Likelihood-free inference in Physical Sciences

Machine Learning in High Energy Physics Summer School 2019 July 4, DESY

Gilles Louppe
g.louppe@uliege.be

The probability of ending in bin x corresponds to the total probability of all the paths z from start to x.

$$
p(x \mid \theta)=\int p(x, z \mid \theta) d z=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}
$$

What if we shift or remove some of the pins?

The Galton board is a metaphore of simulation-based science:

Galton board device	\rightarrow	Computer simulation
Parameters θ	\rightarrow	Model parameters θ
Buckets x	\rightarrow	Observables x
Random paths z	\rightarrow	Latent variables z (stochastic execution traces through simulator)

Inference in this context requires likelihood-free algorithms.

Prediction: - Well-understood mechanistic model

- Simulator can generate samples

Prediction: - Well-understood mechanistic model

- Simulator can generate samples

Inference:

- Likelihood function $p(x \mid \theta)$ is intractable
- Inference based on estimator $\hat{p}(x \mid \theta)$

Applications

Particle physics

Epidemiology

Computational topography

Cosmology

Climatology

Astronomy

Particle physics

Latent variables

Shower splittings	Parton-level momenta	Theory parameters
$z_{s} \longleftarrow$	$z_{p} \longleftarrow \sim$	

Latent variables

Detector interactions

Shower splittings

Parameters

 of interest

$$
p(x \mid \theta)=\underbrace{\iiint}_{\text {intractable }} p\left(z_{p} \mid \theta\right) p\left(z_{s} \mid z_{p}\right) p\left(z_{d} \mid z_{s}\right) p\left(x \mid z_{d}\right) d z_{p} d z_{s} d z_{d}
$$

Likelihood-free inference algorithms

Treat the simulator
 as a black box

Adversarial variational optimization

Make use of the inner structure

Mining gold from implicit models

Probabilistic programming

Treat the simulator
as a black box

Likelihood ratio

The likelihood ratio

$$
r\left(x \mid \theta_{0}, \theta_{1}\right)=\frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)}
$$

is the quantity that is central to many statistical inference procedures.

Examples

- Frequentist hypothesis testing
- Supervised learning
- Bayesian posterior sampling with MCMC
- Bayesian posterior inference through Variational Inference
- Generative adversarial networks
- Empirical Bayes with Adversarial Variational Optimization
- Optimal compression

When solving a problem of interest, do not solve a more general problem as an intermediate step. - Vladimir Vapnik

Direct likelihood ratio estimation is simpler than density estimation.
(This is fortunate, we are in the likelihood-free scenario!)

The frequentist physicist's way

The Neyman-Pearson lemma states that the likelihood ratio

$$
r\left(x \mid \theta_{0}, \theta_{1}\right)=\frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)}
$$

is the most powerful test statistic to discriminate between
 a null hypothesis θ_{0} and an alternative θ_{1}.
IX. On the Problem of the most Efficient Tests of Statistical Hypotheses.

By J. Neyman, Nencki Institute, Soc. Sci. Lit. Varsoviensis, and Lecturer at the Central College of Agriculture, Warsaw, and E. S. Pearson, Department of Applied Statistics, University College, London.
(Communicated by K. Pearson, F.R.S.)
(Received August 31, 1932.—Read November 10, 1932.)
Contents.

[^0]

Define a projection function $s: \mathcal{X} \rightarrow \mathbb{R}$ mapping observables x to a summary statistics $x^{\prime}=s(x)$.

Then, approximate the likelihood $p(x \mid \theta)$ as

$$
p(x \mid \theta) \approx \hat{p}(x \mid \theta)=p\left(x^{\prime} \mid \theta\right)
$$

From this it comes

$$
\frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)} \approx \frac{\hat{p}\left(x \mid \theta_{0}\right)}{\hat{p}\left(x \mid \theta_{1}\right)}=\hat{r}\left(x \mid \theta_{0}, \theta_{1}\right) .
$$

This methodology has worked great for physicists for the last 20-30 years, but ...

- Choosing the projection s is difficult and problem-dependent.
- Often there is no single good variable: compressing to any x^{\prime} loses information.
- Ideally: analyse high-dimensional x^{\prime}, including all correlations.

Unfortunately, filling high-dimensional histograms is not tractable.

Bayesianinference

Bayesian inference usually consists in computing the posterior

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

Doubly intractable in the likelihood-free scenario:

- Cannot evaluate the evidence $p(x)=\int p(x \mid \theta) p(\theta) d \theta$.
- Cannot evaluate the likelihood $p(x \mid \theta)=\int p(x, z \mid \theta) d z$.

Posterior sampling

Step 1: $\quad \mathbf{r}\left(\theta_{\text {new }}, \theta_{1-1}\right)=\frac{\operatorname{Posterior}\left(\theta_{\text {new }}\right)}{\operatorname{Posterior}\left(\theta_{1-1}\right)}=\frac{\operatorname{Beta}(1,1,0.306) \times \operatorname{Binomial}(10,4,0.306)}{\operatorname{Beta}(1,1,0.429) \times \operatorname{Binomial}(10,4,0.429)}=0.834$
Step 2: Acceptance probability $\alpha\left(\theta_{\text {new }}, \theta_{\mathrm{k}-1}\right)=\min \left\{r\left(\theta_{\text {new }}, \theta_{\mathrm{k}-1}\right), 1\right\}=\min \{0.834,1\}=0.834$
Step 3: Draw u ~Uniform(0,1) $=0.617$
Step 4: If $u<\alpha\left(\theta_{\text {rew }}, \theta_{1.1}\right) \rightarrow$ If $0.617<0.834 \quad$ Then $\quad \theta_{t}=\theta_{\text {new }}=0.306$
Otherwise $\theta_{\mathrm{T}}=\theta_{\mathrm{t}-1}=0.429$

MCMC algorithms can be made likelihood-free by plugging in the likelihood ratio.

Carl

Supervised learning provides a way to automatically construct s :

- Let us consider a binary classifier \hat{s} (e.g., a neural network) trained to distinguish $x \sim p\left(x \mid \theta_{0}\right)$ from $x \sim p\left(x \mid \theta_{1}\right)$.
- \hat{s} is trained by minimizing the cross-entropy loss

$$
\begin{aligned}
L_{X E}[\hat{s}]=-\mathbb{E}_{p(x \mid \theta) \pi(\theta)}[1(\theta & \left.=\theta_{0}\right) \log \hat{s}(x)+ \\
1(\theta & \left.\left.=\theta_{1}\right) \log (1-\hat{s}(x))\right]
\end{aligned}
$$

The solution \hat{s} found after training approximates the optimal classifier

$$
\hat{s}(x) \approx s^{*}(x)=\frac{p\left(x \mid \theta_{1}\right)}{p\left(x \mid \theta_{0}\right)+p\left(x \mid \theta_{1}\right)}
$$

Therefore,

$$
r\left(x \mid \theta_{0}, \theta_{1}\right) \approx \hat{r}\left(x \mid \theta_{0}, \theta_{1}\right)=\frac{1-\hat{s}(x)}{\hat{s}(x)}
$$

That is, supervised classification is equivalent to likelihood ratio estimation.

Treat the simulator as a black box

Make use of the inner structure

Mining gold from simulators

$p(x \mid \theta)$ is usually intractable.
What about $p(x, z \mid \theta)$?

As the trajectory z_{1}, \ldots, z_{T} and the observable x are emitted, it is often possible:

- to calculate the joint likelihood $p(x, z \mid \theta)$;
- to calculate the joint likelihood ratio $r\left(x, z \mid \theta_{0}, \theta_{1}\right)$;
- to calculate the joint score $t\left(x, z \mid \theta_{0}\right)=\left.\nabla_{\theta} \log p(x, z \mid \theta)\right|_{\theta_{0}}$.

We call this process mining gold from your simulator!

Observe that the joint likelihood ratios

$$
r\left(x, z \mid \theta_{0}, \theta_{1}\right)=\frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)}
$$

are scattered around $r\left(x \mid \theta_{0}, \theta_{1}\right)$.
Can we use them to approximate $r\left(x \mid \theta_{0}, \theta_{1}\right)$?

Key insights

Consider the squared error of a function $\hat{g}(x)$ that only depends on x, but is trying to approximate a function $g(x, z)$ that also depends on the latent z :

$$
L_{M S E}=\mathbb{E}_{p(x, z \mid \theta)}\left[(g(x, z)-\hat{g}(x))^{2}\right]
$$

Via calculus of variations, we find that the function $g^{*}(x)$ that extremizes $L_{M S E}[g]$ is given by

$$
\begin{aligned}
g^{*}(x) & =\frac{1}{p(x \mid \theta)} \int p(x, z \mid \theta) g(x, z) d z \\
& =\mathbb{E}_{p(z \mid x, \theta)}[g(x, z)]
\end{aligned}
$$

Therefore, by identifying the $g(x, z)$ with the joint likelihood ratio $r\left(x, z \mid \theta_{0}, \theta_{1}\right)$ and θ with θ_{1}, we define

$$
L_{r}=\mathbb{E}_{p\left(x, z \mid \theta_{1}\right)}\left[\left(r\left(x, z \mid \theta_{0}, \theta_{1}\right)-\hat{r}(x)\right)^{2}\right]
$$

which is minimized by

$$
\begin{aligned}
r^{*}(x) & =\frac{1}{p\left(x \mid \theta_{1}\right)} \int p\left(x, z \mid \theta_{1}\right) \frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)} d z \\
& =\frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)} \\
& =r\left(x \mid \theta_{0}, \theta_{1}\right)
\end{aligned}
$$

$$
r^{*}\left(x \mid \theta_{0}, \theta_{1}\right)=\arg \min _{\hat{r}} L_{r}[\hat{r}]
$$

Similarly, we can mine the simulator to extract the joint score

$$
t\left(x, z \mid \theta_{0}\right)=\left.\nabla_{\theta} \log p(x, z \mid \theta)\right|_{\theta_{0}}
$$

which indicates how much more or less likely x, z would be if one changed θ_{0}.

Using the same trick, by identifying $g(x, z)$ with the joint score $t\left(x, z \mid \theta_{0}\right)$ and θ with θ_{0}, we define

$$
L_{t}=\mathbb{E}_{p\left(x, z \mid \theta_{0}\right)}\left[\left(t\left(x, z \mid \theta_{0}\right)-\hat{t}(x)\right)^{2}\right]
$$

which is minimized by

$$
\begin{aligned}
t^{*}(x) & =\frac{1}{p\left(x \mid \theta_{0}\right)} \int p\left(x, z \mid \theta_{0}\right)\left(\left.\nabla_{\theta} \log p(x, z \mid \theta)\right|_{\theta_{0}}\right) d z \\
& =\frac{1}{p\left(x \mid \theta_{0}\right)} \int p\left(x, z \mid \theta_{0}\right) \frac{\left.\nabla_{\theta} p(x, z \mid \theta)\right|_{\theta_{0}}}{p\left(x, z \mid \theta_{0}\right)} d z \\
& =\frac{\left.\nabla_{\theta} p(x \mid \theta)\right|_{\theta_{0}}}{p\left(x \mid \theta_{0}\right)} \\
& =t\left(x \mid \theta_{0}\right)
\end{aligned}
$$

Rascal

$$
L_{R A S C A L}=L_{r}+L_{t}
$$

Rascal

$$
L_{R A S C A L}=L_{r}+L_{t}
$$

SALLY (= optimal compression)

The likelihood ratio r relates to the score

$$
t\left(x \mid \theta_{\mathrm{ref}}\right)=\left.\nabla_{\theta} \log p(x \mid \theta)\right|_{\theta_{\mathrm{ref}}}=\left.\nabla_{\theta} r\left(x \mid \theta, \theta_{\mathrm{ref}}\right)\right|_{\theta_{\mathrm{ref}}}
$$

- It quantifies the relative change of the likelihood under infinitesimal changes.
- It can be seen as a local equivalent of the likelihood ratio.

In a small patch around $\theta_{\text {ref }}$, we have the approximation

$$
p_{\text {local }}(x \mid \theta)=\frac{1}{Z(\theta)} p\left(t\left(x \mid \theta_{\text {ref }}\right) \mid \theta_{\text {ref }}\right) \exp \left(t\left(x \mid \theta_{\text {ref }}\right) \cdot\left(\theta-\theta_{\text {ref }}\right)\right)
$$

where the score $t\left(x \mid \theta_{\text {ref }}\right)$ are its sufficient statistics. Therefore,

- in the local model the likelihood ratio between θ and $\theta_{\text {ref }}$ only depends on the product between the score and $\theta-\theta_{\text {ref }}$.
- That is, x can be compressed into a single scalar without loss of power.

Results?

Experimental setup

- Higgs production in weak boson fusion.
- Goal: constraints on two theory parameters.

$$
\mathcal{L}=\mathcal{L}_{S M}+\underbrace{\frac{f_{W}}{\Lambda^{2}}} \frac{i g}{2}\left(D^{\mu} \phi\right)^{\dagger} \sigma^{a} D^{\nu} \phi W_{\mu \nu}^{a}-\underbrace{\frac{f_{W W}}{\Lambda^{2}}} \frac{g^{2}}{4}\left(\phi^{\dagger} \phi\right) W_{\mu \nu}^{a} W^{\mu \nu a}
$$

Treat the simulator
 as a black box

Generative adversarial networks

Odena et al 2016

Miyato et al 2017

Zhang et al 2018

Brock et al 2018

AVO

Replace g with an actual scientific simulator!

Key insights

- Replace the generative network with a non-differentiable forward simulator $g(\mathbf{z} ; \theta)$.
- Let the neural network critic figure out how to adjust the simulator parameters.
- Combine with variational optimization to bypass the non-differentiability by optimizing upper bounds of the adversarial objectives

$$
\begin{aligned}
U_{d}(\phi) & =\mathbb{E}_{\theta \sim q(\theta ; \psi)}\left[\mathcal{L}_{d}(\phi)\right] \\
U_{g}(\psi) & =\mathbb{E}_{\theta \sim q(\theta ; \psi)}\left[\mathcal{L}_{g}(\theta)\right]
\end{aligned}
$$

respectively over ϕ and ψ.

Samples for $\theta=0$ (top) vs.
samples for $\theta=0.81$ (bottom).

Treat the simulator as a black box

Learn a proxy for
inference

Histograms of observables
Neural density (ratio) estimation

Learn to control the simulator

Make use of the inner structure

Mining gold from implicit models

Probabilistic programming

Probabilistic programming

Probabilistic models define a set of random variables and their relationships.

- Observed variables
- Unobserved (hidden, latent) variables

Probabilistic graphical models use graphs to express conditional dependence.

- Bayesian networks
- Markov random fields

$$
p(x, y, z)=p(x) p(y) p(z \mid x, y)
$$

Probabilistic programming extends this to ordinary programming with two added constructs:

- Sampling from distributions
- Conditioning random variables by specifying observed values

Example

```
bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
observe(c1 || c2);
return(c1, c2);
```


Inference

With a probabilistic program, we define a joint distribution of unobserved and observed variables $p(x, y)$.

Inference engines give us distributions over unobserved variables, given observed variables (data)

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Ordinary
program

Probabilistic program

A stochastic simulator implicitly defines a probability distribution by sampling pseudo-random numbers. Scientific simulators are probabilistic programs!.

Key insights

Let a neural network take full control of the internals of the simulation program by hijacking all calls to the random number generator.

Taking control of Sherpa

Experimental setup

- τ decay in Sherpa, 38 decay channels, coupled with an approximate calorimeter simulation in C++.
- Observations are 3D calorimeter depositions.

- Latent variables (Monte Carlo truth) of interest: decay channel, px, py, pz momenta, final state momenta and IDs.

Inference results

We obtain posteriors over the whole Sherpa address space, 1000s of addresses.

Interpretability

Latent probabilistic structure of the 10 most frequent trace types:

Interpretability

Latent probabilistic structure of the 10 most frequent trace types:

[forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double\gg, (xt:: layout_type) 1 , xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xtensor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: GenerateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventype:: code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventype:: code\&)+0x982; SHERPA:: Event_Handler:: IterateEventPhases(SHERPA:: eventtype:: code\&, double\&)+0x1d2; SHERPA:: Hadron_Decays:: Treat(ATOOLS:: Blob_List*, double\&)+0x975; SHERPA:: Decay_Handler_Base:: TreatInitialBlob(ATOOLS:: Blob*, METOOLS:: Amplitude2_Tensor*, std:: vector<ATOOLS:: Particle*, std:: allocator<ATOOLS:: Partile* \gg const\&)+0x1ab1; SHERPA:: Hadron_Decay_Handler:: CreateDecayBlob(ATOOLS:: Particle*)+0x4cd; PHASIC:: Decay_Table:: Select() const+0x9d7; ATOOLS:: Random:: GetCategorical(std:: vector<double, std:: allocator<double\gg const\&, bool, bool)+0x1a5; probprog_RNG:: GetCategorical(std:: vector<double, std:: allocator<double\gg const\&, bool, bool) $+0 \times 111$]_Categorical(length_categories:38)_1

Interpretability

Latent probabilistic structure of the 10 most frequent trace types:

Interpretability

Latent probabilistic structure of the 25 most frequent trace types:

Interpretability

Latent probabilistic structure of the 100 most frequent trace types:

52

Interpretability

Latent probabilistic structure of the 250 most frequent trace types:

53

Interpretability

(a) Prior execution $p(\mathbf{x})$.

(b) Posterior execution $p(\mathbf{x} \mid \mathbf{y})$ conditioned on a given calorimeter observation \mathbf{y}.

Summary

Summary

- Much of modern science is based on "likelihood-free" simulations.
- The likelihood-ratio is central to many statistical inference procedures.
- Supervised learning enables likelihood-ratio estimation.
- Better likelihood-ratio estimates can be achieved by mining simulators.
- Probabilistic programming enables posterior inference in scientific simulators.

Collaborators

References

- Stoye, M., Brehmer, J., Louppe, G., Pavez, J., \& Cranmer, K. (2018). Likelihood-free inference with an improved cross-entropy estimator. arXiv preprint arXiv:1808.00973.
- Baydin, A. G., Heinrich, L., Bhimji, W., Gram-Hansen, B., Louppe, G., Shao, L., ... \& Wood, F. (2018). Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. arXiv preprint arXiv:1807.07706.
- Brehmer, J., Louppe, G., Pavez, J., \& Cranmer, K. (2018). Mining gold from implicit models to improve likelihood-free inference. arXiv preprint arXiv:1805.12244.
- Brehmer, J., Cranmer, K., Louppe, G., \& Pavez, J. (2018). Constraining Effective Field Theories with Machine Learning. arXiv preprint arXiv:1805.00013.
- Brehmer, J., Cranmer, K., Louppe, G., \& Pavez, J. (2018). A Guide to Constraining Effective Field Theories with Machine Learning. arXiv preprint arXiv:1805.00020.
- Casado, M. L., Baydin, A. G., Rubio, D. M., Le, T. A., Wood, F., Heinrich, L., ... \& Bhimji, W. (2017). Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators. arXiv preprint arXiv:1712.07901.
- Louppe, G., Hermans, J., \& Cranmer, K. (2017). Adversarial Variational Optimization of NonDifferentiable Simulators. arXiv preprint arXiv:1707.07113.
- Cranmer, K., Pavez, J., \& Louppe, G. (2015). Approximating likelihood ratios with calibrated discriminative classifiers. arXiv preprint arXiv:1506.02169.

The end.

[^0]: I. Introductory . 289
 II. Outline of General Theory

 293

