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Abstract
Although Argyrosomus regius (Asso, 1801) counts among the most appreciated and increasingly consumed fish species in
Europe, little information is available on its flesh quality. This research concerns both healthy aquatic resource diversification
and good nutritional quality. It is the first study to evaluate the quality of A. regius flesh fromMediterranean aquaculture. It aims
to assess the concentration of 19 trace elements and to determine the fatty acid profile of this fish farmed in theMediterranean Sea
and to discuss human exposure risks. The nutritional intake of oligoelements (selenium (Se), zinc (Zn), and chromium (Cr)) and
the mean concentrations of contaminants (arsenic (As), barium (Ba), cadmium (Cd), lead (Pb), and tin (Sn)) in A. regiusmuscles
are, respectively, above and below recommended regulatory standards set by the international legislation. Additionally, the low
fat content in its muscle mass and its high level of docosahexaenoic acid (C22: 6 n-3; DHA) and, to a lesser extent,
eicosapentaenoic acid (C20: 5 n-3; EPA) confers satisfying nutritional qualities. This study allowed to conclude that meager
can be considered as a source of seafood with good nutritional qualities for human health.
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Introduction

Fisheries and aquaculture represent significant resources for
hundreds of millions of people around the world, whether as
food, income, or livelihoods [1]. The average global fish con-
sumption per year has now reached a record of 20 kg,
reflecting the high potential of fish production to participate
in global food security [2]. But in recent years, despite the
constant increase in world aquaculture production, EU

countries have shown a decrease in water species production
that involves almost all the raised species. Among the factors
penalizing EU fish production, we should highlight a decrease
in demand and the presence on the market of competitively
priced foreign products. While fish consumption contributes
to the intake of compounds such as trace elements (TEs) and
fatty acids (FA) which can be essential to the normal physio-
logical functioning of the body, it can also be a vector in-
volved in physiopathological processes [3].

TEs are defined as any element characterized by an average
concentration of less than 1 mg kg−1 [4]. They are minerals
present in biological fluids in very small quantities [5]. In this
paper, we will consider as TE any element, whether metallic
or not, present in such concentrations. They can be essential
(e.g., Cr, Cu, Fe, Li, Mn, Mo, Se, Zn) or non-essential (e.g.,
Ag, Al, As, Ba, Bi, Cd, Pb, Sb, Sn, U, V). Non-essential
elements can become extremely toxic [6] due to their persis-
tence, their high toxicity [7], and their tendency to
bioaccumulate [8]. In this way, they could induce adverse
effects such as renal dysfunction, lung disease, liver failure,
and/or chronic damages to the peripheral nervous system [9].
Therefore, it is important to estimate their composition in food
and especially in marine fish which are widely consumed by
humans.
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Among the essential nutritional contributions to humans,
the family of lipids is also considered as essential to the de-
velopment and functioning of the human body. Fish lipids are
well known to be rich in long-chain n-3 polyunsaturated fatty
acids, especially eicosapentaenoic acid (EPA or C20:5 n-3)
and docosahexaenoic acid (DHA or C22:6 n-3 DHA) which
play a vital role in the human nutrition [10]. They are called
semi-essential because they can be synthesized by the human
body only in small amounts and thus may have to be supplied
at least in part by the diet. When they are not present in suffi-
cient quantities in the diet, they could be at the origin of im-
portant disorders [11], in particular cardiovascular disorders
[12, 13]. In view of all the above, a convenient knowledge of
the level of TEs and the nutritional value of FA appears as
essential.

Argyrosomus regius (Asso, 1801) commonly known as
Bmeager^ is a carnivorous fish species that can be found along
the Atlantic coast of Europe [14], the East African coast, and
the Mediterranean Sea and the Black Sea. It is an emerging
species regarding the diversification of European aquaculture
due to its attractive and competitive biological attributes.
These include its zootechnical performance [15] with a fast
growth rate of ∼ 1 kg per year in temperatures between 17 and
21 °C, its resistance to diseases [16], its low feed conversion
ratio of 0.9–1.2, its good flesh quality [17] including low fat
content and excellent taste, and finally, its high economic val-
ue [18]. With 14,000 tons per year, it is one of the most pro-
duced fish in the Mediterranean region [19, 20].

In view of all these characteristics, meager seems to be an
ideal candidate for aquaculture. However, there are only a few
studies available on the ecotoxicology and the nutritional
composition of meager in the Mediterranean Sea. Studies of
TE contamination of meager flesh have already been
discussed in the Gironde estuary [21] and in Portugal [6].
Studies regarding its nutritional composition were also con-
ducted in Portugal [17], Italy [22], Spain [23], and Greece
[14].

The present study aims (i) to determine the concentrations
of 19 TEs in the muscle of A. regius produced in the
Mediterranean Sea; (ii) to estimate the weekly intake of these
trace elements; (iii) to characterize the quality of the fatty
acids; and (iv) to evaluate the potential risks related to its
consumption.

Material and Methods

Area of Study and Sample Collection

Thirty cultured specimens of Argyrosomus regius (Asso,
1801) were purchased from a fish farm located on the
Corsican coast in December 2016. The method of slaughter
was by immersion in ice-cold water (hypothermia). The exact

location of the farm cannot be provided in order to preserve
anonymity, complying with the wishes of the fish farmers.

Corsica is considered as a reference zone in the
Mediterranean due to the quality of its waters and the low
fishing pressure [24]. The surroundings of the island represent
an ideal area to monitor the quality of the flesh (fatty acid
composition, survey, and changes in the concentration of con-
taminants related to the development of coastal areas).

The average length and weight for the 30 sampled individ-
uals were 65 ± 4 cm and 3.04 ± 0.33 kg, respectively. A sam-
ple of dorsal white muscle (the most commonly consumed
part of the fish) of average weight 12.81 ± 1.83 g (wet weight
(ww)) was taken from each fish. Tissues were frozen at −
20 °C until analysis in the laboratory.

Trace Elements

Analysis

Before TE analysis, samples were thawed and cleaned with
ultrapure water (MilliQ). Samples were mineralized using
Teflon digestion vessels, in a closed microwave digestion
lab station (Ethos D,Milestone Inc.), using hydrogen peroxide
and nitric acid as reagents (Suprapur grade, Merck). Overall,
19 TEs (Ag, Al, As, Ba, Bi, Cd, Cr, Cu, Fe, Li, Mn, Mo, Pb,
Sb, Se, Sn, U, V, Zn) were analyzed by inductively coupled
plasma mass spectrometry using dynamic reaction cell tech-
nology (ICP-MS ELAN DRC II, Perkin-Elmer according to
[25]. The trace element detection limits in mg kg−1 dry weight
were as follows: Ag = 0.0024; Al = 0.1400; As = 0.0200;
Ba = 0.0039; Bi = 0.0028; Cd = 0.0054; Cr = 0.0137; Cu =
0.0400; Fe = 0.9000; Li = 0.0090; Mn = 0.0100; Mo =
0.0041; Pb = 0.0273; Sb = 0.0200; Se = 0.1900; Sn = 0.0090;
U = 0.0002; V = 0.0033; Zn = 0.1000. Analyses were per-
formed according to the method described in [25]. The purity
of the chemicals used was verified by running a number of
chemical blanks and no evidence of contamination was found.
Analytical quality control was achieved using Certified
Reference Materials (CRM) including DOLT-3: dogfish liver,
NIST 1566b: oyster tissue, NIST 1577c: bovine liver, and
NIST 2976: mussel tissue. The results obtained on the
Certified Reference Materials were consistent with the certi-
fied values for all TEs. For each TE, detection limit (LD) and
quantification limit (LQ) were calculated, depending on their
specific blank distribution [26] and both were expressed in
milligrams of element per kilogram of wet weight (mg kg−1

ww) [24].

Risk Evaluation

Risk of TE (only available for Al, Cd, and Sn) intake was
estimated for a 70-kg person and was calculated considering
the respective levels found in A. regius and a weekly
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consumption rate of 427 g (defined for European population)
[2]. The estimated monthly intake (EMI, mg kg−1 body
weight) and estimated weekly intake (EWI, mg kg−1 body
weight) have been calculated [27–30]. EMI values for the
Cd [31] and EWI for the other elements were determined
using the following equations:

EMI ¼ Cm� IRmð Þ=BW
EWI ¼ Cm� IRwð Þ=BW

Cm represents the TE concentration in fish (mg kg−1), IRm
the monthly ingestion rate (kg), IRw the weekly ingestion rate
(kg), and BW the body weight (kg). In order to assess public
health risks, these calculated intakes were compared with the
provisional tolerable intake. Monthly (PTMI) and provisional
tolerable weekly intake (PTWI) recommended by the Joint
FAO/WHO Expert Committee on Food Additives (JECFA)
[30]. These latter indices provide safe exposure levels used
to estimate the amount of contaminants that could be ingested
over a lifetime without appreciable risk [32].

According to the regulatory guidelines established by the
FAO/WHO Expert Committee on Food Additives, the PTMI
of Cd was set at 25 μg kg−1 body weight week−1 [33, 34].
PTMI of Cd for a 70-kg person represents 1750 μg week−1

[29]. In addition, we calculated and compared the daily inges-
tion of various TEs (Al, Cd, and Sn). In order to discriminate
contamination levels according to meager origin, data from
this study (farmed meager) were compared with the available
data in literature (wild meager) considering the concentrations
of six trace elements (As, Cd, Cu, Fe, Pb, and Zn).

Fatty Acids

To determine the fatty acid (FA) content, fifteen samples of
fish muscle were analyzed. Lyophilized samples were finely
ground with a pestle before weighing about 1 g of material in
50 ml Falcon tubes. The fat content of the weighed material
was then extracted with a mixture of solvents, followed by
saponification-methylation of the FA and gas chromatography
coupled with mass spectrometry analysis (GC-MS).

Extraction

The extraction protocol was adapted according to [35]. A vol-
ume of 10ml of an acetone/hexane (50/50) mixture was added
to each tube containing the muscle of the fish. Each tube was
vortexed before being placed in a rotative agitator for 1 h.
Then, 5 ml of water was added and samples were vortexed
and centrifuged (10 min, 3700g). The organic phase was
transferred into a new tube. The extraction procedure was
repeated a second time with 5 ml of hexane. Both organic
phases were combined and 5 ml of it was poured in dry
weighed tubes. The solvent was evaporated to dryness in an

oven at 60 °C overnight. Fat content was finally determined
by weighing the tubes and the samples were stored at − 80 °C
until saponification of the fat.

Saponification and Methylation of the Fat

The fatty acid profile of fish muscle was determined by anal-
ysis of the fatty acid methyl esters (FAME) by gas
chromatography-mass spectrometry (GC-MS) according to
[36]. The method involves the saponification and methylation
of the fat extracted from fish samples, in the presence of an
internal standard (nonadecanoic acid, C19:0), followed by
two extractions with hexane. Fatty acid methyl esters were
separated on a Focus GC gas chromatograph (Thermo
Fisher Scientific) on a CP-Sil88 column for FAME (Varian,
100 m × 0.25 mm, 0.2 mm) and analyzed with an ion trap
PolarisQ mass spectrometer (Thermo Fisher Scientific). The
GC parameters were as follows: inlet at 250 °C, splitless in-
jection, helium as carrier gas at 1.5 ml/min; temperature pro-
gram − 55 °C for 1 min, followed by an increase of 5 °C/min
to 180 °C, then 10 °C/min to 200 °C, 200 °C for 15min, then a
rise of 10 °C/min to 225 °C, and 225 °C for 14 min; the total
run time was 59.50 min; injection volume was 1 μl. The peaks
were identified by comparing their mass spectrum and reten-
tion times with those of the corresponding standards. The
mass spectrum conditions were as follows: transfer line at
250 °C; ion source at 220 °C; collision energy at 35 eV, pos-
itive ionization mode. Fatty acid methyl esters were detected
using selected ion monitoring (SIM) mode in five segment
windows. In each chromatographic run, different ions were
monitored for each analyzed fatty acid, which allowed detect-
ing and quantifying m/z 101 and 143 for saturated fatty acids
(SFA), and 79 and 91 for monounsaturated fatty acids
(MUFA) and polyunsaturated fatty acids (PUFA), respective-
ly. The respective sums of SFA, MUFA, and PUFA were
expressed as the percentage of the total fatty acids.

Meager Nutritional Contribution

The nutritional intake of meager consumption was estimated
by taking into account concentrations of essential trace ele-
ments (Fe, Cr, Cu, Mn, Mo, Se, and Zn) and the sum of fatty
acids (EPA and DHA).

Fish consumption in the Mediterranean is about 20 kg per
capita per year, which represents 60 g of fish per capita per
day. The nutritional contribution was calculated based on the
formula of [17].

%NC ¼ C �Mð Þ � DRIð Þ½ � � 100

where C is the mean concentration of the mineral or contam-
inant (mg kg−1); M is the meal portion consumed (kg).

Trace Elements and Fatty Acid Profile of Argyrosomus regius (Asso, 1801) from Mediterranean...



Dietary reference intake (DRI) values were established by
the European Food Safety Authority [37] and the national
academies, engineering, and medicine [38].

Regarding EPA and DHA, the recommended intake
preventing cardiovascular disease ranges from 250 to
500 mg/day for the sum of the 2 fatty acids [37] .

Statistical Analysis

Data were analyzed using R and XLSTAT software [39].
Descriptive statistics (mean, standard deviation, minimum
and maximum) were applied. All TE data were checked be-
forehand, for goodness of fit to a normal distribution with
Shapiro-Wilk test and homogeneity of variance using a
Bartlett test. Data were natural log-transformed in order to
better meet the assumptions of standard parametric statistical
test, to reduce the effect of outliers on skewed data distribu-
tion, and to bring elemental concentrations within the same
range. TE concentrations that were found to be below their
analytical LD were considered as half of the LD value during
data statistical treatment. The correlation analysis is a useful
tool for analyzing similarities between paired data and is wide-
ly used in trace metal data analysis [40]. Spearman correla-
tions were used to investigate the relationship between TE
levels (inter-elementary correlations), setting a p value for
significance at 0.05.

Results

Trace Elements

The respective mean concentrations of TEs in the meager
muscle tissues are presented in Table 1. Variance analysis
showed a large variability (p ˂ 0.05) between element concen-
trations (Fig. 1) with concentrations ranging from < LD (Ag,
U, and V) to 4.5 ± 0.7 mg kg−1 ww (Zn). The distribution
pattern in TE concentrations follows the sequence Zn > Fe >
Al > Sb > Cu > Se > As > Mn > Sn > Ba > Li > Cr > Pb >
Mo > Cd > Bi > V >U >Ag with considerably higher concen-
trations of zinc (Zn) and iron (Fe). In contrast, concentrations
of U, V, and Bi were very low and below the ICP-MS detec-
tion limit.

Various degrees of correlations, both negative and positive,
were found between the elements (Table 2). For instance, pos-
itive correlations (p < 0.001) were found between Ba-Al (r =
0.75), Zn-Fe (0.78), Zn-Cu (r = 0.79), and Fe-Cu (r = 0.93),
while Sn-Pb concentrations showed a negative correlation
(p < 0.05).

Average levels of some non-essential trace elements (in
mg kg−1ww) from meager muscles of the study correspond
to As 0.240, Ba 0.019, Cd 0.001, Pb 0.004, and Sn 0.063.

They were always below (corresponding respectively to 2,
95, 0.05, 0.3, and 250).

The PTWI values recommended by the expert committee
on food additives (joint FAO/WHO Expert Committee on
Food Additives) [29] were used to compare the estimated
weekly intakes of TEs in this study (Table 3). The As, Cd,
Cr, Cu, Fe, Pb, Sn, and Zn intakes that were calculated taking
into account the mean contamination levels constituted only
9.8%, 0.09%, 0.10%, 0.01%, 0.05%, 0.31%, 0.01%, and
0.39%, respectively, of the PTWI kg−1, indicating that con-
sumption of such seafood can be considered safe.

Fatty Acids

Results for fatty acid (FA) composition of A. regius are pre-
sented in Table 4. The analysis revealed that the average mus-
cle lipid content was 1.1 ± 0.9%, ranging from 0.4 to 3.0%
(n = 15).

The fatty acid contribution (Fig. 2) shows that polyunsatu-
rated FA (PUFA) counts for 55.5% of the total fatty acids,
compared with SFA (26.8%) and MUFA (17.7%). This heat
map shows that the dominant fatty acids were C16:0 (palmitic
acid), C14:0 (myristic acid), C18:0 (stearic acid), C16:1
(palmitoleic acid), C18:1 (oleic acid), C18:2 n-6 (linoleic ac-
id), C20:5 n-3 (eicosapentaenoic acid (EPA)), and C22:6 n-3
(docosahexaenoic acid (DHA)). More precisely, palmitic acid
(C16:0), myristic acid (C14:0), and stearic acid (C18:0) were

Table 1 Mean and standard deviation (mean ± SD) and range
(minimum and maximum values) of trace element (essential and non-
essential) concentrations (mg kg−1 wet weight) in the muscle of meager

Trace element Mean ± SD Min Max

Essential Fe 2.8 ± 1.8 0.9 8.5

Cr 0.011 ± 0.008 0.002 0.041

Cu 0.29 ± 0.20 0.11 1.00

Li 0.017 ± 0.005 0.010 0.034

Mn 0.16 ± 0.30 0.04 1.50

Mo 0.001 ± 0.000 0.001 0.002

Se 0.273 ± 0.025 0.220 0.361

Zn 4.5 ± 0.7 3.4 6.7

Non-essential Ag < LD < LD < LD

Al 0.54 ± 0.63 0.08 2.38

As 0.240 ± 0.055 0.136 0.369

Ba 0.019 ± 0.019 0.004 0.070

Bi < LD < LD 0.001

Cd 0.001 ± 0.002 < LD 0.011

Pb 0.004 ± 0.003 < LD 0.014

Sb 0.448 ± 0.438 0.095 1.677

Sn 0.063 ± 0.070 0.001 0.266

U < LD < LD 0.001

V < LD < LD 0.002
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the major saturated FA (SFA) followed by the monounsaturat-
ed FA oleic acid (C18:1). Indeed, these 3 predominant SFA
constituted approximately 98% of the total SFA content of the
lipids contained in the meager muscle tissue.

Among the polyunsaturated FA, the n-3 series (∑ n-3 =
42.5%) were predominant compared with the n-6 series.
They are mainly represented by DHA (23.7 ± 6.3%) and
EPA (11.5 ± 1.7%), which together represented at least 64%
of all PUFA. Related indices (n-3/n-6; EPA/DHA) used to
assess the nutritional value of the muscle lipid fraction are also
shown in Table 4. The n-3/n-6 and EPA/DHA ratios indicate
the proportion of fatty acid in n-3 relative to that in n-6
contained in the fish lipids. For meager, ratios correspond to
3.3 ± 0.6% (n-3/n-6) and 0.5 ± 0.2% (EPA/DHA). Therefore,
both n-3/n-6 and EPA/DHA ratios were favorable in terms of
nutritional value in the meager muscle.

Potential Benefits of Meager Consumption

Essential element concentrations could vary, depending on the
sex. The dietary reference intake (DRI) of some elements can
be different between male and female (e.g., Fe, Table 5). Most
contributing essential TEs are selenium (Se = 191%), follow-
ed by zinc (Zn = 22%) and chromium (Cr = 17%). The results
also revealed that meager consumption may provide 71% of
the recommended daily intake of essential fatty acids (EPA +
DHA).

Discussion

In this paper, the contamination level (non-essential TEs) and
the quality (essential TEs and fatty acid composition) of

Argyrosomus regius muscle from aquaculture has been
assessed.

Trace Elements

The concentration levels of essential TEs (Zn > Fe > Cu >
Mn) in meager muscle found in this study are similar to those
described in the literature [41]. Mean Zn concentration (4.5 ±
0.7 mg kg−1 ww) is also consistent with data measured in fish
from conventional aquaculture (5.3 ± 0.4 mg kg−1 ww) [17].
Zn levels in fish muscle depend on several parameters such as
sex [24], diet [6], and the type of food [42]. In addition, the
results of this study (Table 5) are in agreement with those of
[17] and confirm that meager is a good source of essential
elements such as Se, highly recommended for the prevention
of cardiovascular disease and the optimization of life span
[43].

Unlike essential metals, biological functions of Pb, Cd, V,
and U remain unknown. Moreover, these elements could be
harmful for living organisms even at low concentration [44].
However, in this study, concentrations for Pb and Cd elements
were much lower than the limits established by European
legislation and the food safety regulations namely
0.3 mg kg−1 and 0.050 mg kg−1, respectively ([45] and its
amendments).

Results suggest a large difference in the TE composition
between farmed and wild meager. Indeed, the comparison of
TE concentration measure in our farmed meager with those
found in meager from the natural environment [45] showed
that muscles of wild fishmay contain up to 50, 44, 35, 5, and 4
times more Cd, As, Pb, Zn, and Fe, respectively. In contrast to
farmed fish, the high trace element content in wild fish may be
influenced by many exogenous factors (e.g., food sources,
spatial distribution) reflecting environmental conditions [46].

Fig. 1 Boxplot of the 19 trace elements in the muscles of Argyrosomus regius caught in Corsica
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Considering the trophic level, the diet, and the spatial dis-
tribution of the meager, it is important to mention its potential
exposure to the trace elements including mercury (Hg) (not
analyzed in this study). Mercury is one of the most persistent
metal contaminant [47]. Due to its high affinity for thiol
groups (present in key peptides and proteins), Hg accumula-
tion can cause deleterious effect [48] and ultimate mortality
[49]. The mean Hg concentrations in meager muscle deter-
mined by [50, 51] correspond to 0.255 mg kg−1 and
0.251 mg kg−1, respectively. They are above recommended
regulatory standards for human health. However, in contrast to
previous data that showed high concentrations of Hg in
A. regius muscles, a recent study by [52] revealed that under
heat stress, meager would be weakly concentrated in mercury,
which would induce a relatively moderate effect of the con-
taminant on human health. The fact that meager is a very
resilient species that adapts easily to environmental changes
[53] may explain these lower effects following exposure.

In our study, correlation analysis between TEs was con-
ducted (Table 2). Various degrees of mutual correlations were
found between Ba-Al, Zn-Fe, Zn-Cu, and Fe-Cu. Consistently
to our results, many studies reported positive inter-correlations
among these same TEs [54, 55]. These inter-correlations be-
tween the different elements may result from the similar ac-
cumulation behavior and/or may reflect a common source of
occurrence [56].

According to [57], meager is also a good source of seleni-
um (Se). Se is essential for the normal functioning of enzymes
that protect brain and endocrine tissues from oxidative dam-
age [58]. In addition, selenium has a natural mercury antago-
nistic effect that may neutralize the symptoms of high expo-
sure to this contaminant [51].

Fatty Acids

Lipids play an important role in fish development and metab-
olism by the production of energy and essential fatty acids [59,
60]. Overall, measured lipid content values correspond to oth-
er data found for this species [61] which confirm that lipid
contents of A. regius are very different from the other
European species (in particular sea bass, gilthead sea bream,

and trout), in which higher percentages of fat (from 2 to 5
times) occur [62–66]. The farming condition (organic aqua-
culture) could have influenced the diet and consequently in-
creased this low lipid content in the meager muscle [67].

Total saturated fatty acid (SFA) content of meager was
higher than MUFA. SFA is probably used by meager SFA
for energy production and its high levels may result from a
lipogenic activity [68]. Similar results have been reported

Table 3 Intake estimation for trace elements in meager. Provisional
tolerable monthly intake (PTMI-1 kg) in μg/week/kg body weight.
Provisional tolerable monthly intake (PTMI-70 kg) in μg/week/70 kg
body weight is followed by an asterisk (*). Provisional tolerable weekly
intake (PTWI-1 kg) in μg/week/kg body weight. Provisional tolerable

weekly intake (PTWI-70 kg) in μg/week/70 kg body weight. Estimated
monthly intakes (EMI) in μg/week/70 kg body weight is followed by an
asterisk (*). Estimated weekly intakes (EWI) in μg/week/70 kg body
weight

Elements PTMI*-1 kg/PTWI-
1 kg

PTMI*-70 kg/PTWI-
70 kg

EMI*/EWI

Al 2000 140,000 0.003320318

Cd 25* 1750* 0.000812088*

Sn 14,000 980,000 0.0003843

Table 4 The fatty acid profile in the muscle of the meager grown in
Corsica (% of total fatty acids). Values are mean ± SD and expressed as g/
100 g (for total lipids) or as percentages of total fatty acids (for fatty acids)

Fatty acids Mean ± SD Min Max

Capric acid (C10:0) 0.3 ± 0.0 LOQ 0.4
Lauric acid (C12:0) LOQ LOQ LOQ
Tridecyl acid (C13:0) LOQ LOQ LOQ
Myristic acid (C14:0) 2.2 ± 1.3 0.6 4.5
Palmitic acid (C16:0) 17.1 ± 3.9 12.3 24.9
Heptadecanoic acid (C17:0) 0.4 ± 0.1 LOQ 0.7
Stearic acid (C18:0) 6.9 ± 1.7 4.4 10.9
Arachidic acid (C20:0) 0.3 ± 0.0 LOQ 0.3
Docosanoic acid (C22:0) LOQ LOQ LOQ
Lignoceric acid (C24:0) LOQ LOQ LOQ
∑ Saturated fatty acids (SFA) 26.8
Palmitoleic acid (C16:1), n-7 2.9 ± 1.7 1.1 6.3
Heptadecenoic acid (C17:1), n-7 0.8 ± 0.5 LOQ 1.8
Oleic acid (C18:1), n-8 14.0 ± 3.9 11.5 24.7

∑ Monounsaturated fatty acids (MUFA) 17.7
Linoleic acid (C18:2), n-6 10.1 ± 1.3 8.0 11.3
Gamma linolenic acid (C18:3), n-6 0.4 ± 0.2 LOQ 0.6
Eicosadienoic acid (C20:2), n-6 0.5 ± 0.1 LOQ 0.6
Arachidonic acid (C20:4), n-6 2.6 ± 1.1 1.1 4.5
Alpha linolenic acid (C18:3), n-3 1.2 ± 0.8 0.5 3.0
Octadecatetraenoic acid (C18:4), n-3 0.4 ± 0.2 LOQ 0.7
di-Homo-ɣ-linolenic acid (C20:3), n-3 0.7 ± 0.1 LOQ 0.7
Eicosapentaenoic acid (C20:5; EPA), n-3 11.5 ± 1.7 6.8 13.7
Docosapentaenoic acid (C22:5), n-3 5.6 ± 1.1 3.9 7.8
Docosahexaenoic (C22:6; DHA), n-3 23.8 ± 6.3 13.9 34.1

∑ Polyunsaturated fatty acids (PUFA) 55.5
EPA + DHA 0.3
∑ n-3 42.5
∑ n-6 13.0
n-3/n-6 ratio 3.3 ± 0.6 1.1 4.1
EPA/DHA ratio 0.5 ± 0.2 0.3 0.9
Total lipids 1.0 ± 0.43 0.5 1.8

LOQ inferior to the lower limit of quantification (0.1% of total fatty acids)

Trace Elements and Fatty Acid Profile of Argyrosomus regius (Asso, 1801) from Mediterranean...



previously for the European sea bass [10, 69, 70]. Although
significant amounts of MUFA and SFA were found, PUFA
were the main fraction in all samples, suggesting that SFA

and MUFA could promote the improvement of PUFA muscle
deposition [71]. These results agree with those from [17].

Among the PUFA, n-3 series were 3 times more abundant
than n-6 series (ratio n-3:n-6 > 1). Overall, n-6 FAwere pres-
ent in lower quantities than other FA groups inmeagermuscle.
The amount of n-6 FA in farmed fish could be related to the
feed ingredients [61, 69]. Due to their reduced capacity for
chain elongation and desaturation, n-6 FA accumulate largely
unchanged in the lipids of marine fish [70]. That situation
seems to be a characteristic common to most marine fishes,
in particular, meager [23]. They contain lower quantities of
SFA compared with PUFA [72]. This study revealed that the
most abundant n-3 PUFA in muscle tissue were DHA and
EPA. They are vital constituents for cell membrane structure
and function [54, 55, 68]. These results were in accordance
with those of [17, 67] for the same species. Indeed, meager
was shown to have a rich PUFA content, particularly DHA
[73]. So, the higher levels of PUFA in phospholipids indicate
their preferential incorporation.

The n-3/n-6 and EPA/DHA ratios are useful indicators for
comparing the nutritional value of nutritional resources [74].
High ratios of n-3/n-6 play an important role in human health
as these prevent and reduce human cardiovascular diseases
[36, 75], which represent the second cause of death in
France after cancer [76]. Indeed, n-3 PUFA reduces cardiac
frequency [62, 63], (improves vascular function, reduces plas-
ma 20-hydroxyeicosatetraenoic acid and blood pressure in
patients with chronic kidney disease) [77]. Furthermore, in
the present study, it prevents human coronary diseases [78],
increases sensitivity to insulin [79], and reduces arterial
stiffness [80]. Inadequate dietary levels of PUFA can lead
to different kinds of skeletal malformations, an excess of
PUFA accelerated osteoblast differentiation, leading to a

Fig. 2 Heat map representing the relative abundance (%) of fatty acids in
the in the muscle of meager

Table 5 Nutritional contribution
(%) of meager in terms of
essential elements and EPA and
DHA, taking into account a meal
of 60 g

Adult consumers DRI (mg) C (mg/kg) M (kg) % NC

Essential elements

Fe Male 8 2.815 0.385 14

Female 18 2.815 0.385 6

Cr Male/female 0.025 0.011 0.385 17

Cu Male/female 0.9 0.285 0.385 12

Mn Male 1.8 0.161 0.385 3

Female 2.3 0.161 0.385 3

Mo Male/female 0.045 0.001 0.385 1

Se Male/female 0.055 0.273 0.385 191

Zn Male 11 4.519 0.385 16

Female 8 4.519 0.385 22

n-3 Fatty acids

EPA + DHA Male/female 250–500 3230 0.055 71

DRI dietary reference intake, C mean concentration of the element, M meal portion consumed, NC nutritional
contribution
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supernumerary vertebra [81]. Furthermore, it was found that
the n-3/n-6 ratio was high. These values are similar to those
found by Alasalvar et al., in cultured European sea bass.
Similarly to the n-3/n-6 ratio, the EPA/DHA ratio was high
(1:1). A high ratio has also been detected in the muscle of sea
bass and sea bream fed on diets with high proportions of
vegetable oils in [82]). Therefore, both n-3/n-6 and EPA/
DHA ratios were high in terms of nutritional value in the
meager muscle. Consequently, meager can be a considerable
source of essential fatty acids. Indeed, this study shows that up
to 71% of the daily recommended intake for semi-essential
fatty acids (EPA + DHA) can be covered by the consumption
of 20 kg of meager per capita per day.

Conclusion

In this paper, we analyzed the concentrations of 19 TEs
(essential and non-essential) and characterized the profile of
the fatty acids in the muscle tissue of Argyrosomus regius
from Mediterranean organic aquaculture. Analytical data for
non-essential TEs obtained from this study are below regula-
tory standards and thus suggest that farmed meager in the
Mediterranean Sea/Corsica presents no risk for human health.
Regarding fatty acids, the high level of PUFA, more specifi-
cally EPA and DHA (semi-essential fatty acids), found in this
fish species compared with those reported in other marine
species, shows that meager is a significant source of polyun-
saturated fatty acids. Additionally, high nutritional content in
selenium was found in muscle tissue. Although in this study,
mercury analysis was not taken into account, in view of all the
above, we conclude that meager can be considered as a source
of seafood with good nutritional properties for human health.
This does not exclude a permanent and effective monitoring of
their production in order to guarantee sustainable healthy
foods.
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