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How can we estimate the probability  of going left when hitting a pin?θ
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The probability of ending in bin  corresponds to the total probability of all the

paths  from start to ,

Therefore .

x

z x

p(x∣θ) = p(x, z∣θ)dz =  θ (1 − θ) .∫ (
n

x
) x n−x

= arg max  p(x  ∣θ)π(θ)θ̂ ∏x  i
i
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But what if we shift or remove some of the pins?
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Galton board device Computer simulation

Parameters Model parameters 

Buckets Observables 

Random paths Latent variables  

(stochastic execution traces
through simulator)

The Galton board is a metaphore of simulation-based science:

Inference in this context requires likelihood-free algorithms.

→

θ → θ

x → x

z → z
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―――
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Particle physics
Astrophysics

Epidemiology Climatology

A thriving �eld of research
 

(... and many others!)
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SM with
parameters 

Simulated observables Real observations 

 

Particle physics

θ
x x  obs
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p(x∣θ) =  p(z  ∣θ)p(z  ∣z  )p(z  ∣z  )p(x∣z  )dz  dz  dz  

intractable

 ∭ p s p d s d p s d
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Likelihood ratio
The likelihood ratio

is the quantity that is central to many statistical inference procedures.

Examples

Frequentist hypothesis testing

Bayesian model comparison

Bayesian posterior sampling with MCMC

Bayesian posterior inference through Variational Inference

Supervised learning

Generative adversarial networks

Empirical Bayes with Adversarial Variational Optimization

Optimal compression

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0
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When solving a problem of interest, do not solve a more
general problem as an intermediate step. – Vladimir Vapnik

Direct likelihood ratio estimation is simpler than density estimation.

(This is fortunate, we are in the likelihood-free scenario!)
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Frequentist inference
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The Neyman-Pearson lemma states that the likelihood
ratio

is the most powerful test statistic to discriminate between
a null hypothesis  and an alternative .

 

The frequentist (physicist's) way

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0

θ  0 θ  1
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De�ne a projection function  mapping observables  to a summary

statistic .

Then, approximate the likelihood  with the surrogate .

From this it comes

s : X → R x

x = s(x)′

p(x∣θ)  (x∣θ) = p(x ∣θ)p̂ ′

 ≈  = (x∣θ  , θ  ).
p(x∣θ  )1

p(x∣θ  )0

 (x∣θ  )p̂ 1

 (x∣θ  )p̂ 0
r̂ 0 1
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Wilks theorem

Consider the test statistic

for a �xed number  of observations  and where  is the maximum

likelihood estimator.

When , .

Therefore (and provided the assumptions apply!), an observed value 

translates directly to a p-value that measures the con�dence with which  can be

excluded:

q(θ) = −2  log  = −2  log r(x∣θ, )
x

∑
p(x∣ )θ̂

p(x∣θ)

x

∑ θ̂

N {x} θ̂

N → ∞ q(θ) ∼ χ  2

q  (θ)obs

θ

p  ≡  dq p(q∣θ) = 1 − F  (q  (θ)).θ ∫
q  (θ)obs

∞

χ  2 obs
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Discovery of the Higgs boson at 5-σ
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Choosing the projection  is

dif�cult and problem-dependent.

Often there is no single good
variable: compressing to any 

loses information.

Ideally, analyze high-dimensional 

, including all correlations.

Unfortunately, �lling high-
dimensional histograms is not
tractable.

s

x′

x′

―――
Bolognesi et al, 2012 [arXiv:1208.4018]. 15 / 49

https://arxiv.org/pdf/1208.4018.pdf


Cᴀᴀʀʟ
Supervised learning provides a way to automatically construct :

Let us consider a neural network classi�er  tasked to distinguish 

 from .

Train  by minimizing the cross-entropy loss

s

ŝ
x ∼ p(x∣θ  )0 x ∼ p(x∣θ  )1

ŝ

  

L  [ ] = −E  [XE ŝ p(x∣θ)π(θ) 1(θ = θ  ) log (x)+0 ŝ

1(θ = θ  ) log(1 − (x))].1 ŝ

―――
Cranmer, Pavez and Louppe, 2015 [arXiv:1506.02169]. 16 / 49

https://arxiv.org/abs/1506.02169


The solution  found after training approximates the optimal classi�er

Therefore,

That is, supervised classi�cation is equivalent to likelihood ratio estimation.

ŝ

(x) ≈ s (x) =  .ŝ ∗

p(x∣θ  ) + p(x∣θ  )0 1

p(x∣θ  )1

r(x∣θ  , θ  ) ≈ (x∣θ  , θ  ) =  0 1 r̂ 0 1 (x)ŝ

1 − (x)ŝ

―――
Cranmer, Pavez and Louppe, 2015 [arXiv:1506.02169]. 17 / 49

https://arxiv.org/abs/1506.02169


To avoid retraining a classi�er  for every  pair, �x  to  and train a

single parameterized classi�er  where  is also given as input.

Therefore, we have

such that for any ,

ŝ (θ  , θ  )0 1 θ  1 θ  ref

(x∣θ  , θ  )ŝ 0 ref θ  0

(x∣θ  , θ  ) =  r̂ 0 ref (x∣θ  , θ  )ŝ 0 ref

1 − (x∣θ  , θ  )ŝ 0 ref

(θ  , θ  )0 1

r(x∣θ  , θ  ) ≈  .0 1 (x∣θ  , θ  )r̂ 1 ref

(x∣θ  , θ  )r̂ 0 ref

―――
Cranmer, Pavez and Louppe, 2015 [arXiv:1506.02169]. 18 / 49

https://arxiv.org/abs/1506.02169


Traditional likelihood-free inference
treats the simulator as a generative
black box: parameters in, samples out.

But in most real-life problems, we have
access to the simulator code and some
understanding of the microscopic
processes.

Opening the black box
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 is usually intractable. What about ?p(x∣θ) p(x, z∣θ)
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 is usually intractable. What about ?

As the trajectory  and the observable  are emitted, it is often possible:

to calculate the joint likelihood ;

to calculate the joint likelihood ratio ;

to calculate the joint score .

We call this process mining gold from your simulator!

p(x∣θ) p(x, z∣θ)

z  , ..., z  1 T x

p(x, z∣θ)

r(x, z∣θ  , θ  )0 1

t(x, z∣θ  ) = ∇  log p(x, z∣θ)   0 θ ∣
∣
θ  0
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Computer simulations typically evolve along a
tree-like structure of successive random
branchings.

The probabilities of each branching 

 are often clearly de�ned in the

code:

if random() > 0.1+2.5+model_parameter:

    do_one_thing()

else:

    do_another_thing()

For each run, we can calculate the probability
of the chosen path for different values of the
parameters and the joint likelihood-ratio:

Extracting the joint likelihood ratio

p(z  ∣z  , θ)i i−1

r(x, z∣θ  , θ  ) =  =   0 1
p(x, z∣θ  )1

p(x, z∣θ  )0

i

∏
p(z  ∣z  , θ  )i i−1 1

p(z  ∣z  , θ  )i i−1 0

―――
Credits: Johann Brehmer. 21 / 49



Aʟɪᴄᴇᴄᴇ
When the joint likelihood ratio  is available from the simulator, the

corresponding  are also tractable.

Therefore, the original Cᴀʀʟ cross-entropy can be adapted to make use of the
exact  instead of using labels :

where .

r(x, z∣θ  , θ  )0 1

s(x, z∣θ  , θ  )0 1

s(x, z∣θ  , θ  )0 1 y ∈ {0, 1}

  

L  [ ] = −E  [ALICE ŝ p(x,z) s(x, z∣θ  , θ  ) log( (x))+0 1 ŝ

(1 − s(x, z∣θ  , θ  )) log(1 − (x))],0 1 ŝ

p(x, z) = (p(x, z∣θ  ) + p(x, z∣θ  ))/20 1
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Regressing the likelihood ratio

Observe that the joint likelihood
ratios

are scattered around .

Can we use them to approximate 

?

Rᴀᴀsᴄᴀᴄᴀʟ

r(x, z∣θ  , θ  ) =  0 1
p(x, z∣θ  )1

p(x, z∣θ  )0

r(x∣θ  , θ  )0 1

r(x∣θ  , θ  )0 1
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Consider the squared error of a function  that only depends on , but is

trying to approximate a function  that also depends on the latent :

Via calculus of variations, we �nd that the function  that extremizes 

 is given by

 (x)ĝ x

g(x, z) z

L  = E  (g(x, z) −  (x)) .MSE p(x,z∣θ) [ ĝ 2]

g (x)∗

L  [g]MSE

g (x)∗ =  p(x, z∣θ)g(x, z)dz
p(x∣θ)

1
∫

= E  g(x, z)p(z∣x,θ) [ ]
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Therefore, by identifying the  with the joint likelihood ratio 

and  with , we de�ne

which is minimized by

g(x, z) r(x, z∣θ  , θ  )0 1

θ θ  1

L  = E  (r(x, z∣θ  , θ  ) − (x)) ,r p(x,z∣θ  )1 [ 0 1 r̂ 2]

r (x)∗ =  p(x, z∣θ  )  dz
p(x∣θ  )1

1
∫ 1

p(x, z∣θ  )1

p(x, z∣θ  )0

=  

p(x∣θ  )1

p(x∣θ  )0

= r(x∣θ  , θ  ).0 1
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r (x∣θ  , θ  ) = arg  L  [ ]∗
0 1

r̂
min r r̂
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Regressing the score

Similarly, we can mine the simulator to
extract the joint score

which indicates how much more or
less likely  would be if one

changed .

t(x, z∣θ  ) = ∇  log p(x, z∣θ)   ,0 θ ∣
∣
θ  0

x, z
θ  0
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Using the same trick, by identifying  with the joint score  and 

with , we de�ne

which is minimized by

g(x, z) t(x, z∣θ  )0 θ

θ  0

L  = E  (t(x, z∣θ  ) − (x)) ,t p(x,z∣θ  )0 [ 0 t̂ 2]

  

t (x)∗ =  p(x, z∣θ  )(∇  log p(x, z∣θ)   )dz
p(x∣θ  )0

1
∫ 0 θ ∣

∣
θ  0

=  p(x, z∣θ  )  dz
p(x∣θ  )0

1
∫ 0

p(x, z∣θ  )0

∇  p(x, z∣θ)   θ ∣
∣
θ  0

=  

p(x∣θ  )0

∇  p(x∣θ)   θ ∣
∣
θ  0

= ∇  log p(x∣θ)   θ ∣
∣
θ  0

= t(x∣θ  ).0
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Rᴀᴀsᴄᴀᴄᴀʟ
L  = L  + L  RASCAL r t

―――
Brehmer, Louppe, Pavez and Cranmer, 2018 [arXiv:1805.12244] 29 / 49

https://arxiv.org/pdf/1805.12244.pdf


Rᴀᴀsᴄᴀᴄᴀʟ
L  = L  + L  RASCAL r t

―――
Brehmer, Louppe, Pavez and Cranmer, 2018 [arXiv:1805.12244] 29 / 49

https://arxiv.org/pdf/1805.12244.pdf


Sᴀᴀʟʟʏ (= optimal compression)
The local model

In the neighborhood of , the Taylor expansion of  isθ  ref log p(x∣θ)

log p(x∣θ) = log p(x∣θ  ) +  ⋅ (θ − θ  ) + O((θ − θ  ) )ref

t(x∣θ  )ref

 ∇  log p(x∣θ)   θ ∣
∣
∣
θ  ref

ref ref
2
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This results in the exponential model

where the score  are its suf�cient statistics.

That is,

knowing  is just as powerful as knowing the full function .

 can be compressed into a single scalar  without loss of power.

p  (x∣θ) =  p(t(x∣θ  )∣θ  ) exp(t(x∣θ  ) ⋅ (θ − θ  ))local
Z(θ)

1
ref ref ref ref

t(x∣θ  )ref

t(x∣θ  )ref log p(x∣θ)

x t(x∣θ  )ref

―――
Brehmer, Louppe, Pavez and Cranmer, 2018 [arXiv:1805.12244]. 31 / 49

https://arxiv.org/abs/1805.12244


Sᴀᴀʟʟʏ

―――
Brehmer, Louppe, Pavez and Cranmer, 2018 [arXiv:1805.12244]. 32 / 49

https://arxiv.org/abs/1805.12244


There is more...

―――
Brehmer, Louppe, Pavez and Cranmer, 2018 [arXiv:1805.12244]. 33 / 49

https://arxiv.org/abs/1805.12244


Examples
① Hunting new physics at particle colliders

The goal is to constrain two EFT parameters and compare against traditional
histogram analysis.

―――
Brehmer, Cranmer, Louppe, and Pavez, 2018a [arXiv:1805.00020], 2018b [arXiv:1805.00013]; Brehmer, Louppe, Pavez and Cranmer, 2018 [arXiv:1805.12244]. 34 / 49

https://arxiv.org/abs/1805.00020
https://arxiv.org/abs/1805.00013
https://arxiv.org/abs/1805.12244


―――
Brehmer, Cranmer, Louppe, and Pavez, 2018a [arXiv:1805.00020], 2018b [arXiv:1805.00013]; Brehmer, Louppe, Pavez and Cranmer, 2018 [arXiv:1805.12244]. 35 / 49

https://arxiv.org/abs/1805.00020
https://arxiv.org/abs/1805.00013
https://arxiv.org/abs/1805.12244


② Dark matter substructure from gravitational lensing

 

―――
Brehmer, Mishra-Sharma, Hermans, Louppe, and Cranmer, 2019 [arXiv:1909.02005]. 36 / 49

https://arxiv.org/abs/1909.02005


Number of dark matter subhalos and their mass and location lead to complex
latent space of each image. The goal is the inference of population parameters.

―――
Brehmer, Mishra-Sharma, Hermans, Louppe, and Cranmer, 2019 [arXiv:1909.02005]. 37 / 49

https://arxiv.org/abs/1909.02005


―――
Brehmer, Mishra-Sharma, Hermans, Louppe, and Cranmer, 2019 [arXiv:1909.02005]. 38 / 49

https://arxiv.org/abs/1909.02005


Bayesian inference
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Bayesian inference = computing the
posterior

x

θ

z

Doubly intractable in the likelihood-free scenario:

Cannot evaluate the likelihood .

Cannot evaluate the evidence .

p(θ∣x) =  .
p(x)

p(x∣θ)p(θ)

p(x∣θ) = p(x, z∣θ)dz∫

p(x) = p(x∣θ)p(θ)dθ∫
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Approximate Bayesian
Computation (ABC)

Issues

How to choose ? ? ?

No tractable posterior.

Need to run new simulations for new data or new prior.

x′ ϵ ∣∣ ⋅ ∣∣

―――
Credits: Johann Brehmer. 40 / 49



Amortizing Bayes
The Bayes rule can be rewritten as

where  is the likelihood-to-evidence ratio.

p(θ∣x) =  = r(x∣θ)p(θ) ≈ (x∣θ)p(θ),
p(x)

p(x∣θ)p(θ)
r̂

r(x∣θ) =  

p(x)
p(x∣θ)
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Amortizing Bayes
The Bayes rule can be rewritten as

where  is the likelihood-to-evidence ratio.

As before, the likelihood-to-evidence ratio can be approximated e.g. from a neural
network classi�er trained to distinguish  from , hence

enabling direct and amortized posterior evaluation.

p(θ∣x) =  = r(x∣θ)p(θ) ≈ (x∣θ)p(θ),
p(x)

p(x∣θ)p(θ)
r̂

r(x∣θ) =  

p(x)
p(x∣θ)

x ∼ p(x∣θ) x ∼ p(x)

―――
Hermans, Begy and Louppe, 2019 [arXiv:1903.04057]; Brehmer, Mishra-Sharma, Hermans, Louppe, and Cranmer, 2019 [arXiv:1909.02005]. 41 / 49

https://arxiv.org/abs/1903.04057
https://arxiv.org/abs/1909.02005


Bayesian inference of dark matter subhalo population parameters

―――
Brehmer, Mishra-Sharma, Hermans, Louppe, and Cranmer, 2019 [arXiv:1909.02005]. 42 / 49

https://arxiv.org/abs/1909.02005


MCMC posterior sampling
 

―――
Credits: Chuck Huber, 2016. 43 / 49

https://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-the-metropolis-hastings-algorithm/


Likelihood-free MCMC

MCMC samplers require the evaluation of the posterior ratios:

Again, MCMC samplers can be made likelihood-free by plugging a learned
approximation  of the likelihood ratio.

For MCMC, best results are obtained when using ratios of likelihood-to-evidence
ratios:

  

 

p(θ  ∣x)t−1

p(θ  ∣x)new =  

p(x∣θ  )p(θ  )/p(x)t−1 t−1

p(x∣θ  )p(θ  )/p(x)new new

=  

p(x∣θ  )p(θ  )t−1 t−1

p(x∣θ  )p(θ  )new new

= r(x∣θ  , θ  )  new t−1
p(θ  )t−1

p(θ  )new

(x∣θ  , θ  )r̂ new t−1

(x∣θ  , θ  ) =  r̂ new t−1 (x∣θ  )r̂ t−1

(x∣θ  )r̂ new

―――
Hermans, Begy and Louppe, 2019 [arXiv:1903.04057]. 44 / 49

https://arxiv.org/abs/1903.04057


―――
Hermans, Begy and Louppe, 2019 [arXiv:1903.04057]. 45 / 49

https://arxiv.org/abs/1903.04057


Probabilistic programming
 
 

See Lukas' talk after the coffee break!
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Summary
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Summary
Much of modern science is based on "likelihood-free" simulations.

The likelihood-ratio is central to many statistical inference procedures,
regardless of your religion.

Supervised learning enables likelihood-ratio estimation.

Better likelihood-ratio estimates can be achieved by mining simulators.

(Probabilistic programming enables posterior inference in scienti�c
simulators.)
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The end.
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