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Neuroimaging studies have demonstrated functional interactions between autonomic
(ANS) and brain (CNS) structures involved in higher brain functions, including attention
and conscious processes. These interactions have been described by the Central
Autonomic Network (CAN), a concept model based on the brain-heart two-way
integrated interaction. Heart rate variability (HRV) measures proved reliable as non-
invasive descriptors of the ANS-CNS function setup and are thought to reflect
higher brain functions. Autonomic function, ANS-mediated responsiveness and the
ANS-CNS interaction qualify as possible independent indicators for clinical functional
assessment and prognosis in Disorders of Consciousness (DoC). HRV has proved
helpful to investigate residual responsiveness in DoC and predict clinical recovery.
Variability due to internal (e.g., homeostatic and circadian processes) and environmental
factors remains a key independent variable and systematic research with this regard
is warranted. The interest in bidirectional ANS-CNS interactions in a variety of
physiopathological conditions is growing, however, these interactions have not been
extensively investigated in DoC. In this brief review we illustrate the potentiality of brain-
heart investigation by means of HRV analysis in assessing patients with DoC. The
authors’ opinion is that this easy, inexpensive and non-invasive approach may provide
useful information in the clinical assessment of this challenging patient population.

Keywords: central autonomic network, autonomic nervous system, disorders of consciousness, unresponsive
wakefulness syndrome, heart rate variability

INTRODUCTION

Clinical evidence and neuroimaging research have documented retained modular brain activation
and responsiveness in patients with Disorder of Consciousness (DoC) following brain injury even
in the absence of integrated large-network processes known to sustain consciousness (Laureys
et al., 2002; Bekinschtein et al., 2004, 2011; Owen et al., 2006; Monti, 2012; Naro et al., 2015;
Box 1). In this respect, residual responsiveness in DoC appears to be mediated by varying network
interactions (Riganello et al., 2013, 2015c; Crone et al., 2017; Duclos et al., 2017). Activation
restricted to lower-level primary sensory cortices without involvement of higher-order associative
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BOX 1 | Brain injury can result in a vegetative state/unresponsive wakefulness
syndrome (VS/UWS) characterized by arousal and spontaneous eye-opening
in the absence of any sign of awareness, finalized action or communication.
Levels of residual responsiveness define the Minimally Conscious State (MCS)
(Giacino et al., 2004). A 2006 provocative report presented the case of a
VS/UWS subject able to engage in mental tasks as indicated by her fMRI
patterns of brain activations (Owen et al., 2006). Levels of responsiveness
involving higher brain functions have been observed in subjects otherwise
classified as VS/UWS according to clinical criteria (Laureys et al., 2007; Boly
et al., 2008; Bruno et al., 2010; Owen, 2014; Pistoia et al., 2016; Riganello
et al., 2018b). These observations were mostly based on regional brain
activation in response to stimulus conditions in controlled setups;
stimulus-related functional changes in the autonomic nervous system (ANS)
function have also been described. Still highly debated, e.g., in subjects in a
VS/UWS, these observations challenge the current definitions and our
understanding of both responsiveness and consciousness, with an impact on
the clinical decision-making process (Laureys et al., 2010; Riganello et al.,
2016, 2018a,b). The extent to which regional brain activations can be
considered equivalent to, or compatible with behavioral responses in
indicating (residual or covert) consciousness remains controversial and the
current standards by which patients surviving severe brain injury should be
regarded as being conscious or unconscious have been questioned (Celesia,
2013; Celesia and Sannita, 2013). In this respect, scientific research has
introduced novel criteria of evaluation not yet fully integrated in the current
nosography of disorders of consciousness (DoC), which is now undergoing a
tacit, but not uncontroversial, revision (Monti and Sannita, 2016).

cortices has been described in vegetative state/unresponsive
wakefulness syndrome (VS/UWS) (Soddu et al., 2015; Marino
et al., 2017). Partially preserved activation in higher-order
associative cortices has been demonstrated in Minimally
Conscious State (MCS) (Di Perri et al., 2013, 2016; Demertzi
et al., 2015), whereas restoration of thalamocortical connectivity
has shown to relate to consciousness recovery (Laureys et al.,
2000; Monti et al., 2014). A large amount of research by means
of neuroimaging techniques has revealed that several aspects of
relatively high-level functions, including sensory and linguistic
processing and learning dynamics, can survive and remain
operative in DoC (Aubinet C- HBM 2018, Laureys et al., 2007;
Boly et al., 2008; Majerus et al., 2009; Bruno et al., 2010).

Neuroimaging studies have further shown functional
interaction between autonomic nervous structures [i.e., the
parasympathetic and sympathetic branch of the Autonomic
Nervous System (ANS)] and the neuronal networks involved
in higher brain functions, including attention and conscious
processes (Napadow et al., 2008; Thayer et al., 2012; Ruiz Vargas
et al., 2016; Valenza et al., 2017). Heart Rate Variability (HRV),
that is the physiological phenomenon of variation in the time
interval between consecutive heartbeats, is thought to reflect the
complex interaction between brain and cardiovascular system
(Thayer and Lane, 2009; Ernst, 2017). HRV entropy, a measure
of the complexity of HRV, has shown to discriminate VS/UWS
and MCS patients and was found to correlate with the ANS
functional status (Riganello et al., 2018b).

In agreement with this line of observation, indices of ANS
functions have proved reliable in detecting responsiveness and
predicting recovery following neuro-rehabilitation in VS/UWS
(Wijnen et al., 2006; Riganello et al., 2015a). There is growing
evidence that ANS function can be monitored non-invasively

and neuroimaging studies have provided evidence of the two-
way interplay between heart and brain. As a result, interest
in the bidirectional ANS-CNS interaction in a variety of
physiopathological conditions is growing (de Morree et al., 2013;
Riganello et al., 2014; Bassi and Bozzali, 2015; Chen et al., 2017;
Doehner et al., 2018), however, the ANS-CNS interaction in DoC
has so far not been extensively investigated.

ANS-CNS INTERACTION IN DOC

A concept model Central Autonomic Network (CAN)
(Benarroch, 2007b) has been proposed to describe the ANS-
CNS two-way interaction and the continuous modulation of
homeostatic processes and allostatic adaptation to internal
or external requirements (Friedman, 2007; Thayer et al.,
2012; Riganello, 2016). Its functional organization involves
the forebrain (anterior cingulate, nucleus accumbens, insula,
ventromedial prefrontal cortex, amygdala, and hypothalamus
with bidirectional interactions between rostral and caudal
systems), brainstem (periaqueductal gray, parabrachial nucleus,
nucleus of the solitary tract, and the reticular formation of
ventrolateral medulla). At spinal level it operates via neuronal
projections of segmental reflexive ANS control (Figure 1).
These structures receive converging visceral and nociceptive
inputs (including those from thermo- and muscle receptors) and
generate stimulus-specific patterns of autonomic response via
projections to preganglionic sympathetic and parasympathetic
neurons (Saper, 2002; Benarroch, 2007a). The forebrain and
brainstem are involved in the modulation of autonomic output
in response to pain and to emotional, behavioral, or “cognitive”
stimuli (Hagemann et al., 2003; Berntson and Cacioppo, 2004;
Thayer and Sternberg, 2006; Friedman, 2007; Thayer and Lane,
2009; Riganello et al., 2012a).

HEART RATE VARIABILITY AND
HEART/BRAIN INTERPLAY

HRV measures (i.e., variables analyzed in time domain, frequency
domain and non-linear measurements) describe the ANS
functional setup, and are thought to reflect higher brain functions
- at least to some extent - and to qualify as independent
indicators of CNS-ANS interaction (Napadow et al., 2008;
Thayer and Lane, 2009; Thayer et al., 2012; Tonhajzerova
et al., 2012) (Box 2 and Table 1). HRV measures reflect the
activity of physiological factors modulating the heart rhythm
and its adaptation to changing conditions (Carney et al., 2005;
Garan, 2009; Shaffer et al., 2014). The vagus nerve is the major
channel involved in the afferent neurological signals relayed
from the heart and other visceral organs to the brain, including
the baroreflex signals (de Lartigue, 2014). Brain morphological
variants in the right striatal and limbic structures involved in
the ANS functional organization were found to associate with
differences in cardiac vagal function (Thayer and Lane, 2000;
Napadow et al., 2008; Critchley, 2009; Lane et al., 2009) and to
significantly contribute in the information flow in all frequency
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FIGURE 1 | Central Autonomic Network (CAN) hierarchical organization and interconnections. Parasympathetic output is mediated mainly by the nucleus of the
vagus and nucleus ambiguous. Sympathetic output is mainly mediated by the intermediolateral column cell.

bands during sleep (Faes et al., 2014). In the absence of cardiac
disorders, stimulus- or condition-related HRV changes are in the
range of physiological variability and require processing in the
time and frequency domains or by geometrical or non-linear
methods to be identified (Task Force of the European Society
of Cardiology and the North American Society of Pacing and
Electrophysiology, 1996; Rajendra Acharya et al., 2006). HRV
methodologies benefit from being easy to record, inexpensive
and non-invasive as compared to neuroimaging techniques. HRV
measures are obtained from a signal (the heart tachogram)
with excellent signal-to-noise ratio; procedures for sophisticated
data analyses are usable without substantial loss in information
(Nait-Ali, 2009). HRV is easier to apply than alternative
techniques for ANS investigation (cardiac norepinephrine
spillover, microneurographic techniques, or direct recording
from skeletal muscle) (Berne et al., 1992; Esler, 1993; Wallin and
Charkoudian, 2007). It is particularly applicable in studies on
large subject samples or under experimental conditions where
accurate laboratory procedures are not possible, such as in case of
limited/null collaboration (e.g., in intensive/semi-intensive care
units or in DoC) (Mowery et al., 2008; Norris et al., 2008a,b;
Ryan et al., 2011).

HRV AND DOC

HRV is a possible index of consciousness attention (Babo-
Rebelo et al., 2016; Cobos et al., 2019) and emotional states

(Shi et al., 2017) in healthy subjects. The interaction between
consciousness, attention and HRV has been documented in
patients with DoC. VS/UWS and MCS subjects were more likely
to respond to standard visual and auditory stimuli when the HRV
normalized unit of LF (nuLF) ranged between 10–70 and LF
peaked around 0.1 Hz (Riganello et al., 2013), thus suggesting
a functional relationship between responsiveness and the
sympatho-vagal balance; a correlation between HRV parameters
and improvement of consciousness has been documented, and
higher value of nuLF associated to a better outcome in VS/UWS
patients (Riganello et al., 2015a; Wijnen et al., 2006).

In frequency domain, HRV total power (TP) as well as LF and
HF power were found significantly decreased in patients with
Glasgow Coma Outcome Extended (GOSE) (Weir et al., 2012)
score <5 (Hendén et al., 2014).

A correlation between HRV entropy (index of the brain-
heart interaction complexity) and brain activation has been
also described. Approximate Entropy (ApEn) values were lower
in VS/UWS patients than in healthy control whereas no
differences were found for all linear parameters [Root Mean
Square of Successive Differences between normal heartbeats
(RMSSD), Standard Deviation of RR peak (SDRR)] (Sarà
et al., 2008). We have recently found lower Multiscale Entropy
(MSE) values in VS/UWS than in MCS, which correlated with
the Coma Recovery Scale (CSR-R) total score. A functional
connectivity pattern involving the CAN system has been
documented, thus proposing HRV entropy as an indirect tool
to measure and monitor connectivity changes in this neural
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BOX 2 | HRV – Heart rate variability is defined
as the R-R interval fluctuation of normal sinus beats around its average
value. HRV is analyzed in time domain, frequency domain and by non-linear
methods both in short (usually 5 min) and long-time recordings (Task
Force of the European Society of Cardiology and the North American Society
of Pacing and Electrophysiology, 1996). ANS functional contributions can be
differentiated by analyses in the frequency domain, usually in three frequency
band: High Frequency (HF) (0.15–0.5 Hz), Low Frequency (LF) (0.04–0.15 HZ),
and (VLF) Very Low Frequency band (0.0033–0.04). The power, relative
power and peak of each frequency band, the normalized value of HF (nuHF)
and LF (nuLF) and the ratio between HF and LF (LF/HF) are the parameters
usually considered. HF reflects parasympathetic activity as the HR variations
related to the respiratory cycle. LF (0.04–0.15 Hz) mainly reflects baroreceptor
activity during resting conditions and is known also as “baroreceptor
range” (Malliani, 1995); it reflects contributions from both the parasympathetic
and sympathetic systems and blood pressure regulation via baroreceptors
and the baroreceptor activity in resting conditions (Malliani, 1995; Task
Force of the European Society of Cardiology and the North American Society
of Pacing and Electrophysiology, 1996; Berntson et al., 2007; Lehrer, 2007).
The parasympathetic system affects heart rhythms down to 0.05 Hz, while the
sympathetic system does not seem to generate rhythms above ∼0.1 Hz. In
humans, the delay in the feedback loops of baroreflex system have distinctive
high-amplitude peak in the HRV power spectrum around 0.1 Hz (Vaschillo
et al., 2011; Lehrer and Eddie, 2013) due to the feedback loops between heart
and brain (deBoer et al., 1987; Baselli et al., 1994). There is some evidence
for an association between VLF band (0.0033–0.04 Hz) and all-cause
mortality (Shaffer et al., 2014), however, the physiological mechanisms
responsible for activity within this band are not clear although probably
related to thermoregulation, the renin-angiotensin system, and other hormonal
factors (Akselrod et al., 1981; Cerutti, 1995; Claydon and Krassioukov,
2008). The LF/HF ratio has controversial interpretations, with the LF power
possibly generated by the sympathetic, the HF power by the parasympathetic
system and their ratio indicating both parasympathetic or sympathetic
dominance (Pagani et al., 1984; Montano et al., 1994). HRV descriptors
are also derivable by non-linear methods. Development in the non-linear
theories provides new instruments to analyse the entropy domain [such
as the simple or approximate entropy (ApEn)], better describe the complexity,
irregularity or randomness of HRV and its changes, the non-linear temporal
relationships with other metrics such as functional connectivity, and extract
information about the complexity of the two way brain-heart interaction (Norris
et al., 2006; Ryan et al., 2011; Shaffer et al., 2014; Riganello et al., 2018b).

system (Riganello et al., 2018b). In a Evoked Response Potential
(ERP) study based on nociceptive repeated laser stimulation
MCS showed partially preserved cortical activations, higher
ERP γ-power magnitude and Standard Deviation of Normal-
to-Normal intervals (SDNN) compared to VS/UWS patients
(Calabrò et al., 2017). Other studies on nociceptive stimulation
documented a correlation between the level of consciousness
and HRV-entropy (Riganello et al., 2018a; Tobaldini et al.,
2018), with lower values of entropy detected in VS/UWS than
in MCS patients or in healthy subjects, and correlated to the
CRS-R total scores (Riganello et al., 2018a). The above results
indicate a decrease of complexity in the modulation of the
response to noxious stimuli in VS/UWS subjects and a less
complex ANS modulation in the two way brain-heart interaction
compared to MCS.

Similar results have been observed in response to complex
(musical) stimuli. Music interventions were associated with
favorable behavioral and physiological responses in several
studies, however, methodological quality and outcomes were
heterogeneous (Grimm and Kreutz, 2018). After 14-day of

music stimulation SDNN and RMSSD of VS/UWS patients
increased, indicating the activity of the cardiovascular system
was enhanced (Lee et al., 2011). Contrasting observations
were found in the direction of the RMSSD values in a
work on MCS and VS/UWS patient, who were presented
live preferred music and live improvised music (O’Kelly and
Magee, 2013). A significant decrease in entropy was observed
in VS/UWS subjects listening to four musical pieces of different
structural complexity, whereas no differences between the same
selected musical pieces were observed in healthy controls under
comparable experimental conditions (Riganello et al., 2015b).
The quality (positive or negative) of the emotional responses was
correlated to extreme (low or high) nuLF values (Riganello et al.,
2010). Higher values in both time and frequency domain were
observed during affective than during non-affective auditory
stimulation in VS/UWS patients suggesting the possibility to
discriminate between different stimuli (Machado et al., 2007;
Gutiérrez et al., 2010).

The clinical and scientific evidence suggests a diagnostic and
prognostic relevance of HRV parameters in DoC of different
aetiologies (e.g., traumatic brain injury (TBI), haemorrhagic, and
anoxic) (Keren et al., 2005; King et al., 2009; Ryan et al., 2011;
Almeida et al., 2017). Decreased values in the different domains of
HRV analysis has been associated with worsened heath condition.
HRV parameters extracted in the time domain (SDNN, SDNN
index, and RMSSD) were also found decreased after TBI in the
absence of major DoC (Rapenne et al., 2001; DeGiorgio et al.,
2010; Kim et al., 2017) and associated to clinical worsening
and to mortality in the acute phase (Morris et al., 2006; Norris
et al., 2006; Mowery et al., 2008; King et al., 2009). In children,
suppression of LF and HF bands of the power spectrum were
associated with brain death and poor outcome (Goldstein et al.,
1993, 1998) and decreases in LF/HF was correlated with increases
in intracranial pressure and mortality (Biswas et al., 2000). In TBI
adults, decreased LF, HF, LF/HF, and TP were associated with
brain death, increased mortality, increased intracranial pressure,
and poor outcome (Winchell and Hoyt, 1997; Rapenne et al.,
2001; Papaioannou et al., 2006). Reduced HRV complexity has
proved to be an independent predictor of mortality (Batchinsky
et al., 2007). Decreased ApEn values have been associated to
increased mortality in acute TBI (Papaioannou et al., 2008; Gao
et al., 2016) and the MSE was found to identify trauma patients
at risk of in-hospital death, and predicts mortality independent of
probability of survival based on location and mechanism of injury
(Norris et al., 2008a,b).

COMMENT AND PERSPECTIVES

The CAN model of ANS-CNS functional interaction is helpful
to describe the phenomena underlying residual responsiveness
in DoC within the framework of homeostatic and allostatic
organization, at least in part and to a degree of pathophysiological
approximation (Friedman, 2007; Shen et al., 2016; Thome
et al., 2017). The suitability of HRV analysis in detecting
residual (covert) brain function in DoC has been documented
(Wijnen et al., 2006; Gutiérrez et al., 2010; Riganello, 2016;
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TABLE 1 | Most common measures used in HRV analysis.

Parameter Unit Description

Time domain SDNN/SDRR ms Standard deviation of NN/RR intervals In the time domain both sympathetic and
parasympathetic nervous systems contribute to
SDNN. Differently from “RR,” ”NN” means that
abnormal beats, like ectopic beats, have been
removed. RMSSD is used to estimate the vagally
mediated changes reflected in HRV. It is strongly
correlated with pNN50

SDANN Standard deviation of the average
normal-to-normal (NN) intervals for each of the
5 min segments during a 24 h recording

SDNN index Mean of the standard deviations of all the NN
intervals for each 5 min segment of a 24-h HRV
recording

pNN50 % Percentage of adjacent NN intervals that differ
from each other by more than 50 ms (pNN50)
(Task Force of the European Society of
Cardiology and the North American Society of
Pacing and Electrophysiology, 1996)

RMSSD ms Root mean square of successive differences
between normal heartbeats

Frequency Domain VLF,LF, and HF power
HF power

ms2 Absolute power of total or of the single band of
frequency calculated by FFT or Auto Regressive
model

HF, LF and VLF bands of frequency are associated
with several aspects of the ANS. The HF band
reflects parasympathetic activity and corresponds to
the HR variations related to the respiratory cycle. The
LF band reflects contributions from both the
parasympathetic and sympathetic systems. It mainly
reflects baroreceptor activity during resting
conditions. The sympathetic system is below 0.1 Hz.
The VLF band is associated to thermoregulation, the
renin-angiotensin system, and other hormonal
factors, but also to the intrinsic heart activity. The
normalized values (nuLF and nuHF) express the
quantities on a more easily understood proportion
(0–1) or percentage (0–100%) scale basis. The LF/HF
ratio is generally used to represents the ratio of
sympathetic to parasympathetic nerve activity, also if
the LF is contaminated by the vagal system. nuLF,
nuHF, as well as LF/HF ratio should be considered
equivalent carriers of information with regard to
sympathovagal balance (Burr, 2007)

nuLF nu Relative power of the low-frequency band in
normal unit

nuHF Relative power of the high-frequency band in
normal unit

LF/HF Ratio LF-to-HF power

Peak VLF, LF, and HF Hz Peak of frequency of VLF, LF, or HF band

Non-linear methods Approximate entropy Measures the regularity and complexity of a time
series

The entropy reflects of the amount of irregularity in the
R-to-R interval. Lower or higher values are index of
higher or lower complex activity of the ANS. Further
higher values were associated to a higher brain-heart
two way interaction. The SampEn was introduced to
counteract some shortcomings of the ApEn. The
SampEn does not count a self-match of vectors,
eliminating the bias toward regularity, and has been
suggested to be independent of data length (Yentes
et al., 2013)

Sample entropy Measures the regularity and complexity of a time
series. Sample entropy can be calculated from a
much shorter time series of fewer than 200 values

Multiscale entropy Quantify the degree of irregularity over a range of
time scales. The time series are constructed by
averaging the IBI/tachogram’s data points within
non-overlapping windows of increasing length
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Garbarino and Sannita, 2015). Autonomic function,
ANS-mediated responsiveness and the ANS-CNS interaction
qualify as possible independent indicators for clinical functional
assessment, diagnosis and prognosis in DoC (King et al.,
2009; Ryan et al., 2011; Sannita, 2015; Riganello, 2016). In
a reversed perspective, research on the residual modular
functions in DoC can provide unique information about brain
mechanisms/functions and ANS-CNS interplay that can be
investigated in these patients under experimental conditions
that are rigorously controlled (Monti, 2012; Riganello et al.,
2012b; Sannita, 2014; Shen et al., 2016; Chennu et al., 2017;
Kiryachkov et al., 2017).

Brain function is modulated by complex neural networks
and non-neuronal factors which interact with each other,
individually or collectively account for inter/intra-individual
variability, and reflect/depend on the circadian rhythms and
the wakefulness/sleep alternation (Bullock, 1970; Sannita, 2006;
Garbarino et al., 2014, 2019; Soddu and Bassetti, 2017). The HRV
concomitants of the major shift toward sympathetic activation
associated to peak cortisol levels at the morning sleep-to-
wake transition are an example in this regard (Bilan et al.,
2005; Boudreau et al., 2011, 2012). HRV proved reliable in
investigating the ANS-CNS functional interaction underlying
residual responsiveness in VS/UWS or MCS subjects (Wijnen
et al., 2006; Gutiérrez et al., 2010; Candelieri et al., 2011;
Sannita, 2015; Riganello, 2016). CNS and ANS setups, however,
change over time spontaneously or due to homeostatic or
allostatic requirements with different timing and latencies.
HRV measures at rest and in response to stimulus conditions
have higher time resolution and reflect rapid changes better
than clinical or neuroimaging markers of damage, with
greater variability during the day (Bekinschtein et al., 2009;
Candelieri et al., 2011; Riganello et al., 2013, 2015c; Abbate

et al., 2014; Sannita, 2015; Blume et al., 2017). Time appears
to be a source of variability adding to the variety of
environmental factors (light and noise in hospital settings,
timing of medication or non-pharmacologic interventions, co-
morbidities, etc.) also needing consideration, both as co-
determinants of the circadian rhythms (Soddu and Bassetti,
2017) and in view of the ANS major role in internal
environment constancy and adaptation that are fundamental
to homeostasis. Systematic investigation is still lacking and
appears advisable.
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