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The probability of ending in bin  corresponds to the total probability of all the

paths  from start to .

What if we shift or remove some of the pins?

x

z x

 

p(x∣θ) = p(x, z∣θ)dz =  θ (1 − θ)∫ (
n

x
) x n−x
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Galton board device Computer simulation

Parameters Model parameters 

Buckets Observables 

Random paths Latent variables  

(stochastic execution traces
through simulator)

The Galton board is a metaphore of simulation-based science:

Inference in this context requires likelihood-free algorithms.

→

θ → θ

x → x

z → z
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―――
Credits: Johann Brehmer.
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Particle physics
Cosmology

Epidemiology Climatology

Computational topography
Astronomy

Applications
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Particle physics
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―――
Credits: Johann Brehmer.
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p(x∣θ) =  p(z  ∣θ)p(z  ∣z  )p(z  ∣z  )p(x∣z  )dz  dz  dz  

intractable

 ∭ p s p d s d p s d
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Likelihood-free inference
algorithms
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Treat the simulator 
as a black box

Make use of 
the inner structure

 
 
 

Learn a proxy for
inference

 

Histograms of observables 
Neural density (ratio) estimation

Mining gold from implicit models

 
 
 

Learn to control
the simulator

 

Adversarial variational optimization Probabilistic programming
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Likelihood ratio
The likelihood ratio

is the quantity that is central to many statistical inference procedures.

Examples

Frequentist hypothesis testing

Supervised learning

Bayesian posterior sampling with MCMC

Bayesian posterior inference through Variational Inference

Generative adversarial networks

Empirical Bayes with Adversarial Variational Optimization

Optimal compression

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0
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When solving a problem of interest, do not solve a more
general problem as an intermediate step. – Vladimir Vapnik

Direct likelihood ratio estimation is simpler than density estimation.

(This is fortunate, we are in the likelihood-free scenario!)
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The Neyman-Pearson lemma states that the likelihood
ratio

is the most powerful test statistic to discriminate between
a null hypothesis  and an alternative .

 

The frequentist physicist's way

r(x∣θ  , θ  ) =  0 1
p(x∣θ  )1

p(x∣θ  )0

θ  0 θ  1
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De�ne a projection function  mapping

observables  to a summary statistics .

Then, approximate the likelihood  as

From this it comes

 
s : X → R

x x = s(x)′

p(x∣θ)

p(x∣θ) ≈  (x∣θ) = p(x ∣θ).p̂ ′

 ≈  = (x∣θ  , θ  ).
p(x∣θ  )1

p(x∣θ  )0

 (x∣θ  )p̂ 1

 (x∣θ  )p̂ 0
r̂ 0 1
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Choosing the projection  is

dif�cult and problem-dependent.

Often there is no single good
variable: compressing to any 

loses information.

Ideally: analyse high-dimensional 

, including all correlations.

Unfortunately, �lling high-dimensional
histograms is not tractable.

This methodology has worked great for physicists for the last 20-30 years, but ...

s

x′

x′

―――
Bolognesi et al, 2012 (arXiv:1208.4018).
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https://arxiv.org/pdf/1208.4018.pdf


Bayesian inference usually consists in
computing the posterior

x

θ

z

Bayesian inference

Doubly intractable in the likelihood-free scenario:

Cannot evaluate the evidence .

Cannot evaluate the likelihood .

p(θ∣x) =  .
p(x)

p(x∣θ)p(θ)

p(x) = p(x∣θ)p(θ)dθ∫

p(x∣θ) = p(x, z∣θ)dz∫
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Posterior sampling

MCMC algorithms can be made likelihood-free by plugging in the likelihood ratio.

―――
Chuck Huber, 2016; Hermans and Louppe, 2019 [arXiv:1903.04057].
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https://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-the-metropolis-hastings-algorithm/
https://arxiv.org/abs/1903.04057


Cᴀᴀʀʟ
Supervised learning provides a way to automatically construct :

Let us consider a binary classi�er  (e.g., a neural network) trained to

distinguish  from .

 is trained by minimizing the cross-entropy loss

s

ŝ
x ∼ p(x∣θ  )0 x ∼ p(x∣θ  )1

ŝ

L  [ ] = −E [XE ŝ p(x∣θ)π(θ) 1(θ = θ  ) log (x)+0 ŝ

1(θ = θ  ) log(1 − (x))]1 ŝ

―――
Cranmer et al, 2015 [arXiv:1506.02169].
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https://arxiv.org/abs/1506.02169


The solution  found after training approximates the optimal classi�er

Therefore,

That is, supervised classi�cation is equivalent to likelihood ratio estimation.

ŝ

(x) ≈ s (x) =  .ŝ ∗

p(x∣θ  ) + p(x∣θ  )0 1

p(x∣θ  )1

r(x∣θ  , θ  ) ≈ (x∣θ  , θ  ) =  0 1 r̂ 0 1 (x)ŝ

1 − (x)ŝ
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Mining gold from simulators
 
 

 is usually intractable.

What about ?

p(x∣θ)

p(x, z∣θ)
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As the trajectory  and the observable  are emitted, it is often possible:

to calculate the joint likelihood ;

to calculate the joint likelihood ratio ;

to calculate the joint score .

We call this process mining gold from your simulator!

z  , ..., z  1 T x

p(x, z∣θ)

r(x, z∣θ  , θ  )0 1

t(x, z∣θ  ) = ∇  log p(x, z∣θ)   0 θ ∣
∣
θ  0
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Observe that the joint likelihood
ratios

are scattered around .

Can we use them to approximate 

?

r(x, z∣θ  , θ  ) =  0 1
p(x, z∣θ  )1

p(x, z∣θ  )0

r(x∣θ  , θ  )0 1

r(x∣θ  , θ  )0 1
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Key insights

Consider the squared error of a function  that only depends on , but is

trying to approximate a function  that also depends on the latent :

Via calculus of variations, we �nd that the function  that extremizes 

 is given by

 (x)ĝ x

g(x, z) z

L  = E  (g(x, z) −  (x)) .MSE p(x,z∣θ) [ ĝ 2]

g (x)∗

L  [g]MSE

g (x)∗ =  p(x, z∣θ)g(x, z)dz
p(x∣θ)

1
∫

= E  g(x, z)p(z∣x,θ) [ ]
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Therefore, by identifying the  with the joint likelihood ratio 

and  with , we de�ne

which is minimized by

g(x, z) r(x, z∣θ  , θ  )0 1

θ θ  1

L  = E  (r(x, z∣θ  , θ  ) − (x)) ,r p(x,z∣θ  )1 [ 0 1 r̂ 2]

r (x)∗ =  p(x, z∣θ  )  dz
p(x∣θ  )1

1
∫ 1

p(x, z∣θ  )1

p(x, z∣θ  )0

=  

p(x∣θ  )1

p(x∣θ  )0

= r(x∣θ  , θ  ).0 1
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r (x∣θ  , θ  ) = arg  L  [ ]∗
0 1

r̂
min r r̂
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Similarly, we can mine the simulator to
extract the joint score

which indicates how much more or
less likely  would be if one

changed .

t(x, z∣θ  ) = ∇  log p(x, z∣θ)   ,0 θ ∣
∣
θ  0

x, z
θ  0
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Using the same trick, by identifying  with the joint score  and 

with , we de�ne

which is minimized by

g(x, z) t(x, z∣θ  )0 θ

θ  0

L  = E  (t(x, z∣θ  ) − (x)) ,t p(x,z∣θ  )0 [ 0 t̂ 2]

  

t (x)∗ =  p(x, z∣θ  )(∇  log p(x, z∣θ)   )dz
p(x∣θ  )0

1
∫ 0 θ ∣

∣
θ  0

=  p(x, z∣θ  )  dz
p(x∣θ  )0

1
∫ 0

p(x, z∣θ  )0

∇  p(x, z∣θ)   θ ∣
∣
θ  0

=  

p(x∣θ  )0

∇  p(x∣θ)   θ ∣
∣
θ  0

= t(x∣θ  ).0
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Rᴀᴀsᴄᴀᴄᴀʟ
L  = L  + L  RASCAL r t

―――
Brehmer et al, 2018 (arXiv:1805.12244)
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https://arxiv.org/pdf/1805.12244.pdf


Rᴀᴀsᴄᴀᴄᴀʟ
L  = L  + L  RASCAL r t

―――
Brehmer et al, 2018 (arXiv:1805.12244)

27 / 52

https://arxiv.org/pdf/1805.12244.pdf


Sᴀᴀʟʟʏ (= optimal compression)
The likelihood ratio  relates to the score

It quanti�es the relative change of the likelihood under in�nitesimal changes.

It can be seen as a local equivalent of the likelihood ratio.

r

t(x∣θ  ) = ∇  log p(x∣θ)∣  = ∇  r(x∣θ, θ  )∣  .ref θ θ  ref θ ref θ  ref
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In a small patch around , we have the approximation

where the score  are its suf�cient statistics. Therefore,

in the local model the likelihood ratio between  and  only depends on

the product between the score and .

That is,  can be compressed into a single scalar without loss of power.

θ  ref

p  (x∣θ) =  p(t(x∣θ  )∣θ  ) exp(t(x∣θ  ) ⋅ (θ − θ  ))local
Z(θ)

1
ref ref ref ref

t(x∣θ  )ref

θ θ  ref

θ − θ  ref

x

―――
Brehmer et al, 2018 [arXiv:1805.12244].

29 / 52

https://arxiv.org/abs/1805.12244


Results?

Experimental setup

Higgs production in weak boson fusion.

Goal: constraints on two theory parameters.

L = L  +   (D ϕ) σ D ϕ W  −   (ϕ ϕ) W  WSM  

Λ2

f  W

2
ig μ † a ν

μν
a

 

Λ2

f  WW

4
g2

†
μν
a μν a
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―――
Brehmer et al, 2018 (arXiv:1805.12244)
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―――
Brehmer et al, 2018 (arXiv:1805.12244)
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Generative adversarial networks
 
 

 

  

L  (ϕ)d

L  (θ)g

= E  − log(d(x; ϕ)) + E  − log(1 − d(g(z; θ); ϕ))x∼p  (x)r
[ ] z∼p(z) [ ]

= E  log(1 − d(g(z; θ); ϕ))z∼p(z) [ ]
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AVO
 
 

 

Replace  with an actual scienti�c simulator!g

―――
Louppe et al, 2017 (arXiv:1707.07113)
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https://arxiv.org/pdf/1707.07113.pdf


Key insights

Replace the generative network with a non-differentiable forward simulator 

.

Let the neural network critic �gure out how to adjust the simulator
parameters.

Combine with variational optimization to bypass the non-differentiability by
optimizing upper bounds of the adversarial objectives

respectively over  and .

g(z; θ)

  

U  (ϕ)d

U  (ψ)g

= E  L  (ϕ)θ∼q(θ;ψ) [ d ]

= E  L  (θ)θ∼q(θ;ψ) [ g ]

ϕ ψ
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Samples for  (top) vs. 

samples for  (bottom).

 
 
 
 
 

θ = 0
θ = 0.81
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Probabilistic programming
Probabilistic models de�ne a set of random variables and their relationships.

Observed variables

Unobserved (hidden, latent) variables

Probabilistic graphical models use graphs to express conditional dependence.

Bayesian networks

Markov random �elds

p(x, y, z) = p(x)p(y)p(z∣x, y)
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Probabilistic programming extends this to ordinary programming with two added
constructs:

Sampling from distributions

Conditioning random variables by specifying observed values

Example

bool c1, c2;

c1 = Bernoulli(0.5);

c2 = Bernoulli(0.5);

observe(c1 || c2);

return(c1, c2);
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Inference
With a probabilistic program, we de�ne a joint distribution of unobserved and
observed variables .

Inference engines give us distributions over unobserved variables, given
observed variables (data)

 
 

p(x, y)

p(x∣y) =  

p(y)
p(y∣x)p(x)

―――
Credits: Atılım Güneş Baydin.
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A stochastic simulator implicitly de�nes a probability distribution by sampling
pseudo-random numbers. Scienti�c simulators are probabilistic programs!.
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Key insights

Let a neural network take full control of the internals of the simulation program
by hijacking all calls to the random number generator.

―――
Le et al, 2016 (arXiv:1610.09900); Baydin et al, 2018 (arXiv:1807.07706).
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Experimental setup

 decay in Sherpa, 38 decay channels, coupled

with an approximate calorimeter simulation in
C++.

Observations are 3D calorimeter depositions.

Latent variables (Monte Carlo truth) of
interest: decay channel, px, py, pz momenta,
�nal state momenta and IDs.

Taking control of Sherpa

τ
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Inference results

―――
Credits: Atılım Güneş Baydin.
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We obtain posteriors over the whole Sherpa address space, 1000s of addresses.

―――
Credits: Atılım Güneş Baydin.
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Interpretability

Latent probabilistic structure of the 10 most frequent trace types:

―――
Credits: Atılım Güneş Baydin.
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Interpretability

Latent probabilistic structure of the 25 most frequent trace types:

―――
Credits: Atılım Güneş Baydin.
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Interpretability

Latent probabilistic structure of the 100 most frequent trace types:

―――
Credits: Atılım Güneş Baydin.
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Interpretability

Latent probabilistic structure of the 250 most frequent trace types:

―――
Credits: Atılım Güneş Baydin.
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Interpretability

―――
Credits: Atılım Güneş Baydin.
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Summary

49 / 52



Summary
Much of modern science is based on "likelihood-free" simulations.

The likelihood-ratio is central to many statistical inference procedures.

Supervised learning enables likelihood-ratio estimation.

Better likelihood-ratio estimates can be achieved by mining simulators.

Probabilistic programming enables posterior inference in scienti�c
simulators.
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The end.
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