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This paper describes a method for the modeling of thin wires in the context of time-harmonic finite element simulations. The
approach exploits the exact solution of the infinitely long round wire problem to correct the edge element discretization of a magnetic
vector potential formulation, which enables edges in a finite element mesh to be modeled directly as thin conductors.
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I. INTRODUCTION

I In the presence of domains with high aspect ratio, the mesh
element size is constrained by the smallest dimensions of

the geometrical regions within the model. Hence, the con-
ventional finite element modeling of thin conducting regions
necessarily requires dense discretizations. But the challenge in
modeling thin conducting domains arises not only from the
geometrical constraints, but also from the field problem itself.
In the case of thin wires made out of linear isotropic materials
it is safe to assume that as frequency increases, the electric
current flows mainly on the outer surface of the conductor
due to the skin effect. Mesh refinement within the conductor
solves the inaccuracies in the solution but, at higher frequencies
the problem becomes computationally prohibitive. Due to the
computational cost of modeling thin conducting structures,
it is appealing to formulate new techniques that address the
aforementioned challenges by substituting the detailed problem
by a known one.

This paper describes an approach for the efficient and
accurate modeling of thin conductors, based on the cancellation
of the local mesh-dependent peak in the field, which follows
from the 1D idealisation of the wire, and the reintroduction of
the details of the field distribution inside the wire, accounting
for skin and proximity effect, by means of analytical solutions.

II. DESCRIPTION OF THE THIN WIRE PROBLEM

The problem addressed to explain the method is that of a thin
wire composed by a sequence of edges of the tetrahedral mesh
connected by their end-nodes, known as Line Regions (LR) [1].
The computational domain Ω := ΩC

c ∪ ΩLR is defined as the
union of the conducting domain ΩLR, and the complementary
non-conducting domain ΩC

c . The wire is supplied with a
sinusoidal current source I = Î cos(ωt + θ), where Î is the
current peak value in amps, ω the angular frequency in rad/s,
t the time in seconds, and θ the phase shift in radians.

In Fig. 1 a line plot presenting the distribution of the
magnetic vector potential az is shown. The curve labelled “Full
Model” is obtained with a fine conventional discretisation of
the wire with volume finite elements, whereas the ”LR w/o
correction” implies the use of idealized conducting edges. The

0 1 2 3 4 5 6 7 8

0.4

0.6

0.8

1

1.2

·10−6

r (mm)
a
z
(W

b
/m

)

Full Model
LR w/o correction

Fig. 1. Magnetic vector potential along the r-axis at 1Hz.

orange rectangle highlights the area where the conductor is
supposed to be placed.

The issue with the 1D thin wire idealisation resides thus in
that it results in the non-physical peak of the a-field observed
in Fig. 1 in the vicinity of the conducting edges. This mesh-
dependent peak indefinitely grows in amplitude as the mesh
is refined, and makes the computation of the flux embraced
by the wire and therefore of the impedance (which are both
mesh-independent quantities in principle) extremely inaccurate.
Figure 2 showcases the discrepancy in resistance (because
of the neglection of skin effect), and reactance (because of
the presence of the peak explained above) between these
two models. This manifests the need for a more accurate
representation of thin wires in finite element models.

III. LOCAL FIELD CORRECTION

The proposed solution consists in solving an auxiliary local
boundary value problem on a one-element-thick layer of finite
elements adjacent to the conducting line region ΩLR. We call
“sleeve” this cylindrical region, and denote it by Ωs. The
formulation solved on Ωs is identical to the formulation of
the general problem, except that a homogeneous Dirichlet
boundary conditions a = 0 is imposed on the external boundary
of the sleeve.

The details of the final a− v formulations will be given in
the extended paper. In this abstract it is enough to say that the
corrected a-field writes

(1)a = ac − aw + acorr,
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Fig. 2. Impedance of straight wire: Resistance (Top), Reactance (Bottom).

Fig. 3. Solution aw of the local auxiliary problem, and truncated ac − aw
field.

where ac is the solution of the global problem, aw is the local
solution of the same problem on the sleeve Ωs, and acorr is
a correction term depending on the analytical solution around
and inside a straight thin wire, of infinite length and radius R,
assuming zero field at an arbitrary distance R∞ >> R from
the wire.

The idea behind the correction (1) is that ac and aw contain
the same mesh-dependent unphysical peak, and that the peaks
are identical, up to a nearly uniform field, because they are
computed using the same finite elements. The peak in the
computed field, whose support is Ωs, is thus cancelled out
by subtraction, and the resulting field ac − aw is exact, up
to discretization errors, outside Ωs. Fig. 3 shows the solution
aw of the local auxiliary problem, and the truncated ac − aw

field. The third term in (1) restores the local distribution of
the field, knowing the real radius of the wire (not represented
in the mesh), the value of the current, and the local radius
rs of the sleeve, assumed here to be larger than the actual
wire radius, rs > R. The analytical solution to be used in the
expression of acorr depends on the problem solved. One has,

for a magnetodynamic problem,

(2)acorr(r) = −µ0Î

2π

(
µr

τ

J0(τ r
R )− J0(τ)

J1(τ)
+ log

( rs
R

))
ẑ,

for r ≤ R, where τ =
√

2i3/2R/δ, and where δ is the skin
depth.

The calculations have been performed for a radius R=0.5mm
and a current Î=1A. All calculations have been performed
using ONELAB software (Gmsh [5] and GetDP [4]).
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Fig. 4. Magnetic vector potential along the r-axis at 1Hz.
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Fig. 5. Impedance of straight wire: Resistance (Top), Reactance (Bottom).
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