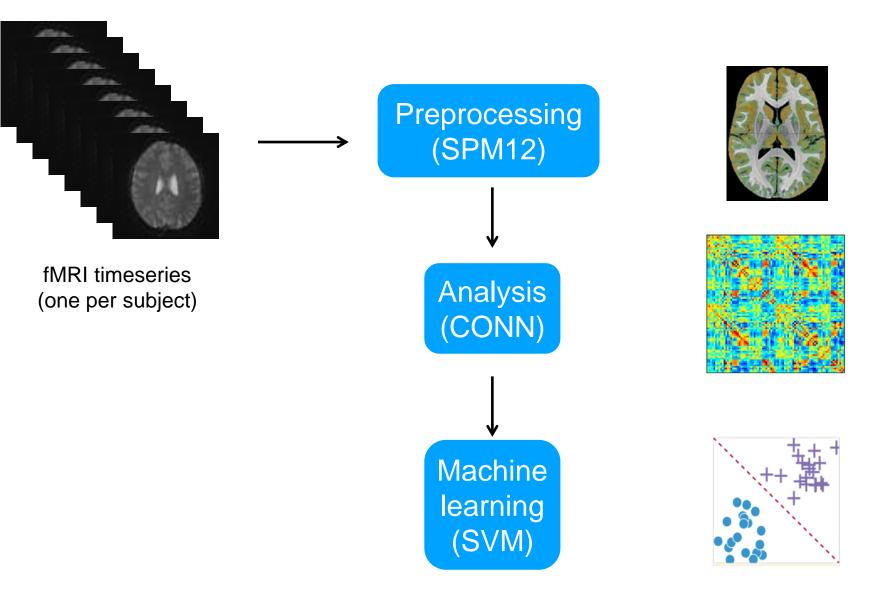
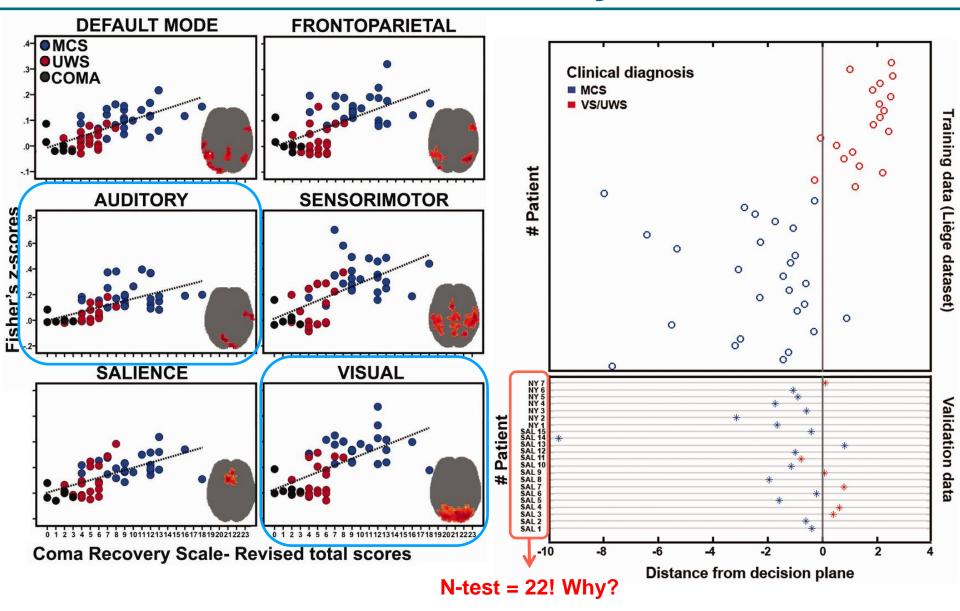


V1.0.5

A clinical and research 3T MRI protocol under 30 minutes


(Yes, it's possible!)

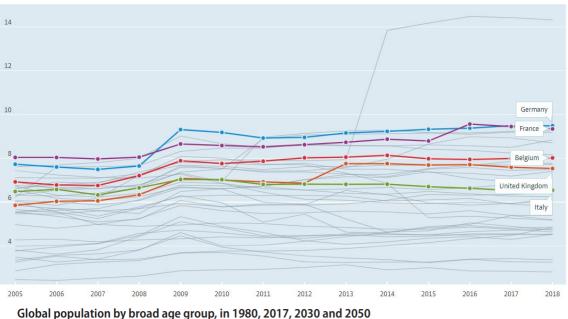
<u>SK Larroque</u>, M Carrière, C Martial, S Laureys github.com/LRQ3000/mri_protocol

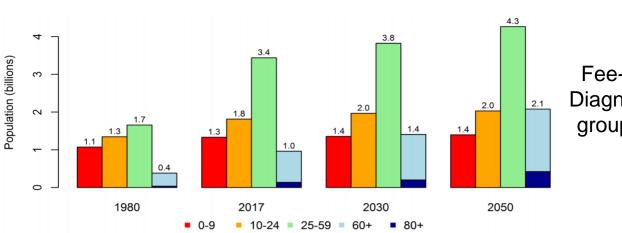

Coma Science Group GIGA Consciousness University & Hospital of Liège, Belgium

CME 2019 Dortmund, September 23th 2019

What we do: MRI analyses

What we do: MRI analyses

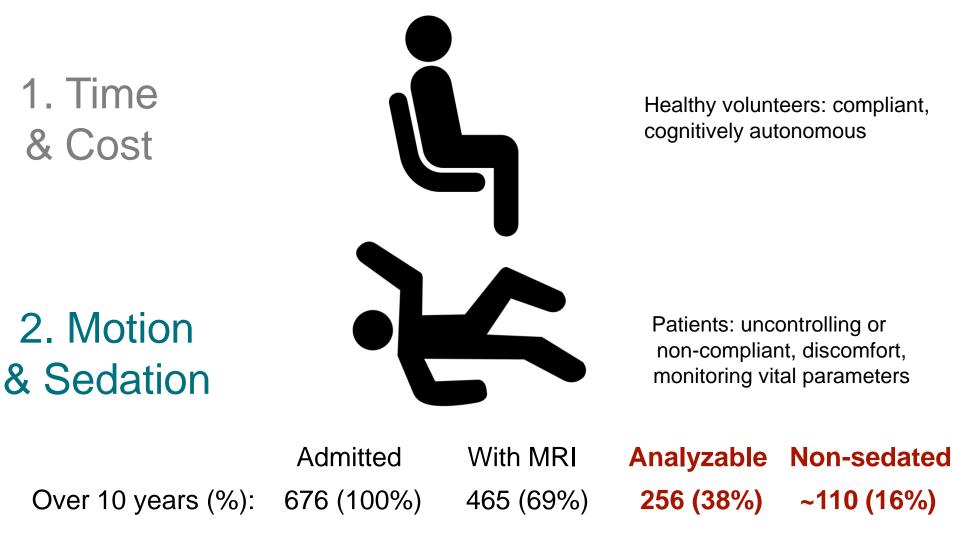

Limitations to sample size



Health spending Government/compulsory, % of GDP, 2005 - 2018

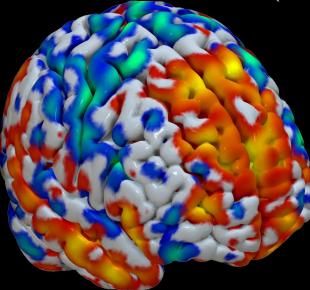
Source: Health expenditure and financing: Health expenditure indicators

1. Time & Cost

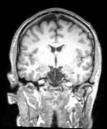


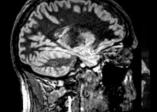
Fee-for-service, Diagnosis-relatedgroup payment^[4]

[1] OECD Data 2019 [2] UN - World Population Ageing 2017 highlights [3] Luke Allen, Conversation, 2015 [4] KCE Report 302Cs


Limitations to sample size

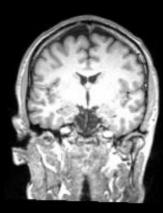
→ Overcome limitations by optimizing acquisition?

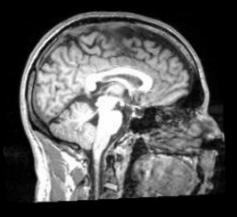

A 30 min cutting-edge, motion-resilient MRI protocol

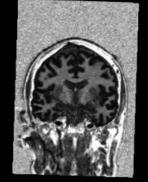

(20-channel coil, 3T Siemens Vida)

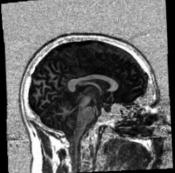
Sub-second BOLD TR 728ms 500 vols in 6:13

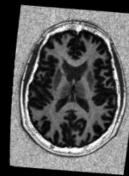
T1 FLAWS 5:02

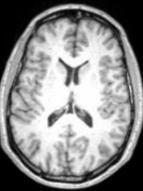


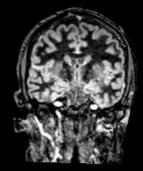


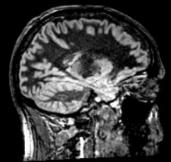





T1 FLAWS^[1,2] produces simultaneously:




White Matter (uni)



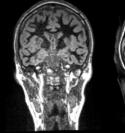

MPRAGE (inv2) (structural, 1mm³ iso)

\rightarrow Physiological segmentation:

- No approximation (not computational!)
- In subject-space
- Always coregistered (even with motion)
- All in 5 min (on 3T), voxel size: 1mm iso
- More clinical infos (complement FLAIR) [1] Tanner et al, 2012 [2] Yishi Wang, Hua Guo, 2018

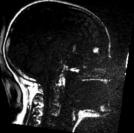


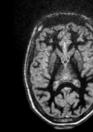


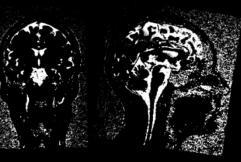

Grey Matter (inv1)

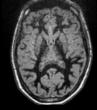
Our T1 FLAWS enhancements:

(see also alternatives in ^[1])

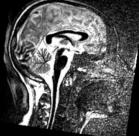








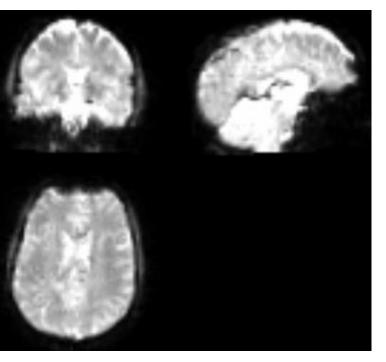
GM min(inv1, inv2)



GM mIP (inv1 .* inv2) ./ (inv1 + inv2)

CSF mIP inv1 - GM mIP

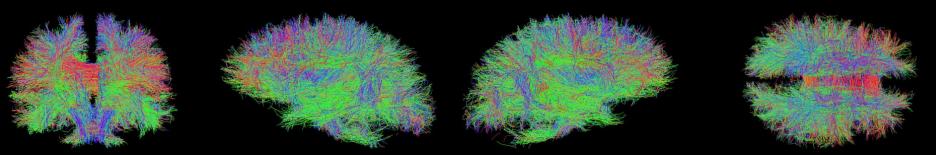
Skull inv1.* uni



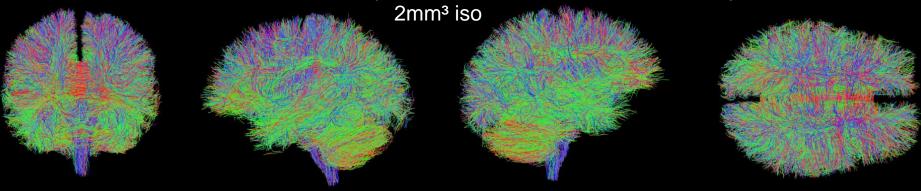
WM denoised inv2.* uni

[1] Wang, Y., Wang, Y., Zhang, Z., Xiong, Y., Zhang, Q., Yuan, C., & Guo, H. (2018). Segmentation of gray matter, white matter, and CSF with fluid and white matter suppression using MP2RAGE. Journal of Magnetic Resonance Imaging.

Sub-second EPI Bold fMRI (728 ms, SMS x3, PI x2, 3mm³ iso)


- Dynamic connectivity
- Bypass HRF (<1.5s)
- Motion resilient

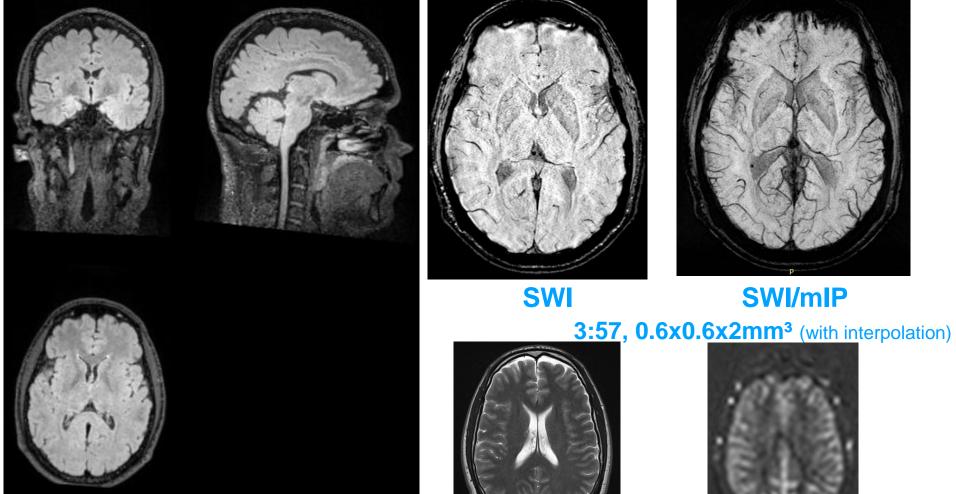
NEW MRI **OLD MRI** 300 vols(10:00) 300 vols(3:47) 500 vols(6:13)TR: 728ms TR: 728ms TR: 2s


NEW MRI

OLD MACHINE DTI (SINGLE-SHELL B1000, WITH ACT)

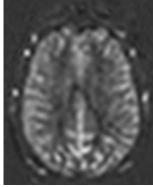
NEW MACHINE DTI (MULTI-SHELL 3-SHELLS, NO ACT)^[1]

Optimizations:


- 3 shells: b700 30dir, b1000 64dir, b2000 64dir.
- b1000 is high quality (small TE),
 others: higher TE → faster TR.
- SMS x4.
- Partial fourier 7/8 (warning: prevents mrdegibbs!)

[1] Dhollander et al, 2016

Great for:

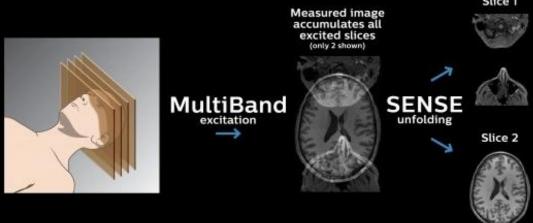

- Clinical tissue assessment under varying diffusion bvals
- Worst case: degrades to single-shell
- Standalone
 (structural unnecessary)

Clinical sequences: FLAIR, SWI, T2, ASL 😺

FLAIR 3:12, 1mm³ (with interpolation from 0.5mm²)

T2-TSE 1:21, 0.4x0.4x4.0mm³ (with interpolation)

SWI/mIP

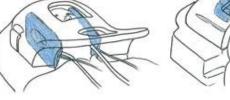

PC-ASL 2:17, 3mm³ (with interpolation)

11

How did we make it?

1) Technological optimizations:

 Modern acceleration: GRAPPA x multiband (SMS)^[1] = max x4 no loss, x6 acceptable, x8 with loss ^[2,3,4]



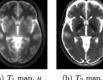
- Literature MP2RAGE FLAWS, multi-shell DTI, multi-band BOLD
- Fine-tuning: calculations + trial-and-error BOLD flip angle, time of inversion, bandwidth, filters, ...

How did we make it? - 2

2) Meta-protocol optimizations:

- Protocol programming:
 - > Maximize speed (motion resilience, avoids sedation & reacquisitions)
 - > Acquire BOLD first (unlikely sedated)
 - > Conditional naming
- Physical devices:
 - > 3D Head immobilizer

(here: Pearltec MultiPad)


> Comfort pillows (reduces back pain), blanket, etc.

Take home message

- Cutting-edge research MRI under clinical constraints possible
- Quality-speed trade-off can be an opportunity
- New analyses opportunities in clinical populations (dynamic connectivity, multi-tissues unconstrained DTI, ...)
- Reduce risks & ethical issues by avoiding sedation
- Future: compressed sensing, quantitative/synthetic MRI^[1], thermoplastic mask^[2], AI reconstruction^[3], multi-echo BOLD (ME-ICA)^[4]

(a) T_1 map, μ (b) T_2

 $r_2^* \operatorname{map}, \mu$ (d) ρ

Full protocol for Siemens Vida (need SMS license)
 & bibliography: github.com/LRQ3000/mri_protocol

& analysis scripts: github.com/LRQ3000/csg_mri_pipelines [1] Gonçalves, Serai, Zuccoli, 2018 [2] Mandija, Agata et al 2019 [3] Bo Zhu et al, Nature, 2018 [4] Dipasquale et al, 2017¹⁴

Thank you for your attention!

github.com/LRQ3000/mri_protocol

Basic analysis scripts: github.com/LRQ3000/csg_mri_pipelines

Huge thanks to Jean-Marc Léonard at Siemens Healthineers and to Jean-Flory Tshibanda, Gauthier Kempinaire, Nathalie Maquet and the Liège Hospital's Radiodiagnostic team and Pearltec for their support!

Bonus slides

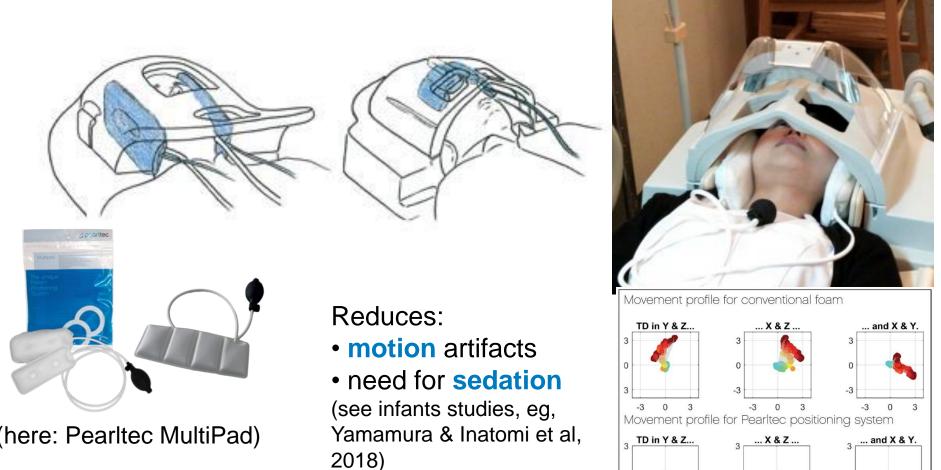
MRI: the time-quality conundrum

- Great polyvalence, for both research and clinical purposes
- Wide array of imaging contrasts: structural/function anatomy/connectivity, blood flow, lesions, etc.
- But clinical vs research needs are different:
 - Limited acquisition time (30 to 60 min) vs virtually unlimited (2h+)
 - Clinical pertinence (eg, lesions) vs cutting-edge (multi-shell DTI)
 - Uncooperative/uncontrolling patients (motion, discomfort, panic!) vs healthy volunteers (instruction compliance, no motion, calm)
- Usually results in a compromise: most sequences are clinical, some are for research with sub-optimal outdated (but faster) parameters

→ Can we make a MRI protocol both with cutting-edge research sequences and under clinical constraints?

How did we make it?

1) Technological optimization:


- Modern acceleration technologies: GRAPPA parallel imaging + simultaneous multi-slice (SMS aka multi-band). Beware of speed-quality trade-off!
- Literature for base sequences (MP2RAGE FLAWS, multi-shell DTI, multi-band BOLD)
- Calculations + trial-and-error to fine-tune parameters (BOLD flip angle, time of inversion, bandwidth)

How did we make it? - 2

2) Meta-protocol optimization:

- Careful protocol programming:
 - Maximize speed of sequence acquisition (reduces risk of motion and need for sedation)
 - Place BOLD first, structural/rest after (ensures patient is awake, less distressed, always guarantees a non-sedated BOLD)
 - Sequence renaming depending on choices (eg, sedated or not?) for automatic documentation stored in DICOMs (bypass lack of conditional custom data storage in MRI software)
- Physical devices:
 - > Head immobilizer
 - > Comfort knee pillow (reduces back pain), blanket, etc.

Inflatable 3D head immobilizer

0

3

-3

-3

0

3

-3

0

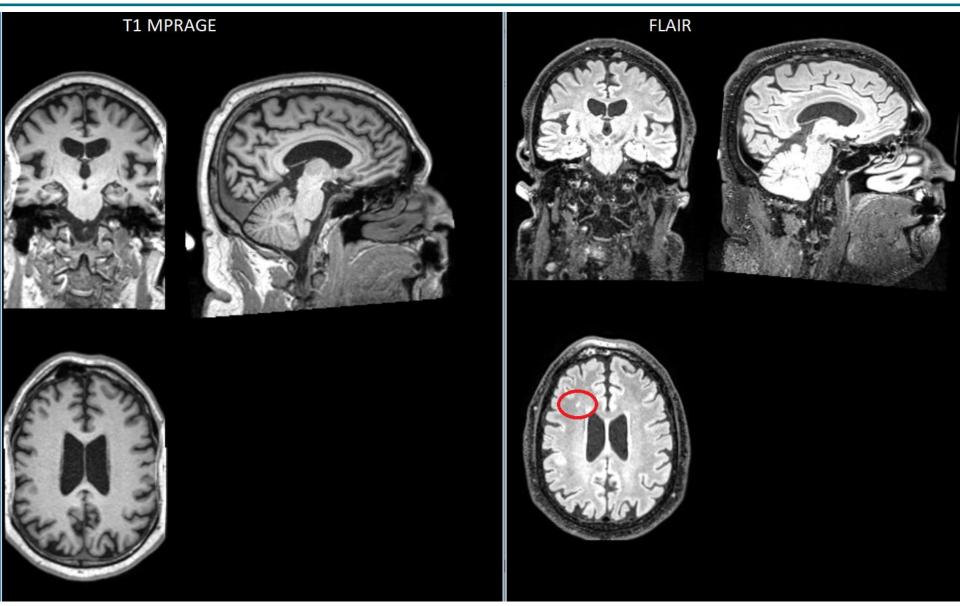
Future: Thermoplastic masks?

(Mandija, Agata et al 2019)

Additional advices

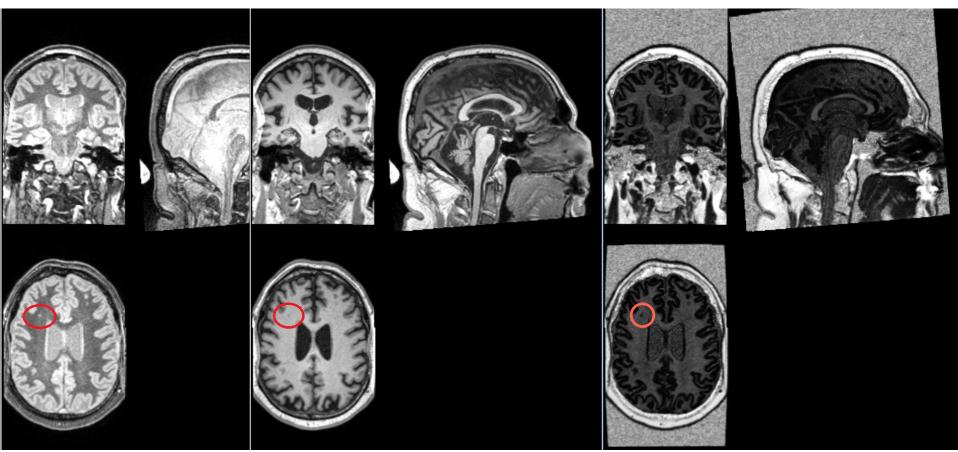
- Enable 3D distortion correction, for all!
- Use alternate streams, allows to save non distortion corrected versions at no cost!
- Enable Prescan Normalize for better contrast (eases coregistration) on all sequences
- Disable other filters (Hamming, frequency/smoothing, etc)
- Disable PACE (prospective motion correction), as this prevents retrospective motion correction (ie, with external softwares such as ART)
- If lots of Gibbs noise (eg, in FLAWS or MP2RAGE), lower GRAPPA acceleration!
- For multi-shell DTI, acquire 3 different DTI sequences and bundle together with a Copy Reference to copy the acquisition parameters automatically (necessary for the multishell DTI to be valid)

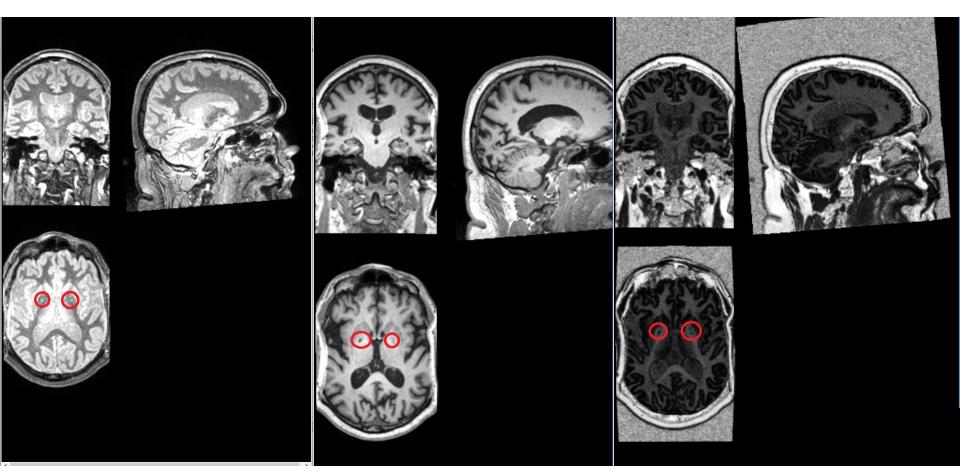
Additional advices


- With uncooperative/uncontrollable populations, the speed-quality trade-off might be simpler: better to speed up and have a more stable (but lower resolution) image, than have a high-resolution image that fails most of the time to be acquired because of motion!
- Acquire with interpolation and rescale, eg: acquire at 0.5x0.5x1.0mm and rescale to 1.0mm³, slight increase in SNR
- Increasing bandwidth reduces susceptibility to metal and chemical artifacts, useful for patients with potentially blood or metal infarcts

About free experimentation

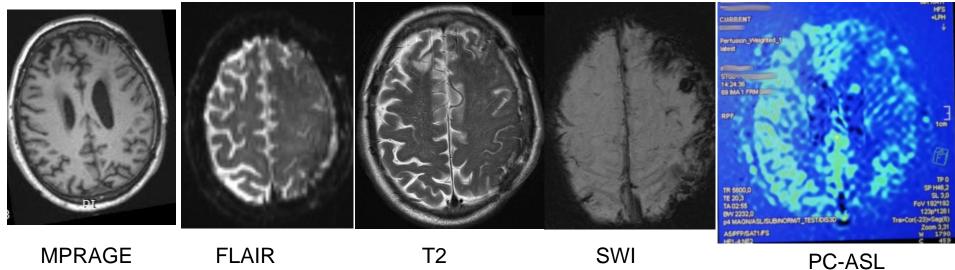
- Feel free to experiment with your protocol, often the sequences are not optimized for your machine and/or needs.
- How to proceed: no necessary need for calculations, trial and error is still the best approach (use bisection approach), but where available, calculations can save you some time instead.
- Try on a dummy or a healthy volunteer, under supervision from radiologists or MRI brand engineer to ensure no risks notably of tissue over-heating (SAR).
 Normally most modern machines implement safeguards that should in any case prevent these issues by warning the operator and change adequately the protocol.


Clinical T1 FLAWS vs FLAIR


Infarct invisible on T1 MPRAGE! But is visible on FLAIR

Clinical T1 FLAWS vs FLAIR

However, with FLAWS, the infarct is visible on the other contrasts generated simultaneously with the MPRAGE! Thus can complement/replace FLAIR in some instances. In addition, the 3rd image confirms that the infarct is in the white matter.


Clinical T1 FLAWS vs FLAIR

Two other infarcts of the same subject. The 3 contrasts of the FLAWS allows to confirm that the infarcts are located in the white matter.

See also: Enhanced visualization of lesions in focal cortical dysplasia using the fluid and whitematter suppression (FLAWS) sequence, Xin Chen, Tianyi Qian, Tobias Kober, Nan Chen, and Kuncheng Li, ISMRM 2017, <u>http://indexsmart.mirasmart.com/ISMRM2017/PDFfiles/2331.html</u>

Better clinical assessment by combining work with the second seco

high resolution

→ Patient's craniectomy led to a decrease of vascularity and CSF fluid, only visible on FLAIR, T2 and PC-ASL, but not on MPRAGE nor SWI.

 \rightarrow Can potentially impact HRF and thus PET and fMRI results.

MRI protocol decisions walkthrough (20-channel coil)

MRI protocol sequences list

1. AAhead_scout

2. Decision: Patient anesthetized?

Yes:

ep2d_bold_repos_moco_s3_p2_long_ avec_AG

No:

ep2d_bold_repos_moco_s3_p2_long_ sans_AG

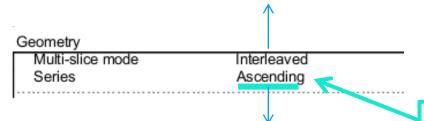
gre_field_mapping

3. gre_field_mapping

- 4. t1_mp2rage_sag_p2_iso_FLAWS_fast
- 5. ep2d_diff_mddw_30_p2_s4_b700
- 6. ep2d_diff_mddw_64_p2_s4_b1000
- 7. ep2d_diff_mddw_64_p2_s4_b2000

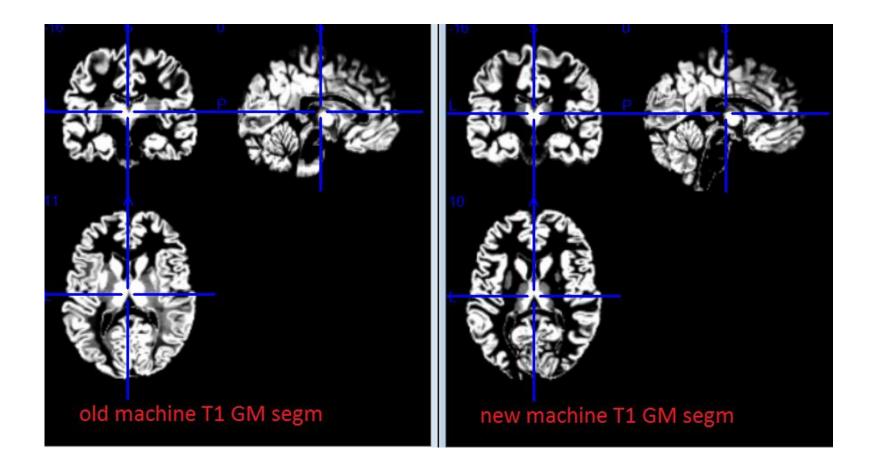
8. t2_space_FLAIR_sag_p3_iso
9. t2_swi_tra_p2s2_ir_2mm
10. Decision: Acquire PC-ASL?
Yes:
pcasl_3d_tra_p2_iso_3mm_highres_fast
No: Stop.

\rightarrow 20 channels coil but also possible with 64 channels! ³⁰

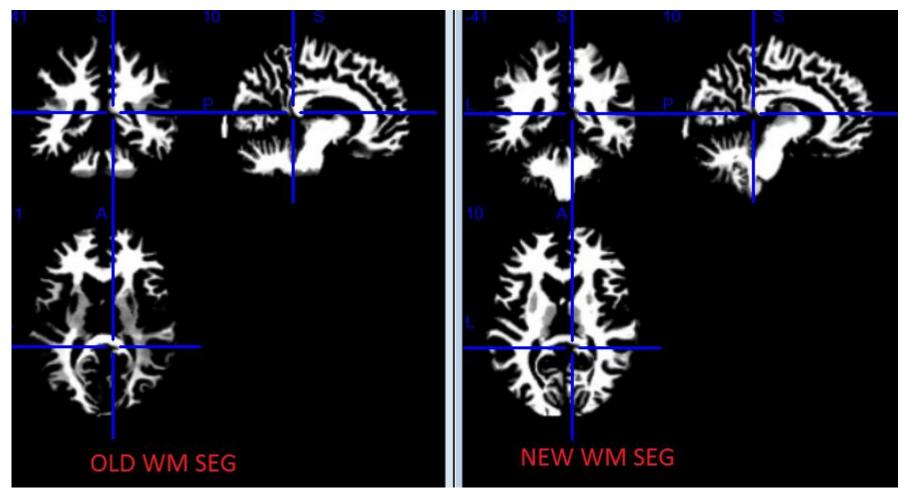

Slice order: check in the machine's printout!

SIEMENS MAGNETOM TrioTim syngo MR B15

\\USER\Head Lg\Study Neuro Lg\MyGroup Lg\ep2d_bold_rest TA: 10:06 PAT: Off Voxel size: 3.0×3.0 xm Rel. SNR: 1.00 SIEMENS: ep2d_bold

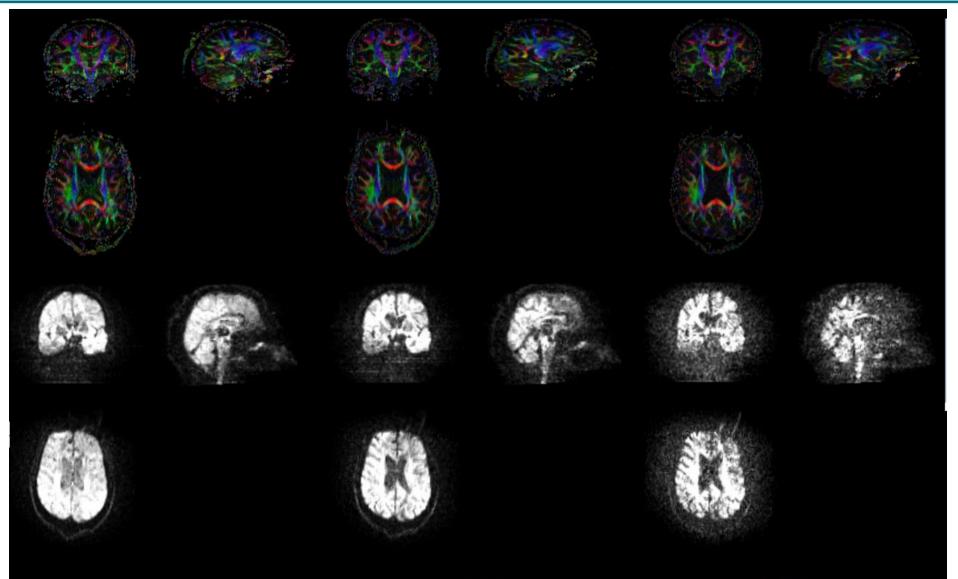

Properties		Special sat.	None
Prio Recon	Off	System	
Before measurement		Body	Off
After measurement		HEP	On
Load to viewer	On	HEA	On
Inline movie	Off		
Auto store images	On	Positioning mode	REF
Load to stamp segments	Off	Table position	н
Load images to graphic	Off	Table position	0 mm
segments		MSMA	S-C-T
Auto open inline display	Off	Sagittal	R>>L
AutoAlign Spine	Off	Coronal	A>> P
Start measurement without	On	Transversal	F >> H
further preparation	0.1	Coil Combine Mode	Adaptive Combine
Wait for user to start	On	Auto Coil Select	Default
Start measurements	single	Obline and a	Observations
Start measurements	single	Shim mode	Standard
outine		Adjust with body coil	Off
Slice group 1		Confirm freq. adjustment	Off
Slices	32	Assume Silicone	Off
Dist. factor	25 %	! Ref. amplitude 1H	353.882 V
Position	Isocenter	Adjustment Tolerance	Auto
Orientation	Transversal	Adjust volume	
Phase enc. dir.	A>>P	Position	Isocenter
Rotation	0.00 deg	Orientation	Transversal
Phase oversampling	0 %	Rotation	0.00 deg
FoV read	192 mm	R>>L	192 mm
FoV phase	100.0 %	A >> P	192 mm
Slice thickness		F >> H	120 mm
	3.0 mm 2000 ms		
TR		Physio	
TE	30 ms	1st Signal/Mode	None
Averages	1	BOLD	
Concatenations	1	GLM Statistics	Off
Filter	Prescan Normalize	Dynamic t-maps	On
Coil elements	HEA;HEP		0
Contrast		Starting ignore meas	0
MTC	Off	Ignore after transition	
Flip angle	78 deg	Model transition states	On
Fat suppr.	Fat sat.	Temp. highpass filter	On
Fat suppr.	Fal sal.	Threshold	4.00
Averaging mode	Long term	Paradigm size	30
Reconstruction	Magnitude	Meas[1]	Baseline
Measurements	300	Meas[2]	Baseline
Delay in TR	0 ms	Meas[3]	Baseline
Multiple series	Off	Meas[4]	Baseline
		Meas[5]	Baseline
Resolution		Meas[6]	Baseline
Base resolution	64	Meas[7]	Baseline
Phase resolution	100 %	Meas[8]	Baseline
Phase partial Fourier	Off	Meas[9]	Baseline
Interpolation	Off	Meas[10]	Baseline
•••••••••••••••••••••••••••••••••••••••	•••	Meas[11]	Baseline
PAT mode	None	Meas[12]	Baseline
Matrix Coil Mode	Auto (CP)	Meas[13]	Baseline
Distortion Corr.	Off	Meas[14]	Baseline
	Off	Meas[14]	Baseline
Unfiltered images		Meas[16]	Active
Prescan Normalize	On		Active
Raw filter	On	Meas[17] Meas[18]	
Elliptical filter	Off	Meas[18]	Active
Hamming	Off	Meas[19]	Active
Geometry		Meas[20]	Active
Multi-slice mode	Interleaved	Meas[21]	Active
	Ascending	Meas[22]	Active
Series		Meas[23]	Active

This « interleaved » means nothing!



Ascending = sequential ascending. Else it would be «interleaved » here for interleaved ascending.

QA image example (same subject)



QA image example (same subject)

Multi-shell DTI

b700

b1000

b2000