in stiffness 
freq = abs(dk/(2*keff))*100%(f-f0)/f0) 
ratio=abs(dk/(2*kc))*100 
 
%In-phase-mode frequency with dk applied 
w_ip= sqrt((keff+kc+(1/2)*(dk+sqrt(4*kc^2+dk^2)))/m) 
f_ip=w_ip/(2*pi) 
  
%Out-of-mode frequency with dk applied 
w_op= sqrt((keff+kc+(1/2)*(dk-sqrt(4*kc^2+dk^2)))/m) 
f_op=w_op/(2*pi) 
  
%In-phase-mode  ratio with dk applied 
x1_x2_ip=(dk-sqrt(4*kc^2+dk^2))/(2*kc) 
  
%Out-of-mode ratio with dk applied 
x1_x2_op=(dk+sqrt(4*kc^2+dk^2))/(2*kc) 
  
  
%Theory estimate of motional current for case II in thesis 
xj_1=0.419e-6; % simulated displacement of jth resonator at 
mode 1  
  
xj_2=0.836e-6; % simulated displacement of jth resonator at 
mode 2  
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ij_1=eta1*2*pi*f_op0*xj_1 % motional current of jth resonator 
at mode 1  
  
ij_2=eta2*2*pi*f_ip0*xj_2 % motional current of jth resonator 
at mode 2  
  
% mechanical noise force 
Fn=8.0635e-22; 
 
%VCO for closed loop  
Kvco = 1 % Hz/V 
Ts=1e-5; % output sample rate of signal blocks in Simulink - 
100e3 Hz 
% its not same as the Nyquist sample rate. 
  
 
%loop to determine performance parameters as given in Table 3 
vper=[-120:10:120] 
for i=1:length(vper) 
deltav2=abs((vper-vdc2))  
dk=(-epsi*A*deltav2.^2)/(d).^3 
del=abs(dk/keff) 
variation_eigenstate=abs(dk/(4*kc)) 
eigenstate_variation_in_percent=abs(dk/(4*kc))*100 
variation_in_freq = abs(dk/(2*keff)) 
freq_variation_in_percent = abs(dk/(2*keff))*100 
variation_in_ratio=abs(dk/(2*kc)) 
ratio_variation_in_percent=abs(dk/(2*kc))*100 
%In-phase-mode frequency with dk applied 
w_ip= sqrt((keff+kc+(1/2)*(dk+sqrt(4*kc.^2+dk.^2)))/m) 
f_ip=w_ip/(2*pi) 
%Out-of-mode frequency with dk applied 
w_op= sqrt((keff+kc+(1/2)*(dk-sqrt(4*kc.^2+dk.^2)))/m) 
f_op=w_op/(2*pi) 
% freq. difference as a function of deltaK 
fdiffn=abs(f_ip-f_op) 
%In-phase-mode  ratio with dk applied 
x1_x2_ip=(dk-sqrt(4*kc.^2+dk.^2))/(2*kc) 
%Out-of-mode ratio with dk applied 
x1_x2_op=(dk+sqrt(4*kc.^2+dk.^2))/(2*kc) 
end 
 

MATLAB SCRIPT FOR SPECTRAL ANALYSIS 

figure(2) 
fs = 100e3;  %Nyquist frequency  
y = fft(im2); % compute FFT of a output signal 
n = length(im2); % number of samples 
P2 = abs(y/n);  
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P1 = P2(1:n/2+1); 
P1(2:end-1) = 2*P1(2:end-1); 
  
f = fs*(0:(n/2))/n; 
plot(f,P1)  
title('Single-Sided Amplitude Spectrum of X(t)') 
xlabel('f (Hz)') 
ylabel('|P1(f)|')  
grid on  
hold on 
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Appendix B 
HIGH VOLTAGE DC-DC: Q SERIES  

This class of DC to High Voltage DC Converters was used during the experimental 
methodology provided in 0 above. We required the unit with 0-12V input and 0 to +/-200V 
output, with current limitation. DC-DC CONVERTER used has feature of +/-200V, 500MW.  

Following are the features of the power supply units from EMCO. For details, refer 
https://www.xppower.com/Product/Q-Series and for datasheet, 
https://www.xppower.com/Portals/0/pdfs/SF_Q_Series.pdf. 

 

 
(a) 

 
(b) 

Figure: Power supply usage-(a) Pin designators for pin out models up to 5KV, (b) picture 
representation. 

 

Specifications 

DC to High Voltage DC Converters 

Isolated Output Voltage is Proportional to Input Voltage 

Ultra-Miniature 

Low Turn On Voltage: <0.7VDC 

100V to 10kV Output Voltage 

Positive or Negative 

Very Low I/O Leakage Current 
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Appendix C 
A picture of instruments and apparatus used during the experiment setup.  

 

 
Figure: vacuum chamber 
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Figure: Power supply used for polarization 
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Figure: Power supply used for applying perturbations 
 

 

 

 

 

  



162 
 
 

 

 

References 

[1] Y. Wang, C. Zhao, C. Wang, D. Cerica, M. Baijot, V. Pachkawade, A. Ghorbani, M. 
Boutier, A. Vanderplasschen, M. Kraft, A Reversible Method to Characterize the Mass 
Sensitivity of a 3-Dof Mode Localized Coupled Resonator under Atmospheric 
Pressure, Proceedings. (2017). doi:10.3390/proceedings1040493. 

[2] Jonathan Bernstein, An Overview of MEMS Inertial Sensing Technology | Sensors 
Magazine, (n.d.). https://www.sensorsmag.com/components/overview-mems-inertial-
sensing-technology (accessed March 28, 2019). 

[3] S.D. Senturia, Lumped Modeling, in: Microsyst. Des., 2001: pp. 103–124. 
doi:10.1007/0-306-47601. 

[4] G.K. Fedder, Capacitive Resonators, in: Reson. MEMS Princ. Model. Implementation, 
Appl., 2015: pp. 119–146. doi:10.1002/9783527676330.ch6. 

[5] W.T. Hsu, Recent Progress in Silicon MEMS Oscillators, in: 40th Annu. Precise Time 
Interval Meet., 2008. 

[6] R. Abdolvand, B. Bahreyni, J.E.Y. Lee, F. Nabki, Micromachined resonators: A 
review, Micromachines. (2016). doi:10.3390/mi7090160. 

[7] S. Lee, C.T.-C. Nguyen, Mechanically-coupled micromechanical resonator arrays for 
improved phase noise, in: 2005. doi:10.1109/freq.2004.1418444. 

[8] C.T.C. Nguyen, Frequency-selective MEMS for miniaturized low-power 
communication devices, IEEE Trans. Microw. Theory Tech. (1999). 
doi:10.1109/22.780400. 

[9] J.E.Y. Lee, A.A. Seshia, Direct parameter extraction in feedthrough-embedded 
capacitive MEMS resonators, Sensors Actuators, A Phys. (2011). 
doi:10.1016/j.sna.2011.02.016. 

[10] J.E.Y. Lee, B. Bahreyni, A.A. Seshia, An axial strain modulated double-ended tuning 
fork electrometer, Sensors Actuators, A Phys. (2008). doi:10.1016/j.sna.2008.09.010. 

[11] P. Enoksson, G. Stemme, E. Stemme, A silicon resonant sensor structure for coriolis 
mass-flow measurements, J. Microelectromechanical Syst. (1997). 
doi:10.1109/84.585789. 

[12] S. Ren, W. Yuan, D. Qiao, J. Deng, X. Sun, Pressure sensor with integrated resonator 
operating at atmospheric pressure, Sensors (Switzerland). (2013). 
doi:10.3390/s131217006. 

[13] H.S. Wasisto, S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Airborne 
engineered nanoparticle mass sensor based on a silicon resonant cantilever, Sensors 
Actuators, B Chem. (2013). doi:10.1016/j.snb.2012.04.003. 

[14] I.B. Baek, S. Byun, B.K. Lee, J.H. Ryu, Y. Kim, Y.S. Yoon, W.I. Jang, S. Lee, H.Y. 
Yu, Attogram mass sensing based on silicon microbeam resonators, Sci. Rep. (2017). 



163 
 
 

doi:10.1038/srep46660. 

[15] M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, S. Du, X. Zou, A.A. Seshia, 
Closed-Loop Characterization of Noise and Stability in a Mode-Localized Resonant 
MEMS Sensor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. (2019). 
doi:10.1109/TUFFC.2018.2878241. 

[16] M. Spletzer, A. Raman, A.Q. Wu, X. Xu, R. Reifenberger, Ultrasensitive mass sensing 
using mode localization in coupled microcantilevers, Appl. Phys. Lett. (2006). 
doi:10.1063/1.2216889. 

[17] P. Thiruvenkatanathan, J. Yan, J. Woodhouse, A.A. Seshia, Enhancing parametric 
sensitivity in electrically coupled MEMS resonators, J. Microelectromechanical Syst. 
(2009). doi:10.1109/JMEMS.2009.2025999. 

[18] C. Zhao, G.S. Wood, J. Xie, H. Chang, S.H. Pu, M. Kraft, A Three Degree-of-Freedom 
Weakly Coupled Resonator Sensor with Enhanced Stiffness Sensitivity, J. 
Microelectromechanical Syst. (2016). doi:10.1109/JMEMS.2015.2490204. 

[19] C. Zhao, M.H. Montaseri, G.S. Wood, S.H. Pu, A.A. Seshia, M. Kraft, A review on 
coupled MEMS resonators for sensing applications utilizing mode localization, 
Sensors Actuators, A Phys. (2016). doi:10.1016/j.sna.2016.07.015. 

[20] P. Thiruvenkatanathan, J. Yan, A.A. Seshia, Common mode rejection in electrically 
coupled MEMS resonators utilizing mode localization for sensor applications, in: 2009 
IEEE Int. Freq. Control Symp. Jt. with 22nd Eur. Freq. Time Forum, 2009. 
doi:10.1109/FREQ.2009.5168201. 

[21] P. Thiruvenkatanathan, A.A. Seshia, Mode-localized displacement sensing, J. 
Microelectromechanical Syst. (2012). doi:10.1109/JMEMS.2012.2198047. 

[22] P. Thiruvenkatanathan, J. Yan, A.A. Seshia, Ultrasensitive mode-localized 
micromechanical electrometer, in: 2010 IEEE Int. Freq. Control Symp. FCS 2010, 
2010. doi:10.1109/FREQ.2010.5556368. 

[23] C. Zhao, G.S. Wood, J. Xie, H. Chang, S.H. Pu, M. Kraft, A force sensor based on 
three weakly coupled resonators with ultrahigh sensitivity, Sensors Actuators, A Phys. 
(2015). doi:10.1016/j.sna.2015.05.011. 

[24] H. Zhang, B. Li, W. Yuan, M. Kraft, H. Chang, An Acceleration Sensing Method 
Based on the Mode Localization of Weakly Coupled Resonators, J. 
Microelectromechanical Syst. (2016). doi:10.1109/JMEMS.2015.2514092. 

[25] G.S. Wood, C. Zhao, S.H. Pu, S.A. Boden, I. Sari, M. Kraft, Mass sensor utilising the 
mode-localisation effect in an electrostatically-coupled MEMS resonator pair 
fabricated using an SOI process, Microelectron. Eng. (2016). 
doi:10.1016/j.mee.2016.03.035. 

[26] C. Zhao, G.S. Wood, S. Hui Pu, M. Kraft, A mode-localized MEMS electrical 
potential sensor based on three electrically coupled resonators, J. Sensors Sens. Syst. 
(2017). doi:10.5194/jsss-6-1-2017. 

[27] X. Zou, P. Thiruvenkatanathan, A.A. Seshia, A high-resolution micro-electro-
mechanical resonant tilt sensor, Sensors Actuators, A Phys. (2014). 



164 
 
 

doi:10.1016/j.sna.2014.10.004. 

[28] B. Li, H. Zhang, J. Zhong, H. Chang, A mode localization based resonant MEMS tilt 
sensor with a linear measurement range of 360??, in: Proc. IEEE Int. Conf. Micro 
Electro Mech. Syst., 2016. doi:10.1109/MEMSYS.2016.7421786. 

[29] X. Zou, P. Thiruvenkatanathan, A.A. Seshia, Micro-electro-mechanical resonant tilt 
sensor, in: 2012 IEEE Int. Freq. Control Symp. IFCS 2012, Proc., 2012. 
doi:10.1109/FCS.2012.6243702. 

[30] M. Huff, MEMS fabrication, Sens. Rev. (2002). doi:10.1108/02602280210697087. 

[31] S. Lee, S. Park, D. Il Cho, Surface/bulk micromachining (SBM) process: A new 
method for fabricating released MEMS in single crystal silicon, J. 
Microelectromechanical Syst. (1999). doi:10.1109/84.809055. 

[32] M. Aslam, Bulk etching of silicon wafer and development of a polyimide membrane, 
in: J. Phys. Conf. Ser., 2013. doi:10.1088/1742-6596/439/1/012029. 

[33] R. Maeda, M. Takahashi, S. Sasaki, Commercialization of MEMS and nano 
manufacturing, in: 6th Int. IEEE Conf. Polym. Adhes. Microelectron. Photonics, 
Polytronic 2007, Proc., 2007. doi:10.1109/POLYTR.2007.4339130. 

[34] A.C. Fischer, M. Mäntysalo, F. Niklaus, Inkjet Printing, Laser-Based Micromachining 
and Micro 3D Printing Technologies for MEMS, in: Handb. Silicon Based MEMS 
Mater. Technol. Second Ed., 2015: pp. 550–564. doi:10.1016/B978-0-323-29965-
7.00026-9. 

[35] S. Gao, H. Huang, Recent advances in micro- and nano-machining technologies, Front. 
Mech. Eng. (2017). doi:10.1007/s11465-017-0410-9. 

[36] M.R.H. Knowles, G. Rutterford, D. Karnakis, A. Ferguson, Micro-machining of 
metals, ceramics and polymers using nanosecond lasers, Int. J. Adv. Manuf. Technol. 
(2007). doi:10.1007/s00170-007-0967-2. 

[37] M.C. Gower, Industrial applications of laser micromachining, Opt. Express. (2000). 
doi:10.1364/OE.7.000056. 

[38] J. Meijer, Laser beam machining (LBM), state of the art and new opportunities, in: J. 
Mater. Process. Technol., 2004. doi:10.1016/j.jmatprotec.2004.02.003. 

[39] F. Dupont, S. Stoukatch, P. Laurent, S. Dricot, M. Kraft, 355 nm UV laser patterning 
and post-processing of FR4 PCB for fine pitch components integration, Opt. Lasers 
Eng. (2018). doi:10.1016/j.optlaseng.2017.08.014. 

[40] R. Fedosejevs, M. Argument,  a. Sardarli, S.E.E. Kirkwood, R. Holenstein, Y.Y.Y. 
Tsui, Laser micromachining for microfluidic, microelectronic and MEMS applications, 
Proc. Int. Conf. MEMS, NANO Smart Syst. (2003). 
doi:10.1109/ICMENS.2003.1221964. 

[41] Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. 
Midorikawa, Rapid prototyping of three-dimensional microfluidic mixers in glass by 
femtosecond laser direct writing, Lab Chip. (2012). doi:10.1039/c2lc21015k. 

[42] C.N. LaFratta, O. Simoska, I. Pelse, S. Weng, M. Ingram, A convenient direct laser 



165 
 
 

writing system for the creation of microfluidic masters, Microfluid. Nanofluidics. 
(2015). doi:10.1007/s10404-015-1574-4. 

[43] N. Tsutsumi, J. Hirota, K. Kinashi, W. Sakai, Direct laser writing for micro-optical 
devices using a negative photoresist, Opt. Express. (2017). doi:10.1364/OE.25.031539. 

[44] M. Hatch, Vibration Simulation Using MATLAB and ANSYS, 2010. 
doi:10.1201/9781420035759. 

[45] M.U. Demirci, M.A. Abdelmoneum, C.T.C. Nguyen, Mechanically corner-coupled 
square microresonator array for reduced series motional resistance, in: 
TRANSDUCERS 2003 - 12th Int. Conf. Solid-State Sensors, Actuators Microsystems, 
Dig. Tech. Pap., 2003. doi:10.1109/SENSOR.2003.1216925. 

[46] F.D. Bannon, J.R. Clark, C.T.C. Nguyen, High-Q HF Microelectromechanical Filters, 
IEEE J. Solid-State Circuits. (2000). doi:10.1109/4.839911. 

[47] S. Pourkamali, F. Ayazi, Electrically coupled MEMS bandpass filters: Part I: With 
coupling element, Sensors Actuators, A Phys. (2005). doi:10.1016/j.sna.2005.03.038. 

[48] C.Y. Chen, M.H. Li, C.S. Li, S.S. Li, Design and characterization of mechanically 
coupled CMOS-MEMS filters for channel-select applications, in: Sensors Actuators, A 
Phys., 2014. doi:10.1016/j.sna.2014.04.026. 

[49] G.S. Wood, C. Zhao, S.H. Pu, I. Sari, M. Kraft, An Investigation of Structural 
Dimension Variation in Electrostatically Coupled MEMS Resonator Pairs Using Mode 
Localization, IEEE Sens. J. (2016). doi:10.1109/JSEN.2016.2573850. 

[50] H. Zhang, H. Chang, W. Yuan, Characterization of forced localization of disordered 
weakly coupled micromechanical resonators, Microsystems Nanoeng. (2017). 
doi:10.1038/micronano.2017.23. 

[51] M. Spletzer, A. Raman, H. Sumali, J.P. Sullivan, Highly sensitive mass detection and 
identification using vibration localization in coupled microcantilever arrays, Appl. 
Phys. Lett. (2008). doi:10.1063/1.2899634. 

[52] B.E. DeMartini, J.F. Rhoads, M.A. Zielke, K.G. Owen, S.W. Shaw, K.L. Turner, A 
single input-single output coupled microresonator array for the detection and 
identification of multiple analytes, Appl. Phys. Lett. (2008). doi:10.1063/1.2964192. 

[53] C. Zhao, G.S. Wood, J. Xie, H. Chang, S.H. Pu, M. Kraft, A comparative study of 
output metrics for an MEMS resonant sensor consisting of three weakly coupled 
resonators, J. Microelectromechanical Syst. (2016). 
doi:10.1109/JMEMS.2016.2580529. 

[54] H. Zhang, J. Huang, W. Yuan, H. Chang, A High-Sensitivity Micromechanical 
Electrometer Based on Mode Localization of Two Degree-of-Freedom Weakly 
Coupled Resonators, J. Microelectromechanical Syst. (2016). 
doi:10.1109/JMEMS.2016.2598780. 

[55] J. Yang, H. Kang, H. Chang, A micro resonant electrometer with 9-electron charge 
resolution in room temperature, in: Proc. IEEE Int. Conf. Micro Electro Mech. Syst., 
2018. doi:10.1109/MEMSYS.2018.8346484. 

[56] H. Zhang, J. Zhong, J. Yang, W. Yuan, H. Kang, H. Chang, Algebraic summation of 



166 
 
 

eigenstates as a novel output metric to extend the linear sensing range of mode-
localized sensors, in: Proc. IEEE Sensors, 2017. doi:10.1109/ICSENS.2017.8233869. 

[57] H. Zhang, W. Yuan, Y. Hao, H. Chang, Influences of the feedthrough capacitance on 
the frequency synchronization of the weakly coupled resonators, IEEE Sens. J. (2015). 
doi:10.1109/JSEN.2015.2453401. 

[58] M.H. Montaseri, J. Xie, H. Chang, Z. Chao, G. Wood, M. Kraft, Atmospheric pressure 
mode localization coupled resonators force sensor, in: 2015 Transducers - 2015 18th 
Int. Conf. Solid-State Sensors, Actuators Microsystems, TRANSDUCERS 2015, 2015. 
doi:10.1109/TRANSDUCERS.2015.7181140. 

[59] Y. Wang, C. Zhao, C. Wang, D. Cerica, M. Baijot, Q. Xiao, S. Stoukatch, M. Kraft, A 
mass sensor based on 3-DOF mode localized coupled resonator under atmospheric 
pressure, Sensors Actuators, A Phys. (2018). doi:10.1016/j.sna.2018.06.028. 

[60] M.S. Hajhashemi, B. Bahreyni, Characterization of disturbances in systems of coupled 
micro-resonator arrays, IEEE Sens. J. (2012). doi:10.1109/JSEN.2012.2194279. 

[61] D.F. Wang, X. Li, X. Yang, T. Ikehara, R. Maeda, Enhancing amplitude changes by 
mode localization in trio cantilevers with mass perturbation, J. Micromechanics 
Microengineering. (2015). doi:10.1088/0960-1317/25/9/095017. 

[62] L. Li, In search of optimal mode localization in two coupled mechanical resonators, J. 
Appl. Phys. (2015). doi:10.1063/1.4926863. 

[63] H. Kang, J. Yang, H. Chang, A closed-loop accelerometer based on three degree-of-
freedom weakly coupled resonator with self-elimination of feedthrough signal, IEEE 
Sens. J. (2018). doi:10.1109/JSEN.2018.2817197. 

[64] J. Yang, J. Zhong, H. Chang, A Closed-Loop Mode-Localized Accelerometer, J. 
Microelectromechanical Syst. (2018). doi:10.1109/JMEMS.2017.2787544. 

[65] H. Kang, J. Yang, H. Chang, A mode-localized accelerometer based on four degree-of-
freedom weakly coupled resonators, in: Proc. IEEE Int. Conf. Micro Electro Mech. 
Syst., 2018. doi:10.1109/MEMSYS.2018.8346717. 

[66] M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, X. Zou, A.A. Seshia, A mode-
localized MEMS accelerometer with 7μg bias stability, in: Proc. IEEE Int. Conf. Micro 
Electro Mech. Syst., 2018. doi:10.1109/MEMSYS.2018.8346719. 

[67] S. Hafizi-Moori, E. Cretu, Reducing measurement error in capacitive readout circuits 
based on weakly coupled resonators, IEEE Sens. J. (2017). 
doi:10.1109/JSEN.2016.2634588. 

[68] S. Hafizi-Moori, E. Cretu, Weakly-coupled resonators in capacitive readout circuits, 
IEEE Trans. Circuits Syst. I Regul. Pap. (2015). doi:10.1109/TCSI.2014.2365331. 

[69] M. Manav, A.S. Phani, E. Cretu, Mode localized MEMS transducers with voltage-
controlled linear coupling, J. Micromechanics Microengineering. (2017). 
doi:10.1088/1361-6439/aa6652. 

[70] M. Manav, G. Reynen, M. Sharma, E. Cretu, A.S. Phani, Ultrasensitive resonant 
MEMS transducers with tunable coupling, in: 2013 Transducers Eurosensors XXVII 
17th Int. Conf. Solid-State Sensors, Actuators Microsystems, TRANSDUCERS 



167 
 
 

EUROSENSORS 2013, 2013. doi:10.1109/Transducers.2013.6626937. 

[71] H. Zhang, J. Yang, W. Yuan, H. Chang, Linear sensing for mode-localized sensors, 
Sensors Actuators, A Phys. (2018). doi:10.1016/j.sna.2018.05.006. 

[72] P. Thiruvenkatanathan, J. Woodhouse, J. Yan, A.A. Seshia, Limits to mode-localized 
sensing using micro- and nanomechanical resonator arrays, in: J. Appl. Phys., 2011. 
doi:10.1063/1.3590143. 

[73] G. Tao, H. Zhang, H. Chang, B. Choubey, Inverse Eigenvalue Sensing in Coupled 
Micro/Nano System, J. Microelectromechanical Syst. (2018). 
doi:10.1109/JMEMS.2018.2855080. 

[74] B. Choubey, C. Anthony, N.H. Saad, M. Ward, R. Turnbull, S. Collins, 
Characterization of coupled micro/nanoresonators using inverse eigenvalue analysis, 
Appl. Phys. Lett. (2010). doi:10.1063/1.3491802. 

[75] G. Tao, B. Choubey, A simple technique to readout and characterize coupled MEMS 
resonators, J. Microelectromechanical Syst. (2016). 
doi:10.1109/JMEMS.2016.2581118. 

[76] H. Zhang, J. Zhong, W. Yuan, J. Yang, H. Chang, Ambient pressure drift rejection of 
mode-localized resonant sensors, in: Proc. IEEE Int. Conf. Micro Electro Mech. Syst., 
2017. doi:10.1109/MEMSYS.2017.7863604. 

[77] M. Pandit, C. Zhao, G. Sobreviela, A.A. Seshia, Immunity to Temperature 
Fluctuations in Weakly Coupled MEMS Resonators, in: Proc. IEEE Sensors, 2018. 
doi:10.1109/ICSENS.2018.8589869. 

[78] H. Zhang, H. Kang, H. Chang, Suppression on Nonlinearity of Mode-Localized 
Sensors Using Algebraic Summation of Amplitude Ratios as the Output Metric, IEEE 
Sens. J. (2018). doi:10.1109/JSEN.2018.2857923. 

[79] M. Pandit, C. Zhao, G. Sobreviela, S. Du, X. Zou, A. Seshia, Utilizing energy 
localization in weakly coupled nonlinear resonators for sensing applications, J. 
Microelectromechanical Syst. (2019). doi:10.1109/JMEMS.2019.2894953. 

[80] M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, A.A. Seshia, Coupled Nonlinear 
MEMS Resonators for Sensing, in: IFCS 2018 - IEEE Int. Freq. Control Symp., 2018. 
doi:10.1109/FCS.2018.8597571. 

[81] C. Zhao, G. Sobreviela, M. Pandit, S. Du, X. Zou, A. Seshia, Experimental observation 
of noise reduction in weakly coupled nonlinear MEMS resonators, J. 
Microelectromechanical Syst. (2017). doi:10.1109/JMEMS.2017.2764138. 

[82] M. Pandit, C. Zhao, A. Mustafazade, G. Sobreviela, A.A. Seshia, Nonlinear 
cancellation in weakly coupled MEMS resonators, in: 2017 Jt. Conf. Eur. Freq. Time 
Forum IEEE Int. Freq. Control Symp. EFTF/IFC 2017 - Proc., 2017. 
doi:10.1109/FCS.2017.8088787. 

[83] C. Zhao, M. Pandit, G. Sobreviela, A. Mustafazade, S. Du, X. Zou, A. Seshia, On the 
noise optimization of resonant MEMS sensors utilizing vibration mode localization, 
Appl. Phys. Lett. (2018). doi:10.1063/1.5025818. 

[84] J. Juillard, P. Prache, P.M. Ferreira, N. Barniol, Impact of output metric on the 



168 
 
 

resolution of mode-localized MEMS resonant sensors, in: 2017 Jt. Conf. Eur. Freq. 
Time Forum IEEE Int. Freq. Control Symp. EFTF/IFC 2017 - Proc., 2017. 
doi:10.1109/FCS.2017.8088943. 

[85] J. Juillard, P. Prache, P. Maris Ferreira, N. Barniol, Ultimate limits of differential 
resonant MEMS sensors based on two coupled linear resonators, IEEE Trans. 
Ultrason. Ferroelectr. Freq. Control. (2018). doi:10.1109/TUFFC.2018.2869415. 

[86] C. Zhao, G.S. Wood, S.H. Pu, M. Kraft, A feasibility study for a self-oscillating loop 
for a three degree-of-freedom coupled MEMS resonator force sensor, in: Procedia 
Eng., 2015. doi:10.1016/j.proeng.2015.08.766. 

[87] J. Yang, J. Huang, J. Zhong, H. Zhang, H. Chang, Self-oscillation for mode localized 
sensors, in: TRANSDUCERS 2017 - 19th Int. Conf. Solid-State Sensors, Actuators 
Microsystems, 2017. doi:10.1109/TRANSDUCERS.2017.7994172. 

[88] C. Zhao, M. Pandit, B. Sun, G. Sobreviela, X. Zou, A. Seshia, A Closed-Loop Readout 
Configuration for Mode-Localized Resonant MEMS Sensors, J. 
Microelectromechanical Syst. (2017). doi:10.1109/JMEMS.2017.2690942. 

[89] M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, A.A. Seshia, Closed-loop tracking 
of amplitude and frequency in a mode-localized resonant MEMS sensor, in: 2017 Jt. 
Conf. Eur. Freq. Time Forum IEEE Int. Freq. Control Symp. EFTF/IFC 2017 - Proc., 
2017. doi:10.1109/FCS.2017.8088944. 

[90] M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, A.A. Seshia, Reduction of 
amplitude ratio dependence on drive level in mode localized resonant MEMS sensors, 
in: Proc. IEEE Sensors, 2017. doi:10.1109/ICSENS.2017.8233868. 

[91] P. Prache, J. Juillard, P.M. Ferreira, N. Barniol, M. Riverola, Design and 
characterization of a monolithic CMOS-MEMS mutually injection-locked oscillator 
for differential resonant sensing, Sensors Actuators, A Phys. (2018). 
doi:10.1016/j.sna.2017.11.025. 

[92] J. Juillard, P. Prache, N. Barniol, Analysis of mutually injection-locked oscillators for 
differential resonant sensing, IEEE Trans. Circuits Syst. I Regul. Pap. (2016). 
doi:10.1109/TCSI.2016.2553298. 

[93] P. Prache, A. Uranga, N. Barniol, J. Juillard, Temperature-drift rejection and 
sensitivity to mismatch of synchronized strongly-coupled M/NEMS resonators, in: 
Proc. IEEE Int. Conf. Micro Electro Mech. Syst., 2016. 
doi:10.1109/MEMSYS.2016.7421815. 

[94] MEMS Software - For Microelectromechanical Systems Simulation, (n.d.). 
https://www.comsol.com/mems-module (accessed January 31, 2019). 

[95] Yu-Wei Lin, Sheng-Shian Li, Yuan Xie, Zeying Ren, C.T.-C. Nguyen, Vibrating 
micromechanical resonators with solid dielectric capacitive transducer gaps, in: 2006. 
doi:10.1109/freq.2005.1573914. 

[96] L. Hung, C. Nguyen, High-Q Low-Impedance MEMS Resonators, UC Berkeley 
Electron. Theses Diss. (2012). 

[97] H. Zhang, W. Yuan, J. Huang, B. Li, H. Chang, A high-sensitive resonant electrometer 



169 
 
 

based on mode localization of the weakly coupled resonators, in: Proc. IEEE Int. Conf. 
Micro Electro Mech. Syst., 2016. doi:10.1109/MEMSYS.2016.7421564. 

[98] P. Thiruvenkatanathan, J. Yan, J. Woodhouse, A. Aziz, A.A. Seshia, Ultrasensitive 
mode-localized mass sensor with electrically tunable parametric sensitivity, 2010. 
doi:10.1063/1.3315877. 

[99] Lecture 22: Finding Natural Frequencies and Mode Shapes of a 2 DOF System | 
Reducing Problem Vibration and Intro to Multi-DOF Vibration | Engineering 
Dynamics | Mechanical Engineering | MIT OpenCourseWare, (n.d.). 
https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-engineering-dynamics-
fall-2011/reducing-problem-vibration-and-intro-to-multi-dof-vibration/lecture-22-
finding-natural-frequencies-mode-shapes-of-a-2-dof-system/ (accessed June 29, 2019). 

[100] T.B. Gabrielson, Mechanical-Thermal Noise in Micromachined Acoustic and 
Vibration Sensors, IEEE Trans. Electron Devices. (1993). doi:10.1109/16.210197. 

[101] Z. Djurić, Mechanisms of noise sources in microelectromechanical systems, 
Microelectron. Reliab. (2002). doi:10.1016/s0026-2714(00)00004-4. 

[102] Precision, Low Power, 18MHz Transimpedance Amplifier, n.d. www.ti.com (accessed 
June 23, 2019). 

[103] TI Precision Labs - Op Amps: Noise 1 | TI.com Video, (n.d.). https://training.ti.com/ti-
precision-labs-op-amps-noise-1 (accessed June 23, 2019). 

[104] T. Instruments, Noise Analysis in Operational Amplifier Circuits, Texas Instruments. 
(2007). doi:10.1016/S0026-0576(03)90164-4. 

[105] P.R. Gray, R.G. Meyer, Analysis and Design of Analog Integrated Circuits, Eur. J. 
Eng. Educ. (1993). doi:10.1080/0304379930892171. 

[106] Model voltage controlled oscillator - Simulink - MathWorks Benelux, (n.d.). 
https://nl.mathworks.com/help/msblks/ref/vco.html?searchHighlight=VCO&s_tid=doc
_srchtitle (accessed June 24, 2019). 

[107] S. Di, X. Chu, D. Wei, Z. Wang, G. Chi, Y. Liu, Analysis of kerf width in micro-
WEDM, Int. J. Mach. Tools Manuf. (2009). doi:10.1016/j.ijmachtools.2009.04.006. 

[108] Y. Okamoto, T. Ikeda, H. Kurihara, A. Okada, M. Kido, Control of Kerf Width in 
Multi-wire EDM Slicing of Semiconductors with Circular Section, in: Procedia CIRP, 
2018. doi:10.1016/j.procir.2017.12.030. 

[109] X. Chen, Y. Wang, Z. Wang, H. Liu, G. Chi, Study on Micro Reciprocated Wire-EDM 
for Complex Indexing Structure, in: Procedia CIRP, 2018. 
doi:10.1016/j.procir.2017.12.033. 

[110] Sirris | Driving industry by technology, (n.d.). https://sirris.be/fr (accessed June 25, 
2019). 

[111] Laser MicroJet solutions for high precision and micro-machining, (n.d.). 
https://www.synova.ch/applications/micro-machining.html (accessed June 10, 2019). 

[112] G. Vescio, J. López-Vidrier, R. Leghrib, A. Cornet, A. Cirera, Flexible inkjet printed 
high-k HfO2-based MIM capacitors, J. Mater. Chem. C. (2016). 



170 
 
 

doi:10.1039/c5tc03307a. 

[113] J. Vaithilingam, E. Saleh, L. Körner, R.D. Wildman, R.J.M. Hague, R.K. Leach, C.J. 
Tuck, 3-Dimensional inkjet printing of macro structures from silver nanoparticles, 
Mater. Des. (2018). doi:10.1016/j.matdes.2017.10.070. 

[114] M. Saari, B. Cox, E. Richer, P.S. Krueger, A.L. Cohen, Fiber Encapsulation Additive 
Manufacturing: An Enabling Technology for 3D Printing of Electromechanical 
Devices and Robotic Components, 3D Print. Addit. Manuf. (2015). 
doi:10.1089/3dp.2015.0003. 

[115] M.A. Skylar-Scott, S. Gunasekaran, J.A. Lewis, Laser-assisted direct ink writing of 
planar and 3D metal architectures, Proc. Natl. Acad. Sci. (2016). 
doi:10.1073/pnas.1525131113. 

[116] M.T. Rahman, A. Rahimi, S. Gupta, R. Panat, Microscale additive manufacturing and 
modeling of interdigitated capacitive touch sensors, Sensors Actuators, A Phys. 
(2016). doi:10.1016/j.sna.2016.07.014. 

[117] F. Molina-Lopez, D. Briand, N.F. De Rooij, All additive inkjet printed humidity 
sensors on plastic substrate, Sensors Actuators, B Chem. (2012). 
doi:10.1016/j.snb.2012.02.042. 

[118] P.M. Harrey, B.J. Ramsey, P.S.A. Evans, D.J. Harrison, Capacitive-type humidity 
sensors fabricated using the offset lithographic printing process, Sensors Actuators, B 
Chem. (2002). doi:10.1016/S0925-4005(02)00240-X. 

[119] C. Gaspar, J. Olkkonen, S. Passoja, M. Smolander, Paper as active layer in inkjet-
printed capacitive humidity sensors, Sensors (Switzerland). (2017). 
doi:10.3390/s17071464. 

[120] T. Sekitani, M. Takamiya, Y. Noguchi, S. Nakano, Y. Kato, K. Hizu, H. Kawaguchi, 
T. Sakurai, T. Someya, A large-area flexible wireless power transmission sheet using 
printed plastic MEMS switches and organic field-effect transistors, in: Tech. Dig. - Int. 
Electron Devices Meet. IEDM, 2006. doi:10.1109/IEDM.2006.346764. 

[121] E.S. Park, Y. Chen, T.J.K. Liu, V. Subramanian, A new switching device for printed 
electronics: Inkjet-printed microelectromechanical relay, Nano Lett. (2013). 
doi:10.1021/nl4028632. 

[122] A. Bessonov, M. Kirikova, S. Haque, I. Gartseev, M.J.A. Bailey, Highly reproducible 
printable graphite strain gauges for flexible devices, Sensors Actuators, A Phys. 
(2014). doi:10.1016/j.sna.2013.11.034. 

[123] T. Yokota, S. Nakano, T. Sekitani, T. Someya, Plastic complementary 
microelectromechanical switches, Appl. Phys. Lett. (2008). doi:10.1063/1.2959644. 

[124] S. Stoukatch, F. Dupont, L. Seronveaux, D. Vandormael, M. Kraft, Additive low 
temperature 3D printed electronic as enabling technology for IoT application, in: 2017 
IEEE 19th Electron. Packag. Technol. Conf. EPTC 2017, 2018. 
doi:10.1109/EPTC.2017.8277554. 

[125] G.K. Lau, M. Shrestha, Ink-jet printing of micro-elelectro-mechanical systems 
(MEMS), Micromachines. (2017). doi:10.3390/mi8060194. 



171 
 
 

[126] H.J. Booth, C.E. Abbott, R.M. Allott, K.L. Boehlen, J. Fieret, J. Greuters, P. Trimble, 
J. Pedder, Laser micromachining techniques for industrial MEMS applications, in: 
Phot. Process. Microelectron. Photonics IV, 2005. doi:10.1117/12.599414. 

[127] K.A. Ghany, M. Newishy, Cutting of 1.2 mm thick austenitic stainless steel sheet 
using pulsed and CW Nd:YAG laser, J. Mater. Process. Technol. (2005). 
doi:10.1016/j.jmatprotec.2005.02.251. 

[128] F. Müller, J. Monaghan, Non-conventional machining of particle reinforced metal 
matrix composite, Int. J. Mach. Tools Manuf. (2000). doi:10.1016/S0890-
6955(99)00121-2. 

[129] F.A. Al-Sulaiman, B.S. Yilbas, M. Ahsan, CO2 laser cutting of a carbon/carbon multi-
lamelled plain-weave structure, J. Mater. Process. Technol. (2006). 
doi:10.1016/j.jmatprotec.2005.12.004. 

[130] D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, Investigations on the thermal effect 
caused by laser cutting with respect to static strength of CFRP, Int. J. Mach. Tools 
Manuf. (2008). doi:10.1016/j.ijmachtools.2008.04.007. 

[131] Mechanics of Composite and Multi-functional Materials, Volume 6, 2018. 
doi:10.1007/978-3-319-63408-1. 

[132] R. Pahuja, M. Ramulu, M. Hashish, Abrasive Waterjet Profile Cutting of Thick 
Titanium/Graphite Fiber Metal Laminate, in: 2017: p. V002T02A013. 
doi:10.1115/imece2016-67136. 

[133] B. Adelmann, C. Ngo, R. Hellmann, High aspect ratio cutting of metals using water jet 
guided laser, Int. J. Adv. Manuf. Technol. (2015). doi:10.1007/s00170-015-7161-8. 

[134] M. Baumeister, K. Dickmann, T. Hoult, Fiber laser micro-cutting of stainless steel 
sheets, Appl. Phys. A Mater. Sci. Process. (2006). doi:10.1007/s00339-006-3687-9. 

[135] D. Perrottet, C. Boillat, S. Amorosi, B. Richerzhagen, PV processing: Improved PV-
cell scribing using water jet guided laser., Refocus. (2005). doi:10.1016/S1471-
0846(05)70398-X. 

[136] J. Battaglia, D. Perrottet, R. Housh, B. Richerzhagen, Synova has re-invented the laser: 
No heat damage, no beam divergence, no cutting gas, no deposition, in: 2018. 
doi:10.2351/1.5060916. 

[137] J. Wei, Y. Ye, Z. Sun, L. Liu, G. Zou, Control of the kerf size and microstructure in 
Inconel 738 superalloy by femtosecond laser beam cutting, Appl. Surf. Sci. (2016). 
doi:10.1016/j.apsusc.2016.02.162. 

[138] T. Li, C. Zhou, Z. Liu, W. Wang, Computational and experimental study of 
nanosecond laser ablation of crystalline silicon, Int. Commun. Heat Mass Transf. 
(2011). doi:10.1016/j.icheatmasstransfer.2011.05.010. 

[139] FreeCAD: Your own 3D parametric modeler, (n.d.). https://www.freecadweb.org/ 
(accessed June 10, 2019). 

[140] WS Flex – Optec, (n.d.). https://optec-laser-systems.com/products/ws-flex/ (accessed 
June 25, 2019). 



172 
 
 

[141] Equipement - Microsys: Your partner with microsystems, (n.d.). 
http://www.microsys.uliege.be/index.php?menu=3&submenu=0&lang=en&eid=26 
(accessed June 25, 2019). 

[142] LOCTITE ® 5802TM, 2009. www.henkel.com/industrial (accessed January 31, 2019). 

[143] HB16 - TPT Wire Bonder, (n.d.). https://www.tpt-wirebonder.com/en/wire-
bonder/hb16.html (accessed January 31, 2019). 

[144] T.A. Mai, B. Richerzhagen, K. Stay, Recent advances in precision machining of 
various materials with the laser microjet®, in: 2018: p. M704. doi:10.2351/1.5061151. 

[145] K.S. Chen, K.S. Ou, MEMS Residual Stress Characterization: Methodology and 
Perspective, in: Handb. Silicon Based MEMS Mater. Technol. Second Ed., 2015. 
doi:10.1016/B978-0-323-29965-7.00017-8. 

[146] Microscopes and Imaging Systems: Leica Microsystems, (n.d.). https://www.leica-
microsystems.com/ (accessed January 31, 2019). 

[147] K.L. Ekinci, X.M.H. Huang, M.L. Roukes, Ultrasensitive nanoelectromechanical mass 
detection, Appl. Phys. Lett. (2004). doi:10.1063/1.1755417. 

[148] T.A. Roessig, R.T. Howe, A.P. Pisano, J.H. Smith, Surface-micromachined resonant 
accelerometer, in: Int. Conf. Solid-State Sensors Actuators, Proc., 1997. 

 

 


