

ESSENTIAL OIL-BASED BIOPESTICIDE FOR APPLICATION BY TREE-INJECTION IN FRUIT ORCHARDS

Clément Burgeon Pierre-Yves Werrie and Marie-Laure Fauconnier Laboratory of chemistry of natural molecules

Presentation summary

- Apple and pear productions
- Orchards main pests
- Conventional pesticides
- Essential oils in agriculture
- Research axes and progress
- Biological test : Rosy apple aphid
- Take home message

Apple and pear productions

3

- World = 89 million tons
- Europe = 10 million tons
- Belgium = 240,000 tons

- World = 16 million tons
- Europe = 2.6 million tons
- Belgium = 280,000 tons
 - (FAOSTAT, 2016)

Important market but many damages...

Apple scab – Venturia inaequalis (Cooke)

Codling moth of apples and pears-Cydia pomonella L.

Fire blight – *Erwinia amylovora* (Burrill)

Orchards main insect pests

Dysaphis plantaginea (Passerini) Malus domestica Borkh

Pageka plantagena C DNRA, Bennad Chauber

Cacopsylla pyri (L.)

Pyrus communis L.

- Sap sucking insects
 - Deformation / Loss of leaves and fruits
 - Decrease in photosynthesis
- Sugar-rich honeydew secretion (mold development)
- Disease transmission (phytoplasma)

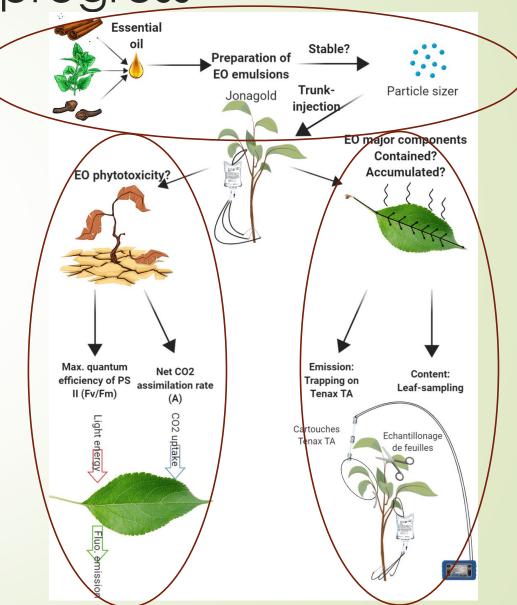
Yield loss of 20%!

Conventional pesticides

- Pyrethroids, neonicotinoids, etc...
- Effects on human health
- Chemical residues
- Biodiversity loss
- Water pollution
- Insects' resistance

Need for alternatives !

Essential oils in agriculture


- Renewable source
- Biological properties!
 - Repulsive and insecticidal properties
- Constraints

- High volatility
- Sensitivity to abiotic factors
- Phytotoxicity of some EOs

Research axes and progress

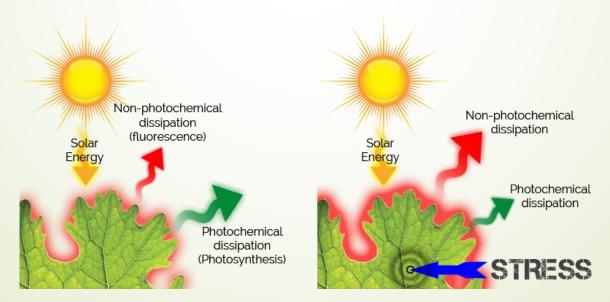
 1) Selection, formulation and application of essential oils

- 2) Study of phytotoxic properties
- 3) Emitted and contained volatile organic compound (VOC) profiles

1) Selection, formulation and application of essential oils

 Spearmint, peppermint, Thyme (savory leaf/ thujanol), Tea tree, Chinese cinnamon tree, Clove tree

- Essential oil nano-emulsion (<200nm) with tween surfactants</p>
- Design of a laboratory injection method

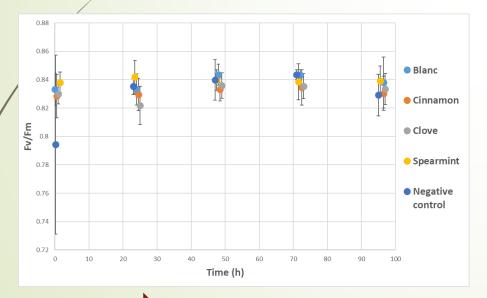


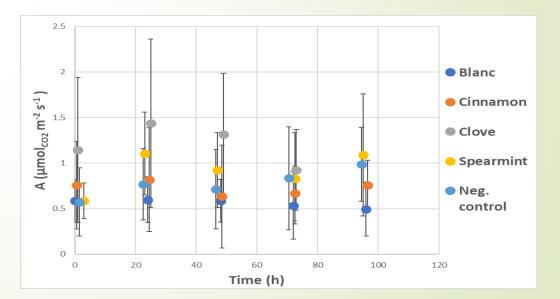
2) Phytotoxic properties of allelopathic compounds

- Inhibition of cell division and elongation
- Increases in cell membrane permeability
- Influence on respiration

9

Effect on plant photosynthesis




Photosynthetic activity of injected trees

Fluorimeter

10

- Maximum quantum efficiency of photosystem II (Fv/Fm)
- Infra-red gas analyser (IRGA)
- Net CO2 assimilation rate/ net photosynthetic rate (A)

No significant impact on the photosynthesis apparatus

3) Volatile organic compound (VOC) profiles emitted and contained

Leaf-emitted carvone

TDU-GC-MS/DHS-GC-MS

12

10

8

6

Δ

2

0

0

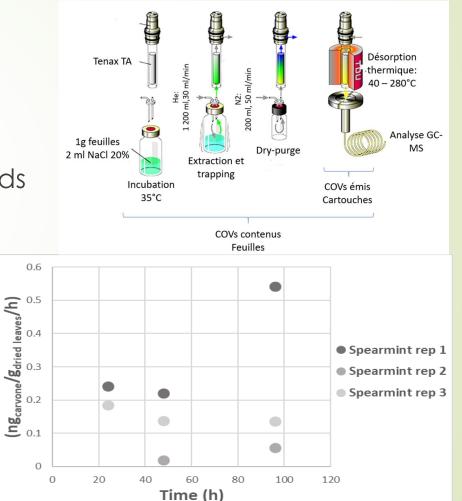
Carvone leaf content (ng_{carvone}/g_{dried leaves})

11

- Up to ng per g of dried leaf
- Essential oil major compounds quantification + other compounds modifications

40

20

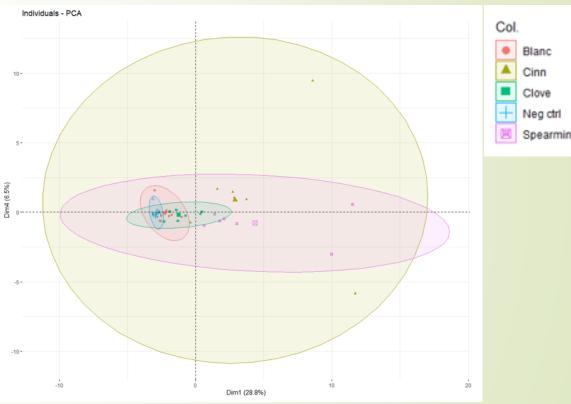

80

100

120

60

Time (h)



3) Volatile organic compound (VOC) profiles emitted and contained

 Principal component analysis (PCA) on the resulting profiles

Variation in terpene and stress compounds indicates a significant reaction of the plant


CP 3	СР 4
Caryophyllene	γ-Muurolene
(3E,7E)-4,8,12-	
Trimethyltrideca-	δ-Cadinene
1,3,7,11-tetraene	
Germacrene D	α-muurrolene
Methyl salicylate	Non identif 12
β-Ocimene	Methyl salicylate

Biological test : Rosy apple aphid

- Clip-cage on injected trees
- Dysaphis plantaginea larvae in stage 2

Significant death rate after 3 days of injection

Field trials: effective?

Effect on auxiliary insects?

Impact on fruit production?

Take home message

- Demonstration of diffusion and occurrence in the plant tissues
- Demonstration of the physiological impact of these xenobiotics on the plant
- Demonstration of efficiency on the target insects
- Essential oils can be used in agricultural practices as biopesticides

Thank you very much for your attention !

