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Abstract

Coal permeability is known to be affected by the sorption-induced strain. Indeed,
coal swells with gas sorption and shrinks with desorption, which is likely to modify
the cleat aperture and thus the permeability. Coal permeability evolution is crucially
important for either Coalbed Methane production (CBM) or Carbon dioxide Capture
and Storage (CCS).

A model is developed at the scale of the fractures to take into account the hydro-
mechanical couplings observed experimentally. It is implemented in the finite element
code Lagamine. This numerical model is developed at the scale of the fractures and
the matrix blocks. Fractures are modelled with interface elements specially adapted
to manage sorption/desorption by taking into account the Langmuir’s isotherm (Lang-
muir, 1918). In the matrix blocks, the sorption strain is assumed proportional to the
adsorbed gas content. Depending on the boundary conditions, sorption strain affects
the stress state and thus the fracture aperture. Contrary to macroscale models (Bertrand
et al., 2017), this model does not require the use of shape factors since the geometry
can be explicitly represented. The implementation of the model is validated by com-
parison with the analytical solution on a simple geometry. The model is finally used to
simulate gas injection on a representative elementary volume (REV) made up few ma-
trix blocks. This modelling highlights the interests of a numerical approach to compute
the permeability evolution compared to a porosity-based model.

Keywords: Numerical model, Analytical model, Permeability, Fractured medium,
Couplings, Swelling, Langmuir

1. Introduction

Coal seams generally contain large amounts of methane that can be recovered in the
form of natural gas, the so-called coalbed methane (CBM). This gas is mainly trapped
by sorption thanks to the high internal surface of the coal matrix, ranging from 20 to
300m2/g (Berkowitz, 1985). Un-mined coal seams are also interesting reservoirs in
the context of Carbon dioxide Capture and Storage (CCS) (White et al., 2005) in order
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to mitigate the climate change (Intergovernmental Panel on Climate Change - IPCC,
2015).

Coals are naturally fractured reservoirs and the fractures, termed cleats, are pref-
erential pathways for the methane production or carbon storage. The permeability of
the reservoir is mainly function of the aperture and the density of the cleats. Estimates
of cleat aperture under in situ confining stress vary from 0.1 to 0.0001mm (Harpalani
and Chen, 1997). Any change of the cleat network likely modifies the permeability of
the material. During gas production, the permeability is sensitive to two distinct mech-
anisms (Gray et al., 1987): the reservoir compaction due to the increase of effective
stress following the depletion of the reservoir, and the matrix shrinkage due to the gas
desorption. The reservoir permeability depends therefore on the net influence of these
two competing phenomena. Reversely, the injection of carbon dioxide leads to a com-
plex interaction with the matrix which involves coal swelling and is likely to affect the
permeability.

Many models taking into account the coal permeability evolution with the gas pres-
sure have been developed over the past few decades (Somerton et al., 1975; Schwerer
et al., 1984; Seidle et al., 1992; Gilman and Beckie, 2000; Pan and Connell, 2007, 2012;
Shi et al., 2014; Peng et al., 2017; Bertrand et al., 2017). However, these models are ei-
ther analytical formulations or macroscopic models. In this work, a hydro-mechanical
model is formulated at the scale of the coal constituents, i.e. cleats and matrix blocks,
and then implemented into the numerical code Lagamine developed by the University
of Liège (Charlier, 1987; Habraken, 1989). At this scale, a channel flow model is di-
rectly derived from Navier-Stokes equations and cleats are modelled thanks to interface
elements. It means the permeability evolution is not based on a porosity model and the
use of shape factor is not required since the geometry is explicitly represented.

In the following, the hydro-mechanical model for both the matrix and the cleats
is presented in details. The sorption isotherm is included in the formulation of the
gas transfer between the matrix and the cleats to account for the change of state. The
implementation in the finite element code is briefly presented with a special attention
paid to the interface elements. Then, the implementation of the model is validated
by comparison with analytical models. Finally, the numerical model is used for the
modelling on a representative elementary volume. The permeability alteration due to
CO2 is modelled for different boundary conditions.

2. Hydro-mechanical model

During gas production or storage, flows are advective in the cleats while it is dif-
fusive in the matrix since micropores are small compared to the gas mean free path.
Gas molecules are therefore firstly adsorbed or desorbed at the coal matrix-cleat inter-
face, what establishes a gas concentration gradient which is a driving force for the gas
migration in the matrix (Figure 1).
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Figure 1: Conceptual hydraulic model.

In the context of CBM or CCS, we are certainly interested in the modelling of this
fluid flow problem. However, since it is highly coupled, it can not be treated apart from
the mechanical problem. The hydro-mechanical model is presented hereafter first for
the matrix and then for the cleats.

2.1. Matrix

2.1.1. Mechanical problem
The matrix bodies verify the classic mechanical equilibrium Equation (1). Neglect-

ing the gravity term, this equation reads

∂σi j

∂x j
= 0 (1)

with σi j the Cauchy stress tensor.

An elastic constitutive law is assumed effective for describing the stress-strain rela-
tionship of the coal matrix before failure. The elastic constitutive model relates stress
and strain increments through the elastic stiffness tensor Ci jkl or inversely with the
elastic compliance Di jkl :

σ̃i j =Ci jkl ε̇kl ⇔ ε̇i j = Di jkl σ̃kl (2)

where ε̇i j is the Cauchy strain rate and σ̃i j is the Jaumann stress rate.

Considering an isotropic medium, the elastic constitutive tensors are defined by two
independent parameters, e.g. the Young’s modulus Em and the Poisson’s ratio νm. The
elastic compliance writes

Di jkl =
1
E
·


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 (1+ν) 0 0
0 0 0 0 (1+ν) 0
0 0 0 0 0 (1+ν)

 (3)
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The elastic stiffness tensor Ci jkl may be determined by calculating the inverse of
the elastic compliance Di jkl .

2.1.2. Hydraulic problem
Mass balance equation.

Gas is the lonely fluid considered in the matrix. On a unit volume, the mass balance
equation of the gas in the matrix is:

∂

∂t

(
ρg,Ad

)
+

∂

∂xi
(Jg

mi) = 0 (4)

where the first term is related to the mass variation of the adsorbed gas and the second
term is related to the gas diffusion. These two quantities are considered in the following
paragraphs.

Density variation.
The classical ideal gas equation of state is used to write the adsorbed gas density as

ρg,Ad =
Mg

RT
pg,Ad (5)

where R is the universal gas constant (8.3143 J/mol ·K), T [K] is the absolute tempera-
ture, Mg is the molecular mass of the gas (0.016 kg/mol for methane and 0.044 kg/mol
for carbon dioxide) and pg,Ad is the gas pressure in the matrix, i.e. an adsorbed gas pres-
sure.

Diffusive flows.
Due to its simplicity, Fick’s law (Fick, 1855) is the most popular approach to eval-

uate diffusive flows. It states the flux in the direction i for the species g diffusing in the
matrix (m) is directly proportional to the concentration gradient in that direction:

Jg
mi =−Dg

m
∂Cg

∂xi
(6)

In this equation, the determination of the phenomenological coefficient Dg
m is natu-

rally the most critical part of the equation. Rigorously, the thermodynamically correct
driving force for diffusion is the chemical potential gradient. Indeed, diffusion is a
spontaneous process reducing the total free energy. As the chemical potential gener-
ally increases with increasing concentration, it is convenient to express diffusion in
term of concentration or mass density.
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Molecular diffusion Knudsen diffusion

Figure 2: Different types of diffusion.

When the pores are very narrow, diffusing molecules collide with the walls much
more frequently than with other molecules. It results in a sliding of the gas molecules
along the internal walls of the porous network, it is the Knudsen diffusion (Figure 2).
The Knudsen number serves to distinguish which type of diffusion is predominant in
the transport process, it is defined as follows (Cussler, 2009):

κn =
l

dp
(7)

where l is the gas mean free path and dp is a characteristic length such as the mean
pore diameter of the porous media. Molecular diffusion (molecule-molecule collisions)
prevails when the pore diameter is greater than ten times the mean free path (i.e. κn
lower than 0.1). But if the mean free path is greater than ten times the pore diameter
(κn greater than 10), Knudsen diffusion (molecule-wall collisions) may be assumed. In
the intermediate, Knudsen diffusion and molecular diffusion compete with one another.
For liquids, the Knudsen number is generally small because the mean free path is a few
angstroms. For gas, the mean free path can be estimated as (Cussler, 2009):

l =
4kBT

π d2
g pg

(8)

where dg is the collision diameter of the gas molecule (3.3Å for CO2 and 3.8Å for CH4
(Ismail et al., 2015)), kB is the Boltzmann constant, T [K] is the temperature and pg[Pa]
is the pressure of the gas. For any given adsorbent and adsorbate, there is therefore a
transition from molecular diffusion at high pressures to Knudsen flow at low pressures.
For methane and coal, it has been estimated that the mean free path of the methane
molecule at standard conditions is about 50nm, it is substantially lower in deep coal
seams where higher pressure is encountered (Shi and Durucan, 2003). However, gas
diffusion in the coal matrix is more controlled by Knudsen diffusion due the extremely
small size of the pores of the matrix (lower than 2nm).

The Knudsen diffusion coefficient may be estimated by analogy of the kinetic the-
ory of rigid spheres that predicts (Cussler, 2009):

Dg
mK =

1
3

dpvg (9)

where vg is the molecular velocity of the gas. From the kinetic energy theory of
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molecules, we have:
1
2

Mgv2
g = kBT (10)

The Knudsen diffusion coefficient is then:

Dg
mK =

dp

3

√
2kBT
Mg

(11)

Actually, in fine micropores (lower than 1nm), the diffusing molecules never really
escape the potential field of the adsorbing surface. Therefore, their transport is an
activated process consisting by jumps from one adsorption site to the other (Shi and
Durucan, 2003). This transport process is thus more similar to surface diffusion (Figure
3) involving a diffusion coefficient Dg

mS[m2/s] which is proportional to the mean-square
jump distance [m2] and the jump frequency [s−1].

Adsorption
Desorption

Surface Diffusion

E
ac

Potential field
of adsorption

Figure 3: Schematic diagram of surface diffusion. Modified from (Wu et al., 2015).

As different mechanisms may be combined, the diffusion process is a complex
physical phenomenon. It is assumed it may be represented by a global phenomenolog-
ical parameter Dg

m[m2/s] to evaluate the diffusive flow Jg
mi with Equation (6) in which

the concentration Cg is replaced by the density ρg,Ad .

2.1.3. Hydro-mechanical coupling
A structural rearrangement of the matrix is induced by the variation of the adsorbed

gas pressure (Karacan, 2003). As a consequence, the matrix swells or shrinks. The
variation of the volumetric sorption-induced strain ε̇vs is approximately proportional to
the variation of the adsorbed gas content1:

ε̇vs = βε

Mg

RT
1

ρg,std ρc

∂pg,Ad

∂t
(12)

where βε[kg/m3] is the volumetric strain coefficient and ρg,std and ρc are respectively
the gas density at standard conditions and the coal density. Assuming an isotropic
swelling/shrinkage of the matrix, the mechanical constitutive equation becomes1:

σ̃i j =Ci jkl

(
ε̇kl−

1
3

ε̇vsδi j

)
(13)

1Positive tensile strain and stress.
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with δi j the Kronecker’s symbol.
Note the swelling may, to some extent, deviates from a linear relationship with

the gas content. However, given its wider and easier applicability, the linear law is
often chosen (Cui and Bustin, 2005). Using a non-linear model would not modify the
understanding on the hydro-mechanical behaviour of the material.

2.2. Cleats

Considering a matchstick geometry (Seidle et al., 1992), coal is defined by some
matrix blocks of width w separated by cleats (Figure 4). The mechanical aperture of the
cleats is h. However, a hydraulic aperture hb is considered for the hydraulic problem.
In 3D, the fracture is defined by the plane (x1,x3).

h

w

w

b

x
1

x
3

x
2

Figure 4: Definition of the geometry of the cleat with a flow along x1Modified from (Reiss, 1980).

2.2.1. Mechanical problem
The relation between the normal stress rate σ̇ and the fracture closure ḣ is defined

via the normal stiffness Kn
1:

σ̇ = Kn · ḣ (14)

Due to the deforming asperities, this relation should be non-linear (Gens et al.,
1990) (Figure 5). A hyperbolic law is used to account for the evolution of the stiffness
with the fracture closure (Goodman, 1976; Bandis et al., 1983):

Kn =
K0

n(
1+ ∆h

h0

)2 (15)

where K0
n is the stiffness corresponding to the aperture h0 and ∆h = h−h0.
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h

h

Compression

-

Figure 5: Constitutive law describing the normal behaviour of a rough rock joint. Modified from (Cerfontaine
et al., 2015).

For the tangential behaviour of the fracture, two states can be distinguished: the
stick and the slip states. In the first state, two points in contact are stuck together. In
the second state, there is a relative tangential displacement in the plane of the fracture.
The tangential variation of displacement in the direction i (1 and 3), ṡi, is related to the
shear stress in that direction, τ̇i, as1

τ̇i = Ks · ṡi (16)

where Ks is the shear stiffness of the fracture.

The two states can be distinguished by a constitutive criterion. One of the most
basic is probably the Mohr-Coulomb criterion. Using a single variable µ representing
a friction coefficient, the criterion reads

f = ||τ||−µ ·σ (17)

where ||τ|| is the norm of the shear stresses. The criterion is represented in Figure 6.

Stick state

Slip state

No contact

f=0

Figure 6: Mohr-Coulomb criterion.

When the combination of tangential and normal stresses lies below the criterion
( f < 0), it is a tangential stick state. It can be compared to an elastic state. In this case,
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the incremental relation between stresses and displacements readsτ̇1
σ̇

τ̇3

=

Ks 0 0
0 Kn 0
0 0 Ks


ṡ1
ḣ
ṡ3

 (18)

If the stress state lies on the criterion ( f = 0), then it is a slip state. Once this state
is reached, the elastoplastic constitutive relation is then

τ̇1
σ̇

τ̇3

=


Ks

(
1− (τ1)

2

||τ||2

)
−µKn

τ1
||τ|| −µKs

τ1τ3
||τ||2

0 Kn 0

−µKs
τ1τ3
||τ||2 −µKn

τ3
||τ|| Ks

(
1− (τ3)

2

||τ||2

)



ṡ1
ḣ
ṡ3

 (19)

The cohesion c can be used as second parameter to define the general Mohr-Coulomb
criterion. Note that many others constitutive laws also exist, taking into more complex
behaviours of fractures with damage for instance. But it is not of primary interest in the
context of gas flow modelling and hydraulic fracturing is not modelled in this work.

2.2.2. Hydraulic problem
Two kinds of flow are distinguished in the cleats, transverse and longitudinal flows

(Figure 7). Transverse flows qT represent the gas transfer between the cleats and the
matrix while the longitudinal multiphase flows qL occur in between the fracture walls.
The longitudinal flow of the gas species consists of the flow of the dry gas and the flow
of the dissolved gas in the water phase. For the sake of simplicity, the hydraulic prob-
lem described in the following is written considering only a longitudinal flow along x1
and not x3.

Matrix

Cleat

Adsorbed gas

Free gas

MatrixAdsorbed gas

p
b

p
Ad

p Ad

x2

x1

Figure 7: Cleats flow model.

Mass balance equations.
The unsaturated model considers both gas and water in the cleats. The mass balance
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equation for water is:

∂

∂t
(ρw Sr hb)+

∂

∂x1
(ρw hb qlL) = 0 (20)

where ρw is the water density, Sr is the degree of saturation, hb is the hydraulic aperture
and qlL the liquid advective flows along the fracture. A second longitudinal flow should
appear in the equation when 3D conditions are considered. There is no transverse flow
since water is not considered in the matrix. Note the cleat is considered as an entirely
void volume and no porosity therefore appears in this equation. Moreover, the water
vapour is not considered.

Concerning the mass balance equation for gas, it reads:

∂

∂t
(ρg, f (1−Sr) hb)

+
∂

∂x1

(
ρg, f hb qgL

)
+

∂

∂x2

(
ρg, f hb (q1

gT −q2
gT )
)

︸ ︷︷ ︸
Gas phase

+
∂

∂t

(
ρ

d
g, f Sr hb

)
+

∂

∂x1

(
ρ

d
g, f hb qlL +Sr hb Jg

l L

)
︸ ︷︷ ︸

Dissolved gas in water phase

= 0

(21)

where ρg, f and ρd
g, f are respectively the densities of the gas and the dissolved gas in

the water. Jg
l L represents the diffusive flows of the dissolved gas in the liquid phase,

it is determined with a Fick’s law. qgL represents the longitudinal flow and q1
gT and

q2
gT the two transverse flows. The formulations of these advective flows are described

hereafter.

Thermodynamic equilibrium.
The density of the dissolved gas is obtained with the Henry’s law assuming a ther-

modynamic equilibrium between the dissolved gas and the dry gas (Collin et al., 2002):

ρ
d
g, f = Hgρg, f (22)

where Hg is the so-called Henry’s coefficient (Hg = 0.0347 for methane and Hg =
0.8317 for carbon dioxide).

Density variations.
The density ρw of the liquid phase evolves with the pressure pw according to:

ρw = ρw0

(
1+

pw− pw0

χw

)
(23)

where ρw0 is the liquid density at the pressure pw0 and 1/χw is the liquid compressibil-
ity. At 20◦C, 1/χw = 5 ·10−10Pa−1.

10



The classical ideal gas equation of state is used to write the gas density in the
fractures as

ρg, f =
Mg

RT
pg, f (24)

where pg, f is the gas pressure in the fractures.

Gas transfer.
The quantity of gas stored in the matrix in function of the pressure in the cleats

depends on the Langmuir’s isotherm. Thence, in order to evaluate the gas transfer be-
tween the matrix and the fractures, the fracture pressure is translated with the isotherm
into an adsorbed gas pressure. Given a pressure p in the cleat, the gas pressure in the
matrix must tend (from its boundary) to:

pb
g,Ad =

RT
Mg
·ρg,std ·ρc

VL · p
PL + p

(25)

where the pressure in the cleat can be evaluated by weighting the water and gas pres-
sures by the saturation of each phase:

p = Sr pw +(1−Sr)pg, f (26)

Then, the gas transfer from the matrix to the cleat is proportional to the difference
between the adsorbed gas pressure at the boundary of the matrix and the limit pressure
pb

g,Ad :

qgT =−Tt ·
Mg

RT
· (pb

g,Ad− pg,Ad) (27)

where Tt is the gas transverse transmissivity of the fracture. Actually, for unsaturated
conditions, Equation (27) can be used without fear for desorption (i.e pb

g,Ad is lower
than pg,Ad). But for adsorption, it must be verified that gas is available to be adsorbed.

Channel flow model.
The motion of compressible Newtonian fluids is described by the Navier-Stokes

equations. These equations result from the application of the Reynolds transport theo-
rem to the fluid density ρ and the momentum ρv. Considering a constant density and
if there is any source or sink of mass, the conservation of mass reduces to conservation
of volume:

∂vi

∂xi
= 0 (28)

According to Cauchy momentum equation, the source term in the balance of the
momentum may be decomposed into the surface forces (normal and shear stresses)
and the body forces, such as gravity. Considering Equation (28), the conservation of
momentum gives the following formulation of the Navier-Stokes equations:

ρ

(
∂vi

∂t
+ v j

∂vi

∂x j

)
=− ∂p

∂xi
+µ

∂2vi

∂x2
j
+ fi (29)
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where ρ is the fluid density, vi are the components of the fluid velocity, t is the time, p
is the pressure, µ is the dynamic viscosity and fi is an external body force.

Under the assumption the cleats are two closely-space parallel plates separated by
an aperture hb (Figure 4), the geometry is known and we can derive the constitutive
flow law directly from Navier-Stokes. This channel flow model is straightforward, it
allows to directly link the fluid velocity with the fracture aperture.

Assuming laminar flow
(

v j
∂vi

∂x j
= 0
)

and steady state conditions
(
∂vi

∂t
= 0
)

, the

momentum Equation (29) reduces to Equation (30) when no body force is considered.

∂2vi

∂x2
j
=

1
µ
∂p
∂xi

(30)

h
x

x2

1

v (x )1 2

b

Figure 8: Laminar fluid flow profile between two parallel plates.

The following non-slip boundary conditions are considered at the walls:

v
(

x2 =±
h
2

)
= 0

Moreover, the flow is only carried by the x1 component:
∂p
∂x2

= 0. It leads to the

following parabolic profile where the maximum velocity is reached in the middle of
the channel:

v1(x2) =−
1

2µ

((
hb

2

)2

− x2
2

)
dp
dx1

(31)

Then, averaging the velocity over the thickness h leads to:

q = 〈v1〉=
1
hb

∫ hb
2

− hb
2

v1dx2 =−
h2

b
12
· 1

µ
dp
dx1

(32)

This channel flow Equation (32) is known as the Hele-Shaw relation (Gustafsson
and Vasil’ev, 2006). Using the distance s along the channel to generalize the example,
we can write
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q =−
h2

b
12
· 1

µ
dp
ds

(33)

It is equivalent to the Darcy’s equation with a permeability equal to k =
h2

b
12

(Darcy,
1856; Witherspoon et al., 1980), it is function of the fracture aperture.

The channel flow model has been derived with no-slip boundary conditions. How-
ever, it may be not the case for gas flow. If the Knudsen number (κn) is less than 0.01,
then viscous flow dominates: the fluid is immobile at the pore wall and Equation (33)
can be applied. If κn is comprised between 0.01 and 0.1, slip flow regime occurs and
our flow model should be modified to account this effect. For higher values of κn,
equations of diffusive flows are employed.

The problem of gas slippage in capillary tubes and its effect on permeability in
porous media was first addressed by Klinkenberg (Klinkenberg et al., 1941). A model
for the flow between two parallel plates is derived in Appendix A, it gives the perme-
ability should be multiplied by a dimensionless correction factor fc given by:

fc =

(
1+

b
p̄

)
with

b
p̄
=

6 c l̄
hb

= 6 c κn, (34)

where c≈ 1, p̄ is the mean gas pressure and b is the Klinkenberg number. For a capil-

lary tube, it has been found that
b
p̄
=

4 c l̄
r

with r the effective pore radius (Klinkenberg

et al., 1941). Note that the gas permeability is a function of the mean free path l of the
gas molecules, it depends therefore on the pressure, the temperature and the nature of
the gas. Considering a fracture aperture of few micrometers, the correction factor at
reservoir temperature conditions is less than 1% for a CO2 or CH4 pressure of 1MPa.

Finally, if gas and water flows are simultaneously considered in the cleats, it is
necessary to extend the model to unsaturated conditions. In this purpose, relative per-
meability kr may be introduced as a measure of the reduction in permeability to a given
phase that occurs between partially and fully saturated conditions. Some specific rela-
tive permeability curves for the fractures are derived in Appendix B. It reads

krw =
S2

r

2
(3−Sr) ; krg = (1−Sr)

3 (35)

The saturation degree is obtained from the retention curve, like the Brooks-Corey
equation (see Equation B.33 in Appendix B)

2.2.3. Hydro-mechanical couplings
The first coupling is the direct dependency of the permeability on the fracture aper-

ture, which is stress-dependent. To take into account the non-smoothness of the fracture
walls, an hydraulic aperture is considered rather than a mechanical one. The hydraulic
aperture hb is derived from the mechanical one h according to the following linear
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relation:
hb = hmin +h (36)

It means a fracture which is mechanically closed (h = 0) still allows a flow to
circulate between the asperities if a non-zero minimal hydraulic aperture hmin is defined
(Figure 9). Actually, an exponential law could also be applied to relate the hydraulic
aperture to the mechanical aperture (and the JRC) (Barton et al., 1985; Olsson and
Barton, 2001).

h
b = h

min

+ h

h
b = h

min

h h
b

h=0

Figure 9: Relation between the hydraulic and the mechanical aperture. Modified from (Marinelli et al., 2016).

A second coupling is created by the storage component. Indeed, the variations of
the total masses of water Ṁw and gas stored Ṁg in the cleat come from a rheological
part, i.e the variations of the fluid densities and the saturation of each phase, but also
from a geometric part, i.e the opening/closure of the gap and the variation of the surface
of the discontinuity:

Ṁw = ρ̇w Sr hb Γ+ρw Ṡr hb Γ+ρw Sr ḣb Γ+ρw Sr hb Γ̇︸ ︷︷ ︸
Hydro-mechanical coupling

(37)

and
Ṁg = (ρ̇g, f (1−Sr)+ ρ̇

d
g, f Sr +ρg, f (1− Ṡr)+ρ

d
g, f Ṡr) hb Γ

+(ρg, f (1−Sr)+ρ
d
g, f Sr) (ḣb Γ+ hb Γ̇)︸ ︷︷ ︸

Hydro-mechanical coupling

(38)

where Γ is the surface of the discontinuity.

Inversely, the fluid flow within the cleat also influences its mechanical behaviour.
The total pressure σ acting on each side of the fracture can be decomposed into an
effective mechanical pressure σ′ and a fluid pressure p in the fracture defined by Equa-
tion (26). Then, the mechanical constitutive law defined in section 2.2.1 must be treated
with reference to the effective stress1:

σ
′ = σ+ p (39)

rather than the total pressure σ.
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2.3. Continuum formulation

2.3.1. Mechanical problem
For the mechanical problem, let consider two media Ω1 and Ω2 representing for

instance two matrix blocks (Figure 10). Their boundaries are termed Γ1 and Γ2 with
Γ1

c and Γ2
c denoting parts of the boundaries where contact is likely to happen.

1

2

2

1

Figure 10: Definition of the mechanical problem.

Each of these solids verifies the mechanical equilibrium Equation (1). Solving the
mechanical problem consists in finding the field of displacement verifying the equi-
librium under the constraint of a non-zero pressure along the contact zone Γc. In this
purpose, the weak formulation is obtained considering an admissible virtual velocity
field v∗i . The virtual power principle reads

2

∑
k=1

[∫
Ωk σi j

∂v∗i
∂x j

dΩ
]
=

2

∑
k=1

[∫
Γk

ti

t i v∗i dΓ+
∫
Γk

c

T k
i v∗i dΓ

]
(40)

where t i are the imposed tractions and T k
i is the projection of the local stress tensor in

global coordinates.

2.3.2. Hydraulic problem
The hydraulic problem considers the presence of the third volume Ω3 to represent

the discontinuity creating a preferential pathway for the fluid flow (Figure 11). This
volumeΩ3 is bounded by the boundaries Γ1

q̃ and Γ2
q̃ corresponding to the regions where

Ω1 and Ω2 are close from each other. The fluid flows between Ω3 and the solid bodies
Ω1 and Ω2 are non-classical boundary conditions for these bodies since neither the
flow nor the pressure is imposed. Elsewhere, imposed flux boundaries on Ω1 and Ω2

are denoted by Γk
q with k = 1,2.
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Figure 11: Definition of the flow problem.

For gas, these three volumes verify the hydraulic equilibrium Equations (4) and
(21) with a non-classical boundary given by Equation (27). Considering a field of
admissible virtual gas pressure p∗g, the weak form of the virtual power principle is

3

∑
k=1

[∫
Ωk Ṡg p∗g− f k

gi

∂p∗g
∂xi

dΩ
]
=

3

∑
k=1
−

[∫
Γk

qg

qg p∗g dΓ +
∫
Γk

q̃g

q̃g p∗g dΓ

] (41)

where k = 1,2 corresponds to the matrix blocks in contact and k = 3 to the volume
of the cleat. For Ω1 and Ω2, the storage term Ṡg is the variation of the adsorbed gas
mass. For Ω3, it is the mass variation given by Equation (38) over a unit surface of
discontinuity. f k

gi
is the gas flux, advective or diffusive, inside Ωk. qg and q̃g are the

fluid flows along the different boundaries.
The integral over Ω3 may be transformed into a surface integral over Γ1

q̃g
assuming

the inner pressure is constant over the fracture aperture. The flux f k
gi

is replaced by
the longitudinal flux fgL and the flux q̃g is replaced by the transverse fluxes f k

g T . The
integral over Ω3 reads∫

Γ1
q̃g

[
Ṡg p∗g− fgL

∂p∗g
∂x1

]
hb dΓ=−

∫
Γ1

q̃g

( f 1
g T − f 2

g T ) p∗g dΓ (42)

where the internal longitudinal flux of the gas species fgL is given by (along x1):

fgL = ρg, f qgL +ρ
d
g, f qlL +Sr Jg

lL
(43)

and the two transverse fluxes f 1
g T and f 2

g T are (along x2):

f k
g T = ρg, f qk

gT
(44)

Similarly for water, equilibrium Equation (20) has to be verified. Considering a
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field of admissible virtual water pressure p∗w, and as water transfers are not allowed
between the cleat and the matrix, we finally have∫

Γ1
q̃w

[
Ṡw p∗w− fwL

∂p∗w
∂x1

]
hb dΓ= 0 (45)

where the storage term Ṡw is the mass variation Ṁw over a unit surface of discontinuity
and fwL = ρw qlL .

The final step is the discretization of these governing equations with finite elements.

3. Finite element formulation

The hydro-mechanical model presented in the previous section is implemented in
the FE code Lagamine. The finite element method is extensively described in the liter-
ature (see for instance (Zienkiewicz and Taylor, 2000)). It is certainly the case for the
continuum elements used to discretize the matrix. Cleats are discretized with elements
of zero-thickness which are probably less usual. A particular attention is therefore
given to the interface elements. The elements which served as a basis for the cleat
discretization are described for water saturated conditions in (Cerfontaine et al., 2015).
This section is mainly focused on the specificities of the formulation of the new model.

3.1. Space and pressure discretization

The governing equations are discretized based on a segment-to-segment approach.
A three-node formulation is adopted to described the fluid flow through and within the
interface. In 3D, it means twelve nodes are required for the complete representation
of the interface (Figure 12). There are four nodes with three mechanical degrees of
freedom (coordinates x,y,z) and at least one fluid degree of freedom per node. For the
two sides of the interface, this fluid degree of freedom is the adsorbed gas pressure
pg,Ad while it is the gas pressure pg, f for the inner nodes.

1

2
2'

6

1'

5

4
4'
8

3
3'
7

{x,y,z,p  }

{p}

{x,y,z,p  }
Ad

Ad

Figure 12: A 3D interface element defined by 12 nodes.

For the matrix, 8-nodes 3D elements are used to match the 3D interface element
presented above. The mechanical and hydraulic degrees of freedom are gathered into a
vector umn of generalised coordinates with m the number of degrees of freedom of the
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node n. These coordinates are continuously interpolated over the element with classical
linear interpolation functions N(n).

3.2. Energetically equivalent nodal forces

3.2.1. External forces
The energetically equivalent nodal associated to the node n are computed numer-

ically for a single interface element from Equation (40) using a Gauss-scheme. The
mechanical nodal forces acting on the boundary of one of the elements are computed
as

FΩe
E,mn

= ∑
IP

[
tm N(n) det(Ji j) WG

]
IP

(46)

with m = 1,2,3 the mechanical degrees of freedom and n = 1,2,3,4 or n = 5,6,7,8
the nodes used to compute the mechanical forces on the first side of the interface Γ1

c or
the other side Γ2

c . In both cases, the imposed traction tm and the components of the Ja-
cobian matrix Ji j of the transformation to the isoparametric system are computed with
respect to the local system of coordinates of Γ1

c . WG is the Gauss weight corresponding
to the integration point IP.

For the flow problem, transverse flows involve energetically equivalent external
forces related to gas degrees of freedom. For water, it is not considered but for gas,
the contribution of the interface to the external virtual power is derived from Equation
(42). It is numerically computed on the boundary of Ω1 according to

FΩe
E,4n

= ∑
IP

[
( f 1

g T − f 2
g T ) N(n) det(Ji j) WG

]
IP

(47)

with f 1
g T and f 2

g T defined by Equation (44) instead of the classical definition based on
a difference between the interface inner node and the solid node.

3.2.2. Internal forces
The energetically equivalent internal forces due to the gas flows along the interface

are derived from Equation (42) adapted in 3D. It is numerically computed according to

FΩe
I,4n

= ∑
IP

[(
Ṡg N(n) − fgL 1

∂N(n)

∂x1
− fgL 2

∂N(n)

∂x2

)
det(Ji j) WG

]
IP

(48)

Similarly for water, the energetically equivalent internal forces due to the longitu-
dinal water flows inside the interface fwL is derived from Equation (45).

3.2.3. Out of balance forces
Internal and external nodal forces are gathered together to compute the global vec-

tors FI,mn and FE,mn . Solving the numerical problem consists to obtain the equality
between these two vectors. The out of balance forces vector is computed as

FOB,mn = FE,mn −FI,mn (49)
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In order to obtain FOB,mn = 0, generalised coordinates ∆umn are iteratively cor-
rected by:

∆umn =−

[
∂F t

OB,lk
∂umn

]−1

F t
OB,lk =−

[
Kt

lkmn

]−1
F t

OB,lk (50)

where Kt
lkmn

is the stiffness matrix at time step t.
Note the fluid flow problem is naturally time-dependent and requires the discretiza-

tion of time. It is assumed the media in contact are initially in equilibrium at a given
time t (FOB,mn = 0) and the equilibrium of the discretized system is then written at
t +∆t with an implicit scheme.

3.3. Stiffness matrix

The stiffness matrix Klkmn is computed analytically by derivation of out of balance
forces:

Klkmn =
∂FOB,lk
∂umn

(51)

A description of the components of the stiffness matrix for the interface elements
may be found in (Cerfontaine et al., 2015), it was adapted to gas degrees of freedom by
taking into account the gas equation of state (24).

Finally, for the continuum elements discretizing the matrix, the shrinkage/swelling
due to the adsorbed gas pressure evolution is taken into account like it would be done
for thermal dilatation in the code. Thence, from the constitutive Equation (13), the
couplings terms of the stiffness matrix accounting for the influence of the adsorbed gas
on the mechanics read

∂FOB,ik
∂pg,Ad n

=∑IP

[
1
3 βε

Mg
RT

1
ρg,std ρc

(1−ν) E
(1+ν)(1−2ν)

∂N(k)

∂xi
det(Ji j) WG

]
(52)

with i = 1,2,3 the three mechanical degrees of freedom.

4. Analytical validation

In order to validate the implementation of the model in the finite element code, ba-
sic simulations are completed to compare the numerical results to analytical solutions.
Actually, many different analytical models were developed in the literature to take into
account the hydro-mechanical couplings influencing the permeability evolution (Pan
and Connell, 2012). Most of these models are based on the cleat porosity evolution.
The typical model found in the literature is an exponential equation.
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4.1. Exponential model
From Equation (33), the permeability governing the fracture flow in Darcy’s equa-

tion is2

kcleat =
h2

12
(53)

Considering a fractured rock with a spacing w between a set of parallel fractures,
the equivalent permeability of this set is

k = kcleat ·
h
w

=
h3

12w
(54)

From this cubic law, the permeability evolution may be approximated as (Seidle
et al., 1992):

k = k0

(
φ

φ0

)3

(55)

where k is the permeability and φ the fracture porosity. The index 0 denotes a reference
state.

Furthermore, the porosity evolution is generally expressed in terms of pore and
bulk strains, respectively εp and εb (Cui and Bustin, 2005):

dφ

φ0
= dεb−dεp (56)

These strains increments may be decomposed into mechanistic and swelling strains
increments. Then, the mechanistic strains increments are expressed in terms of stiff-
ness or compressibility and pressure increments (confining and pore pressures) (Zim-
merman et al., 1986). Neglecting the cleat stiffness in comparison to the bulk stiffness
and, under the approximation of constant cleat stiffness, Equations (55) and (56) finally
give (rock mechanics convention) (Cui and Bustin, 2005; Connell et al., 2010):

k = k0·exp
[
−3
(

1
Kp

((σ−σ0)− (p− p0))

+(εps− εps0)− (εbs− εbs0)
)] (57)

where k0 is the reference permeability for the reference stress σ0 and the reference
pore pressure p0, and Kp is the cleat stiffness3. The stress σ includes the boundary
conditions and the model may be expanded for different boundaries. The subscript
s denotes swelling quantities. In practice, the pore swelling strain εps is difficult to
measure and it is sometimes assumed it is equal to the bulk swelling strain εbs (Cui and
Bustin, 2005). For instance, for reservoir boundary conditions, this assumption leads
to the model developed by Shi and Durucan (Shi and Durucan, 2004; Cui and Bustin,

2For the sake of simplicity, the hydraulic aperture was assimilated to the mechanical aperture h in these
developments.

3The dimension of this stiffness differs from the stiffness used in Equation (14), there are related by
Kp = h ·Kn.

20



2005):

k = k0 · exp
[

3
Kp

(
νm

1−νm
(p− p0)−

Em

3(1−νm)
(εvs − εvs0 )

)]
(58)

However, Connell et al (Connell et al., 2010) suggested the magnitude of εps is
higher than εbs and related the two quantities through a fitting parameter γ (Connell
et al., 2010):

εps = γ · εbs (59)

More recently, some authors linked the relationship between εps and εbs to the frac-
ture porosity (Lu et al., 2016; Peng et al., 2017), but it still requires some fitting param-
eters. In the following, the analytical solution is determined based on the equilibrium
between the matrix block and the fracture instead of the bulk volume.

4.2. Analytical solution
Due to the evolution of the pressure in the fracture or the swelling of the matrix,

the fracture aperture is not constant:

h = h0 +∆h (60)

where the subscript 0 denotes the initial configuration and ∆ the increment. So, from
Equation (54), the permeability evolution is given by:

k =
(h0 +∆h)3

12w
(61)

The fracture aperture is stress-dependent and it is determined stating a stress equi-
librium between the fracture and the matrix.

For the fracture, the evolution of the normal effective stress (rock mechanics con-
vention) reads

(σ− pg, f ) = (σ0− pg, f0)+∆(σ− pg, f ) (62)

where σ is the normal total stress and pg, f is the gas pressure in the fracture. As stated
by Equation (14), the variation of the normal effective stress is related to the variation
of the fracture aperture through

d(σ− pg, f ) =−Kn ·dh (63)

where Kn is the normal stiffness of the fracture
For the matrix, the stress evolution reads

σi j = σi j0 +∆σi j (64)

where ∆σi j is given by the Hooke’s mechanical law taking into account the swelling
behaviour:

∆σi j = 2Gm∆εi j +λm∆ε̄ δi j +Km∆εvs δi j (65)

where εi j is the strain tensor, ε̄ = εi jδi j with δi j the Kronecker’s symbol, ∆εvs is the
volumetric sorption-induced strain, Gm is the Coulomb’s modulus, λm is the first Lamé
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parameter and Km is the bulk modulus of the matrix. All these elastic moduli may also
be replaced by Em and νm, respectively the Young’s modulus and the Poisson’s ratio:

Gm =
Em

2(1+νm)
(66)

λm =
Emνm

(1+νm)(1−2νm)
(67)

Km =
Em

3(1−2νm)
(68)

Thence, Equation (65) can also be written as

∆σi j =
Em

1+νm
∆εi j +

Emνm

(1+νm)(1−2νm)
∆ε̄ δi j

+
Em

3(1−2νm)
∆εvs δi j

(69)

At equilibrium between the fracture and the matrix pressure, the sorption-induced
strain ∆εvs may be expressed in term of pressure in the fracture. For instance, it can be
linearly linked to the Langmuir’s isotherm:

∆εvs = βε

(
VL · pg, f

PL + pg, f
−

VL · pg, f0
PL + pg, f0

)
(70)

where βε is a linear coefficient, and VL and PL are the Langmuir’s parameters. The
analytical solution is not restricted to any particular relationship between the sorption-
induced strain. A linear relationship is chosen like it was implemented in the finite
element code.

4.2.1. Constant fracture stiffness
First, if a constant normal stiffness is considered for the fracture, then there is a

linear relationship between the fracture closure and the normal stress given by Equation
(63). Thence, Equation (62) gives

σ = σ0 +∆pg, f −Kn ·∆h (71)
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Figure 13: One vertical fracture delimited by two half blocks and boundary conditions considered.

Considering a vertical fracture delimited by two half matrix blocks, from Equations
(64) and (71), the horizontal equilibrium reads

∆pg, f −Kn ·∆h =∆σxx (72)

Finally, ∆h is found by solving Equation (72) where ∆σxx depends on ∆h through
the boundary conditions introduced in Equation (69). Two types are considered, full
rigid boundaries and in situ reservoir conditions.

Full rigid boundaries.

With full rigid boundary conditions, the strains in the matrix are ∆εxx =
∆h
w0

and

∆εyy =∆εzz = 0. Introducing these conditions in Equation (69) directly gives

∆σxx =
Em(1−νm)

(1+νm)(1−2νm)

∆h
w

+
Em

3(1−2νm)
∆εvs (73)

= Mm
∆h
w0

+Km∆εvs (74)

where Mm =
Em(1−νm)

(1+νm)(1−2νm)
is the P-wave modulus of the matrix. Introducing this

stress increment into Equation (72), the closure is finally given by

∆h = w0 ·
∆pg, f −Km∆εvs

Kn ·w0 +Mm
(75)

The model for the permeability evolution is finally obtained introducing this equa-
tion into Equation (61).

Reservoir boundaries.

In situ, rigid boundaries should be considered only horizontally: ∆εxx =
∆h
w0

and
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∆εyy = 0, while vertically we have ∆σzz = 0. From these boundary conditions, we can
write 

1
Em

∆σxx−
νm

Em
∆σyy +

1
3
∆εvs =

∆h
w0

1
Em

∆σyy−
νm

Em
∆σxx +

1
3
∆εvs = 0

(76)

Then, by solving this system of equations, we find the following stress increment:

∆σxx =
Em

(1−ν2
m)

∆h
w0

+
Em

3(1−νm)
∆εvs (77)

Hence, introducing this stress increment in Equation (72), the closure is given by

∆h = w0 ·
∆pg, f − Em

3(1−νm)
∆εvs

Kn ·w0 +
Em

(1−ν2
m)

(78)

4.2.2. Hyperbolic fracture stiffness
The evolution of the normal stiffness with the fracture closure given by Equation

(15) is now considered. Then, integrating Equation (63) gives this time

∆(σ− pg, f ) =−
∫ h

h0

K0
n(

1+ h−h0
h0

)2 dh =−K0
n h0

h
·∆h (79)

Then, the following equation has to be solved:

∆pg, f −
K0

n h0

h0 +∆h
·∆h =∆σxx (80)

Considering full rigid boundaries, Equation (74) is introduced in Equation (80) and
the second order equation to solve to find ∆h is

∆pg, f −
K0

n h0

h0 +∆h
·∆h = Mm

∆h
w0

+Km∆εvs (81)

Considering reservoir boundaries conditions as described above, Equation (77) is
introduced in Equation (80), it gives

∆pg, f −
K0

n h0

h0 +∆h
·∆h =

Em

(1−ν2
m)

∆h
w0

+
Em

3(1−νm)
∆εvs (82)

The permeability models for the two types of boundaries are obtained introduc-
ing the solutions of these second degree equations into Equation (61) and keeping the
positive permeability. It is plotted in the following section for a given set of parameters.
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4.3. Analysis and validation
Figure 14 and 15, considering respectively a constant fracture stiffness and a hy-

perbolic variation of the stiffness, present the analytical evolutions obtained for the two
different boundary conditions. The decrease of the permeability is logically more im-
portant with the full rigid boundaries than when the displacement is allowed vertically.
The parameters are given in Table 1, the sorption and mechanical parameters of the
matrix come from an experimental study carried out in laboratory.
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Figure 14: Constant fracture stiffness: Numerical results versus analytical model.

The numerical results are compared to the analytical solutions to validate the imple-
mentation of our model. Each numerical result represents the stabilized permeability
after the diffusion of the gas in the matrix from the increase of the pressure in the
fracture, what induces the swelling gradually. This transient aspect is not taken into
account in the analytical model. It would require to use some shape factors (Barenblatt
et al., 1960; Warren et al., 1963; Bertrand et al., 2017) in the analytical solution.
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Figure 15: Hyperbolic fracture stiffness: Numerical results versus analytical model.

For the hyperbolic evolution of the fracture stiffness in Figure 15, the initial frac-
ture aperture and stiffness were taken the same as the constant case. As the stiffness
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increases with the closure of the fracture, the permeability is less decreased compared
to the results obtained with the constant stiffness behaviour in Figure 14.

At low injection pressures, the aperture evolution is more impacted by the swelling
than the effective stress in the fracture. It is interesting to observe the permeability evo-
lution presents then a minimum before the permeability rebounds. Indeed, the rate of
the swelling increment is decreasing since a Langmuir-like equation is considered. The
rebound pressure can be estimated differentiating the analytical model and equalizing
to zero. For the constant stiffness, the rebound pressure for the full rigid boundaries is
given by

prb =
√

Km ·βε ·VL ·PL−PL (83)

which is 4.06MPa in Figure 14. For the reservoir boundary conditions in Figure 15, it
is

prb =

√
Em

3(1−νm)
·βε ·VL ·PL−PL (84)

which is 3.55MPa with the parameters used in Figure 14.

Finally, Figure 16 compares the constant fracture stiffness model for reservoir con-
ditions with the Shi & Durucan SD-model given by Equation (58) for the same condi-
tions. In this equation, the stiffness Kp is taken to be Kn ·h0. The exponential law from
Shi & Durucan is close to the analytical solution presented above.
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Figure 16: Constant fracture stiffness and reservoir boundary conditions: Comparison with the model from
Shi & Durucan (Equation 58 with Kp = h0 ·Kn).
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Parameter Value

Young’s modulus Em 1.21 GPa
Poisson’s ratio νm 0.16
Langmuir’s volume VL 0.054 m3/kg
Langmuir’s pressure PεL 1 MPa
Swelling strain coefficient βε 0.8 kg/m3

Matrix block width w0 0.003 m
Cleat aperture h0 18 ·10−6 m
Cleat normal stiffness K0

n 1.66 ·106 MPa.m−1

Table 1: Model parameters.

5. Numerical REV modelling

The interest of the numerical model is that it can be used on complex geometries
and it easily takes into account the anisotropy coming from the material and the bound-
ary conditions. Moreover, the transient behaviour is also modelled. Figure 17 rep-
resents the geometry and the boundary conditions considered for the numerical mod-
elling. A representative elementary volume (REV) made up of five blocks and two half-
blocks arranged in three rows is meshed. The width of the blocks is 3mm. The axial
stress applied for the reservoir boundary conditions is 4MPa. In both cases, the initial
internal stress in the material is 4MPa. The parameters used for the numerical mod-
elling are the ones given in Table 1. In addition, a diffusion coefficient of 10−10m2/s is
considered. For this modelling, the gas pressure is increased in few hours to the wanted
injection pressure at the end of every fracture on the boundaries (Figure 17).
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Figure 17: REV geometry and boundary conditions considered for the modelling.
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Figure 18: Vertical and horizontal fracture aperture evolution with time (injection pressure: 3MPa).

As the reservoir boundary conditions are anisotropic, the response of the horizontal
fractures differs from the vertical fractures. Figure 18 presents the fracture aperture
evolution with time of the vertical and horizontal fractures. The injection pressure was
increased to 3MPa and then maintained constant. An initial opening of the fractures
is observed horizontally and vertically during the loading phase, it is the effect of the
effective stress decrease. Then, as the material is constrained horizontally, the vertical
fractures are closing with the swelling. In contrast, the material is not constrained
vertically and the horizontal fractures are opening. The global porosity evolution lies
between the vertical and horizontal aperture evolutions.

0 100 200 300 400 500

Time [h]

0

0.5

1

1.5

k/
k 0 [-

]

Reservoir boundaries: Vertical permeability

Reservoir boundaries: ( / 0)3

Rigid boundaries: Vertical permeability

Rigid boundaries: ( / 0)3

Figure 19: Equivalent vertical permeability evolution with time compared to the porosity model (injection
pressure: 3MPa).

From the curves in Figure 18, one can understand an analytical model based on the
porosity evolution is not able to correctly represent the permeability evolution for both
the vertical and horizontal fractures. Indeed, the porosity is a scalar variable while the

28



permeability may be anisotropic, it is a tensor. Figure 19 represents the evolution of
the vertical permeability of the REV. This permeability was computed using a weighted
harmonic average following the path of the fluid in the vertical and horizontal fractures
to flow from the bottom to the top of the REV. As expected, the permeability evolu-
tion based on the porosity evolution largely deviates when anisotropic boundaries are
considered. However, in the case of full rigid boundaries, the vertical and horizontal
apertures are closing in the same way and the porosity model perfectly fit the perme-
ability evolution.
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Figure 20: Equivalent vertical permeability evolution with time for different diffusion coefficients (injection
pressure: 3MPa).

The previous figures are presenting the evolution of the permeability evolution with
time. This transient behaviour depends actually on the diffusion coefficient in the ma-
trix. For lower values of this coefficient, the swelling occurs more slowly and the
permeability decreases more slowly (Figure 20). It tends towards the same stabilized
permeability value.
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Figure 21: Permeability evolution with the pore pressure.

Figure 21 represents the (stabilized) permeability evolution with the pore pressure.
Each result was obtained simulating the permeability evolution with the swelling for
different injection pressures. The gas slippage phenomenon was not considered in
these simulations in order to only highlight the effects of the swelling and the effec-
tive stress. As already noticed, the porosity model is not adequate to represent the
permeability evolution in reservoir boundary conditions, it underestimates the decrease
of the vertical permeability since the porosity integrates the opening of the horizontal
fractures, what predicts a rebound pressure happening already at low pressure. It is
therefore wiser to consider full rigid boundaries when applying a porosity model. The
use of the numerical model avoids this problem for any geometry.

Note the computational cost of the direct modelling of the full microstructure would
be highly expensive at the scale of the reservoir. However, the model presented in
this paper is very useful for the modelling of the representative elementary volume
which, using homogenization techniques, would define the macroscale behaviour of
the material (Marinelli et al., 2016; Argilaga et al., 2016).

6. Conclusion

A hydro-mechanical model was developed at the scale of the coal constituents to
distinguish the hydro-mechanical behaviour of the matrix and the cleats. For the ma-
trix, a simple isotropic linear elastic law is used for the mechanical behaviour and a
diffusion law is considered for the gas flow. The swelling/shrinkage of the matrix is
linked to its gas content and, depending on the boundary conditions, this sorption-
induced strain may impact the fracture aperture. It is considered that the normal stiff-
ness evolves with the fracture closure. This closure modifies the permeability of the
fracture and impacts the fluid flow in the fracture. As a multi-phase flow may be en-
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countered in the cleats in the context of coalbed methane recovery, a full model was pre-
sented for unsaturated conditions. The Langmuir’s isotherm is innovatively included
in the gas transfer between the cleats and the matrix.

The implementation of the model was validated by comparison between some sta-
bilized permeability values obtained numerically for different CO2 injection pressures
and the analytical solution of the problem. The analytical solution was developed for
different boundary conditions and for different expressions of the normal stiffness of
the fracture. The constant stiffness case is also compared to a classical exponential
model derived in the literature from the bulk deformation of the material. Finally, the
model was used for the modelling of a representative elementary volume made up few
blocks. This REV combines horizontal and vertical fractures that impacts differently
the permeability evolution if anisotropic boundaries conditions are encountered. In
this case, it was shown that models based on the porosity evolution largely deviates
from the direct fracture aperture model, such it is supposed to be in the reservoir. This
numerical model at the scale of the matrix and the cleats should be integrated into a
multi-scale approach to be able to model gas flows at the reservoir scale.
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Appendix A. Gas slippage phenomenon

The problem of gas slippage in capillary tubes and its effect on permeability in
porous media was first addressed by Klinkenberg (Klinkenberg et al., 1941). A model
for the flow between two parallel plates is derived. Kundt and Warburg showed that
the velocity at the wall is proportional to the velocity gradient at the wall (Kundt and
Warburg, 1875):

v1

(
hb

2

)
=−c l̄

dv1

dx2

]
x2=

hb
2

(A.1)

where c is a constant with a value slightly less than 1 according to Kundt and Warburg
and l̄ is the mean free path of the gas molecules at the mean pressure. The velocity
gradient is obtained by integrating equation (30), it gives:

dv1

dx2
=

x2

µ
dp
dx1

+C (A.2)

To ensure an extremum value in the center (x2 = 0), the constant C must be zero.
Thence, the velocity at the walls is:

v1

(
hb

2

)
=−c l̄ hb

2µ
dp
dx1

(A.3)

31



These boundary conditions allows to find the following velocity profile:

v1(x2) =−
1

2µ

(
c l̄ hb +

(
hb

2

)2

− x2
2

)
dp
dx1

(A.4)

Averaging this velocity over the aperture, we find:

q = 〈v1〉=
1
hb

∫ h
2

− hb
2

v1dx2 =−
h2

b
12

(
1+

6cl̄
hb

)
· 1

µ
dp
dx1

(A.5)

In comparison with Equation (33), one can observe that the permeability is in-
creased of a dimensionless correction factor fc given by:

fc =

(
1+

6cl
hb

)
=

(
1+

b
p̄

)
with

b
p̄
=

6cl̄
hb

= 6 c κn, (A.6)

where c ≈ 1 and b is the Klinkenberg number. For a capillary tube, it has been found

that
b
p̄
=

4cl̄
r

with r the effective pore radius (Klinkenberg et al., 1941). Note the gas

permeability is a function of the mean free path l of the gas molecules, it depends
therefore on the pressure, the temperature and the nature of the gas.

Appendix B. Unsaturated flow model

Generally, gas and water flows are simultaneously encountered in the cleats and it
is therefore necessary to extend the model to unsaturated conditions. In this purpose,
we introduce the widely-used concept of relative permeability kr as a measure of the
reduction in permeability to a given phase that occurs between partially and fully sat-
urated conditions. In petroleum engineering, the relative permeabilities of the wetting
phase (krw) and the non-wetting phase (krnw) in porous media are often expressed as
power law functions of saturation (Sr), known as Corey functions (Corey, 1954). Con-
trary to a macroscopic approach, it must be assumed the two phases are simultaneously
flowing in a single cleat. Logically, the space occupied by one phase is not available
for the flow of the other phase. Based on the work of Romm, a simple model consists
to equalize the relative permeabilities to the phases saturations, it is known as the X
curves (Romm, 1966):

krw = Sr (B.1) krg = Sg = 1−Sr (B.2)

As can be noticed, the sum of krw and krg equals 1 in the X model, which means
each phase flows in its own path without impeding the flow of the other, the interference
between the phases is not considered.

Through a real fracture, the X model may no longer be valid if the interference is
significant. In order to characterize the deviation from the X model, Chen and Horne
proposed the following expressions (Chen et al., 2004):
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krw =
Sr

τc,w
(B.3) krg =

1−Sr

τc,g
(B.4)

where τc,w and τc,g are the channel tortuosities of the two phases. These coefficients,
varying between 1 and the infinity, quantify the shear stress at the interface between the
two fluids. Chen and Horne evaluate the tortuosity coefficients analysing the structure
flow by digital image processing techniques. Unfortunately, a model that predicts the
flow structure in a fracture does not exist. It is therefore impossible to evaluate τc,w and
τc,g without resorting to experiments. However, assuming a simple flow structure, it is
possible to derive a model which takes into account the interference between the two
phases through viscous considerations. Yuster used co-axial flows in a single circu-
lar cylinder to infer a viscosity ratio dependence of the relative permeabilities (Yuster
et al., 1951). This viscous coupling model can also be applied to a two-phase flow be-
tween two plates (Fourar et al., 1998). We consider two fluids flowing simultaneously
with a planar interface. Water is the wetting fluid and is therefore in contact with the
walls, and gas (non-wetting) flows in between (Figure B.22).

hGas

Water

Water

Top wall

Bottom wall

hw

2

hw

2

x

x2

1

hg b

Figure B.22: Gas flow in between of water flows in a fracture space.

The viscous coupling between the fluids is derived by integrating Stokes’ equation
in each stratum. The velocity of each phase is the same at the interface, the shear force
on the two phases is therefore the same at the interface:

L ·w ·µw

(
dv1

dx2

)
w
= L ·w ·µg

(
dv1

dx2

)
g

⇒ µw

(
dv1

dx2

)
w
= µg

(
dv1

dx2

)
g

(B.5)

Equations of the form given by Equation (A.2) for the two phases at the interface(
x2 =

hg

2

)
are:

(
dv1

dx2

)
w
=

hg

2µw

dp
dx1

+Cw (B.6)
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(
dv1

dx2

)
g
=

hg

2µg

dp
dx1

+Cg (B.7)

Due to symmetry, the derivative of the velocity equals zero at the center of the
fracture (x2 = 0); it means that Cg = 0. Moreover, to satisfy Equation (B.5), we have:

µw ·Cw = µg ·Cg (B.8)

It follows that Cw = 0. Therefore, the generalized expression for the velocity gra-
dient perpendicular to the direction of flow is:

dv1

dx2
=

x2

µ
dp
dx1

(B.9)

Integrating Equation (B.9) to give the velocity profile perpendicular to the direction
of flow leads to:

v1 =
x2

2
2µ

dp
dx1

+Z (B.10)

Applying this to the water phase, when x2 =
hb

2
, then v1 = 0 and Equation (31) is

found:

v1w =− 1
2µw

((
hb

2

)2

− x2
2

)
dpw

dx1
(B.11)

Thence, the velocity at the interface is:

v1i =−
1

2µw

((
hb

2

)2

−
(

hg

2

)2
)

dp
dx1

(B.12)

For the gas phase, the velocity distribution is:

v1g =
x2

2
2µg

dpg

dx1
+Zg (B.13)

And at the interface:

v1i =
1

2µg

(
hg

2

)2 dp
dx1

+Zg (B.14)

Since the velocity of the two phases at the interface has been assumed to be the
same, then Equations (B.12) and (B.14) may be equated to find Zg. Thence, from
Equation (B.13), we obtain the following velocity profile in the gas phase:

v1g =−
1
2

[
1

µw

((
hb

2

)2

−
(

hg

2

)2
)
+

1
µg

((
hg

2

)2

− x2
2

)]
dpg

dx1
(B.15)

Equations (B.11) and (B.15) give the velocity profile in the water and gas phases re-

34



spectively. To derive the relative permeabilities, it is necessary to calculate the average
velocity of each phase over the aperture. For the liquid phase, it gives:

qlL =
2
hb

∫ hb
2

hg
2

v1w dx2

= −
h2

b
12

(
1− 3

2
hg

hb
+

1
2

(
hg

hb

)3
)

1
µw

dpw

dx1

(B.16)

Knowing that
hg

hb
=

hb−hw

hb
= 1−Sr, we have

qlL =−
h2

b
12

(
S2

r

2
(3−Sr)

)
1

µw

dpw

dx1
(B.17)

And for the gas phase, we have:

qgL =
2
hb

∫ hg
2

0
v1g dx2

= −
h2

b
12

(
µg

µw

3
2

(
hg

hb

)(
1−

hg

hb

)2

+

(
hg

hb

)3
)

1
µg

dpg

dx1

= −
h2

b
12

(
3
2

µrSr(1−Sr)(2−Sr)+(1−Sr)
3
)

1
µg

dpg

dx1

(B.18)

where µr =
µg

µw
is the viscosity ratio. So, the longitudinal flows are

qlL =−krw
h2

b
12

1
µw

∂pw

∂x1
(B.19)

and

qgL =−krg
h2

b
12

1
µg

∂pg

∂x1
(B.20)

with the following relative permeabilities:

krw =
S2

r

2
(3−Sr) (B.21)

krg = (1−Sr)
3 +

3
2

µrSr(1−Sr)(2−Sr) (B.22)

Note if µr is larger than one, the relative permeability of the non-wetting phase is
also larger than unity (lubrication effect). For µr equal to one, the sum of the kr is also
equal to one; however, kr is not equal to saturation as for the X model. In fact, for gas
and water two-phase flows, the viscosity ratio is largely lower than one and the second
term on the right-hand side of Equation (B.22) is negligible.
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The relative permeability is not equal to the saturation but it is however a function
of this variable. A retention curve is therefore required to derive the saturation degree
from the primary unknowns of the problem, the water and gas pressures. The defini-
tion of a retention curve actually implies a distribution in the size of the fractures (or
capillary tubes). With a macroscopic approach, depending on the capillary pressure,
fractures are filled with water under a certain size and filled with gas above this size. At
the microscale, we are interested in developing a capillary pressure model taking into
account a multiphase flow in a single fracture. For this purpose, we take advantage of
the natural irregular shape of the fracture wall. Realizing many natural structures are
constituted of irregular objects appearing in a similar way when observed at different
scales, a fractal technique (Mandelbrot and Pignoni, 1983) is applied to describe the
geometry of the fracture wall.

Figure B.23: A fracture wall seen as a fractal object with a distribution of open capillary tubes.

Assuming the fracture wall is a fractal object, the space between two walls can
be filled by a fractal distribution of capillary tubes with smaller tubes at the walls
and larger tubes in the middle (Figure B.23). Considering a capillary tube model, the
capillary pressure can be expressed as:

pc =
2σcosθ

r
(B.23)

where pc is the capillary pressure, σ is the surface tension and θ is the contact angle. It
is assumed that capillary effects are also effective in open capillary tubes.

Mathematically, the number N of units whose radius is larger than r is represented
by a power-law function (Kewen et al., 2004):

N(r) = a · r−D f (B.24)

where D f is the fractal dimension and a a constant of proportionality. Defining the
volume of the unit equal to πr2l, the number of the units invaded by the non-wetting
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phase is

N(r) =
Ωg

πr2l
(B.25)

Combining Equations (B.24) and (B.25):

Ωg = a π l r(2−D f ) (B.26)

Substituting Equation (B.23) in Equation (B.26), the saturation of the non-wetting
phase is then:

Srg =
Ωg

Ωv
= b · p−(2−D f )

c (B.27)

with b a constant of proportionality. Differentiating Equation (B.27):

dSrg

d pc
= c · p−(3−D f )

c (B.28)

with c a constant of proportionality. Then, assuming pc tends to pe when Srg = 0 and
pc approaches infinity when Srg = 1−Sr,res−Srg,res, by integrating Equation (B.28):

∫ 1−Sr−Srg ,res

0
dSr∫ 1−Sr,res−Srg,res

0
dSr

=

∫ pc

pe

p
−(3−D f )
c∫ +∞

pe

p
−(3−D f )
c

(B.29)

1−Sr−Srg,res

1−Sr,res−Srg,res
=

p
−(2−D f )
c − p

−(2−D f )
e

p
−(2−D f )
e

(B.30)

= 1−
(

pc

pe

)−(2−D f )

(B.31)

Equation (B.31) is obtained considering the fractal dimension is lower than 2. Re-
ducing this equation leads to:

pc = pe · (S∗r )
− 1

2−D f (B.32)

where S∗r is the normalized saturation. As can be observed, Equation (B.32) is the same
form as the Brooks-Corey equation:

pc = pe · (S∗r )−
1
λ (B.33)

where λ is an index representing the size distribution of the capillary tubes.
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