Jacques C.J. NTHOUL

Professor of Geophysical Fluid Mechanics
University of Liége and University of Louvain

BASIC EQUATIONS OF GEOPHYSICAL FLUID DYNAMICS
and their application to ocean-atmosphere weather and climate models

University of London. Special University Lectures
Belgian Visiting Professorship 1980-1981
Department of Mathematics. Imperial College




3

Introduction.

There is a growing interest for interactive models of the ocean and
the atmosphere, at all scales, from local air-sea interactions to hurricane

thermodynamics and climate forecasting.

-Although the basic equations describing the atmosphere and the ocean
are the same Geophysical Fluid Dynamics equations, interactive ocean-—
atmosphere models frequently come up against a — rather unexpected — dif-

ficulty when trying to set up a common frame of study.

Because scales of motions have different orders of magnitude in the
atmosphere and the ocean and effects which are dominant in the former at
a given scale may not be so in the latter, equations fundamentally similar,
have often been treated differently, submitted to specific approximations,
calibrated with data sampled on totally different networks and finite-

differenced with incompatible grids.

Systems of equations taken from standard textbooks of meteorology
and oceanography may show little more than a formal similitude — if any
at all — and tracing all the hypotheses which underlie any partical set

may prove to be much more difficult than one would expect.

The macroscopic equations of a geofluid which, like the atmosphere
is a mixture of, say, dry air, water vapor, water droplets, ..., for
instance, are well-known to include terms proportional to the squares of .
the so-called "diffusion velocities" (i.e. the velocities of the individual
components in a frame of reference moving with the mixture's center of
mass) . These terms are absent from the classical Qeophysical Fluid Dynamics
equations and it is not clear whether they have been neglected (and might
have to be reintroduced in some cases) or whether they have been taken
into account in the definitions and parameterizations of the constitutive

equations.




Changes. of phase are essential mechanisms in the atmosphere and quite
irrelevant in ﬁhe ocean. Is there a common description of both the atmos-

phere and the ocean where they are properly represented ?

Ocean Hydrodynamics is very often described in the scope of the
so-called Boussinesq. approximation which regards the dynamical state of

the geofluid as a first order perturbation of some reference state. How

much is this applicable to the atmosphere and can it be extended to in- Contents
clude specific thermodynamic features like changes of phase ? What is the ; ' .
[
appropriate state of reference for the atmosphere and how close can it be '
to a state of equilibrium ? ! The equations of mass comservation . .« + + + « x4 4 4 e e e e 4 9
{ - The momentum equations . .« « .+ & « 4 4 4 4 a4 e e 0w e e .. 14
The derivation of macroscopic equations for a mixture taking into . : The emergy equations . . . . . . . . . . ... ... e o 16
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account chemical reactions and (or) changes of phases is a fairly classical Radiation . . o e . L
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problem which has been abundantly discussed in reputed textbooks and mo- The reference state . . . o e e e e e e e e e e e e .29
; The geohydrodynamic approxlmatxon . S X |
nographs (e.g. Landau and Lifshitz, 1959; Meixner and Reik, 1959; Truesdell : Variability of the atmosphere and the ocean . . . R P 1]
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However, in the words of Becker (1972), "Differing formulations can i References . .« « « + « o+ o« o+ . 4w a4 e e e e e e.o.o80

be found in the extensive literature. The field abounds with ad hoc as-
sumptions. No consensus has yet been reached and no formulation of the

basic laws is completely satisfying."

Furtermore, although the Boussinesq approximation is commonly used
in some atmospheric studies, the subjacent assumptions and subsequent
limitations are not easy to identify and the separate consideration, in
the meteorology tradition, of dry air, dry air with water vapour but no

condensation, clouds, falling rain, etc,, may be rather confusing.

The development of ambitious and expensive interactive ocean- . E . .

atmosphere models justifies that, today, at the risk of being accused of

N repetition or reordering, one takes the time to reflect on the basic ma-
thematical model and on what one might call the fundamental "geohydrody-

namic" equations applicable to such compound physical system.

The present course is an attempt to provide the elements of such a
) reflection with, hopefully, enough novelty in the arguments or their pre-

sentation and interpretation to foster a constructive discussion.

Professor Jacques C.J. Nihoul.




The equations of mass conservation

The atmosphere and the ocean are composed of innumerable
constituents, among which some - like water in the sea - are found
in largel& dominant concentrations, some - like water in the atmos-
phere - are only minor components, and some - like trace metals in

the ocean - are in very small amounts.

In principle, one can attach, to a given constituent "i",
a specific mass J (mass of the constituent pér unit volume of the
mixture, in kg m~3) and a velocity v and write an equation of mass
conservation in the form ’
i

(1) 2t v 'vh) =9

i

where Qi is the rate of production (or destruction) of constituent "i"
9

. 3 5
vV t = @ ] e — e [
and he nabla operator V 1o, + €, o, + e, oo

Bulk variables p , Vv, can then be defined by
(2) p=1Lp
(3) PV =ZpV

where the sum is over all constituents.

Summing over all constituents and taking into account that
Z d = 0, one gets from eq. (1), the well-known "continuity equation"

3o -
(4) sg*t Vv =0

_ This equation contains only the bulk variables. Unfortunately,
other basic equations and, in particular, the energy equation which is
essential in climate modelling, cannot be as easily written in terms of

the bulk variables only.
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Yet, one cannot contemplate a model taking into account, indivi-

dually, all the constituents of the geofluids.

With essentially hydrodynamic and thermodynamic phenomena in mind
— the situation would be different if pollution was at stake — one can
consider the atmosphere and the ocean as "mixtures of conventional compo-
nents : for the atmosphere, dry air, water vapor, condensed water (liquid
or solid) in clouds, condensed water (rain, snow, ...) in precipitation;
for the ocean, pure water, dissolved salts and — to complete the analogy
with the atmosphere although they play a comparatively negligible part —
particles in suspension and sedimenting flocs*.

The specific masses of these constituents will be denoted p¢

(o = 1,2,3,4). In particular cases, for a more speaking presentation, a
letter will be used for superscript (in the étmosphere, "a" for dry air,
"v" for water vapor, "c" for clouds, "p" for precipitation; in the ocean,
"w" for water, "s" for salts, "t" for suspension, "f" for sedimenting

particles).

Neglecting small contributions, one can write

(5) p==Ep o =1,2,3,4
Let
p!L
6 c® = —
(6) o

Eq. (5) can be written

(5') (5™) re*=1 , ra*=0

* The description can be refined and, for instance, a further distinc-
tion between water, snow and ice can be introduced easily.

The general formalism which follows is completely general and no mo-

dification is required if the number of conventional constituents is in-

creased.
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The density of water vapor in the atmoéphere, v (=

the "humidity" ¥,

Mass conservation equations for the p®'s can be obtained
from eq. (1) by summing over the corresponding class of constituents

(e.g. over all dissolved substances in the sea). One gets

ap®
(7) st V- =9
whexrxe
(8) pava = I va1
: class a
(9) = & ¢
class a

0% refers now to interactions which transfer a constituent from
one compartment to another (condensation, evaporation, coalescence and

formation of rain drops, dissolving, flocculation, ...).

Introducing the bulk velocity V, egq. (7) can be written

a
(10) 2 v =" - Vg
where
(11) (12) q =" ¥ =yt -

* g + iy s k3
The c®'s are "specific" values., Related variables, sometimes used

in the literature, are obtained by dividing p® by the specific mass of
the major constituent instead of that of the mixture or by its saturation
value pg . One finds, for instance, the "absolute humidity" p'/p? and
the "relative humidity" oV /p}y ; po? (= ply ana o' (= p?) denoting
respectively the specific masses of dry air and water vapor.
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It is readily seen that one must have

a a

(13) (14) rq®=0 £ =0

~

Eq. (10) can also be written

dc? 3c®
(15) p SS-=zp (22

a a ,

+v.7¢% =9 - vV.q

ot

with the condition

(5") L da®=0

S(t +dt)

()

If one considers an arbitrary volume { (enclosed by a surface I)

transported by the geofluid (with the bulk vélocity v) and the total

mass
[ o aq
Q
of the constituent "a" contained in the volume { , one can write
/
(16) gg ] p® an = f 0” dn —f p*¥%.m 4z
2 Q z
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Eq. (16) is a common sense expression of the conservation of
mass : the increase in a time dt of the total mass of "a" contained
in § is equal to the quantity produced inside of f minus what has
leaked out through the surface I with the normal velocity ¥%.n

(n is the unit vector along the normal to I, pointing outwards).

Inverting the orders of derivation with respect to time and
integration over the moving volume £, and taking into account that,

for any field variable y, one has (e.g.-Nihoul, 1977)-

d R
(17) EEJ py 49 =] [S27 4 v oy vl an =f o L an
02 i3 £}

one obtains, writing p* = pc® and transforming the surface integral

into a volume integral by Gauss' theorem,
dc? a a
(18) pa‘t—‘d(l = Q 4aa - v.q d4Q
Q

The volume § being arbitrary, eq. (15) follows.

The demonstration above is a classical one (e.g. Nihoul, 1977).
It is reproduced here, in brief, because, on the one hand, the same
reasoning will be applied throughout this paper to establish the
basic egﬁations and because, on the other hand, it provides a simple

and clear illustration of the signification of the fluxes qa.

‘Each flux q“ can be further separated into a "molecular flux"

q;l and a "migration flux" q; .

Molecular diffusion is the common lot of all substances in a
mixture. Molecular fluxes can be parameterized in terms of concen—
tration gradients with the help of appropriate diffusivities A%,

viz, in the simplest case

(19) q&= - A* vt




.
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Migration, a relative motion at macroscopic scale (as opposed
to diffusion at molecular scale) is the attribute of falling rain
drops, sedimenting particles or flocs, rising bubbles ... The de-
termination of the migration fluxes requires the knowledge or the

parameterization of the migration velocities vﬁ.

The momentum equations.

Considering again an arbitrary volume § moving with the mixture

and the momentum j. p%v?® an

of the constituent "a" contained in Q, one has, by Newton's law (e.g.

Truesdell and Noll, 1965, Truesdell, 1969)

p*F* an +[ % an +f t® az
Q

d a_a —
TS pVv de = /
Q z

2

(20)

+j M®aq —/ (*v*)¥*%.n az
[ z

In this equation
a M .

(i) F is the external force (per unit mass), i.e., in axes rota-
ting with the Earth

(21) FF=-2Qav" +¢g

! is the Earth's rotation vector and g the acceleration of gravity*-

* Rlectromagnetic forces which play a role only in the ionosphere have
' been neglected.

Tide-generating and centrifugal forces may be included in g by rede-
fining it as the gradient of an appropriate (gravitational + tidal + cen-
trifugal) potential.

This is however relatively academic. In ocean-troposphere models, it
is generally sufficient to take for g the local acceleration of gravity.

15

(ii) f® is the internal force (per unit volume) associated with
mutual interactions between different components ;
(iidi) t% is the force (per unit area) which acts on the surface I

enclosing @ i.e. (e.g. Truesdell, 1969; Nihoul, 1977)

(22) t° = T%n

T* is the partial stress tensor and can be written

(23) T*=-p'I+ T/

a

to display the "partial pressure" p

(I = eje; + eye, + ege; is the "identity" tensor);

(iv) M® is the rate of change of the momentum p°%v® of the cons-

tituent a which results from changes of phase.

A single equation for the bulk velocity Vv can be obtained

by summing egs (20) over all constituents.

One obviously has

(24) , (25) | rf=0 , M=o
Setting

(26) pF=12 p"F"=-2QApv + pg

(27) p=2zp"

(28) T;, =3 (T~ p*¥°%%
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one obtains

(29) %E [ pv 40 = f oF a0 + I (- pI + T,).n ax
() (1) h>}

Using eqg. (17) to compute the time derivative and Gauss ' theo~
rem to transform the surface integral, one gets, taking into account

that the volume  is arbitrary

. av
(30) p gy =oF -V + VT,

The energy equations.

Applying the same reasoning as above to the energy
1

pa(ea + E—va ) of the constituent a (Su is the internal energy),
one gets
2

51——[ p“(a“+%v“ ) an =f p*F%.v* ag +f R* aQ

at Jj 2 Q
(31)

+ f s an + [ {t v - q,-n —-pa(su + 1~va )Va.n] darn
h 2
Q b .

where

(1) paFa-vu is the power developed by the external forces acting

on "a".
(ii) r” is the rate of change of energy due to radiation.
(iii) 8% is the sum of the rates of change of energy due to the work

dong by internal forces, the release of heat bY.internal friction

and changes of phase, the flow work done by the pressures to in-

troduce the created phases into their new systems and the
changes in internal and kinetic energy resulting from changes

of phase.
(iv) t*.v® is the power developed by the surface forces.
(v) qﬁ is the heat flux associated with the constituent a .

One has (e.g. Woods, 1975)

(32) Ls =0

Thus setting

a

(33) R=1IR

1

2
(34) 2 c®(e® + -;— %)

]
i

Using egs (23) and (28) and taking into  account that the volume Q is

arbitrary, one obtains

de da 1 2, _ ana _a
P TPFEG V)= o F v + R+ V.(-pv + T,v)

(35)

’ - na . . 2

+ V.- " + Ty 9% - qn - P (e* + %—6“ )]’

The scalar product of eqg. (29) by v yields

3 d_ L 3% - Ry T T

(36) P G v) = pFv + V.- pv+ Tyv) + p Vv - Ty:vy
Subtracting eq. (36) from eq. (35), one gets

(37) p%%=Zp“F“.G“+R+T‘,:Vv-pv.v-v._q€

17
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where
2
(38) q, = ¢ [qf + p®¥ (e + %v“ y + 7% (%1 - TH]
and where
% pF N =1 p%[- (2 Q4 vh .9+ g.fra]
(39) '

a

2QAav+ g.2q" - Dpt2RA¥HT

1

is zero in the particular case considered here but is retained in the

subsequent analysis to maintain the general level of the exposé.

The question arises whether T, defived by eq. (28), e, defi-
ned by eq. (34) and q., defined by eq. (38), are the equivalent of
the viscous stress tensor, the internal energy and the heat flux

introduced in the theory of a single fluid.

Some authors consider that

a a

a
T.=3Ty ; e =1c%" ;i q=1Iq
are the appropriate analogues and that using Tv , € and q. is tenta-

namount to assuming that the relative velocities v* are small

and that their square products can be neglected.

Others argue that T,, € and q, are the correct expressions;
the additional terms containing the relative velocities being ne-
cessary corrections to account accurately for the dispersion of in-

dividual particle velocities around the bulk velocity V.

If one approaches the problem along the lines of gaz kinetics
and, generally speaking, statistical physics, one must admit that

the second opinion does have some ground.

Let £%(t,x,u) denote the distribution function of the particles

(moleculgs ...) of the constituent a. If m® is the mass of one of

these particles, the number n® of particles per unit volume, the
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specific mass p® and the velocity v® can be defined by
na=ffadu ; pa=nama H nava=fufadu
where u denotes the velocity of an individual particle.

(1) In the macroscopic momentum equation, both the advection term

and the stress tensor arise from integrals of the form
n® [ uu £% du
which can be written

n® [ uu £° qu n® [ (u-v"@- vH£* qau + nn*vev°

Il

= p*I - Ty + m"n%"v"

p°I = T2 + m®n®(vy + v¥% + ¥% + §°%%)

Hence
In® [ uu £ du=pl - I (Ty - p*¥*¥%) + p wv
On the other hand, one can also write

Em® [ un £2du=Im® [ (u-v)(u-v)E®du +p vy

I}

pl - T, + p wv
It seems thus reasgnable to let

T, = % (TS - p%%¥%)
(ii) If one takes

p%e” =-;—m°' [ tu-v".@m-v* £ du

1 a
pe=zom® [@-v).@-v) £% du

the same calculation as above (scalar products replacing dyadic

products) yields

2
e =1 c* (e +~1—<‘7“

5 )
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(iii) setting

q; é—m“ f(u»ﬁ.v“).(u—v“)(u—v“) £ du

it

qh=2—;—maf(u—v).(u—v)(u—v) £ dan
One can write
t lqp b o (€% 4 -;—v“2> + 9. ("1 - Ty
= Z%ma { v - v @ - v £ au

2

+ L=ttt

+r=o* [ m-vH).u - v%) £% du

= N

.

+ 2 m9% [ (u-vH) @ -v") £ au

Z—%maf(u—v).(u—v)(u~v) £% au

= qn= qe

In the following, T, , € and q. as defined by egs (28), (34)
and (38) will be taken as the viscous stress tensor, the internal energy
and the heat flux, equivalent, for the mixture, of their analogues for a

single fluid.

The entropy equation. :

Assuming local equilibrium, one can write (e.g. Woods, 1975)

Bn)

dac”
3c® T,p.f J

i

an : an
pT dn = pT | (5= ar + (5 dp + I ¢
[ oT Pt ap T,c® v

pc, AT - BT dp + Tp I R, dc”

/.

pde»‘%dp—pzﬁ‘“dc“

(40)

i

where
T is the absolute temperature (K)

n is the entropy (m?s™ &Y

3n,

(41) c ATy co

p =T

is the specific heat at constant pressure (mzs— 2K'l)

@ = &

(42) B
AT’p ca 3P’ ca

1l
1
© |-

is the thermal expansion coefficient (Khl)

p® 1is the "chemical potential" of the constituent a

n, stands for (ana)
dc p,T.cﬁ

In eq. (40), the constraini,: ¥ dc®= 0 has been taken ‘into account and
one of the c%'s — c®, say — has been eliminated.
A tilde ~ over a symbol such as n, or u“ indicates a difference
feee my=mg-m, .o W =RT oWt
By convention, when the summation sign I is followed by a tilde,
the sum is made on all the constituents from a = 1 to a=n-1. When
the summation sign is not followed by a tilde, the sum goes from @ = 1

to a=n.

If ¥ denotes the enthalpy, one has, by Gibbs'relation

(43) dx=Tdn+%R+>:p“ac"
. Hence *
(44) Xe = 08+ T T,

* The partial derivative

e

21

X T D )

3c® p,1,cf
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Using egs. (37) and (39), one can write eq. (40) in the form
pdn _pde podo ,u dct

. dt T dt pT dt T dt
=1 : -k 13
T R+ T, :Vv) o (Vv o+ 3c)
C 1 - 'ﬁ‘u a a
(45) -7 V.(IE - I i (" - V.q")
~a
. - e B oqp Vv
=5 v.q, L Q T+ T, : -
vo” v
a
L q . T 9,7
A

is equal to the enthalpy x'l of the constituent a if the xa's are
functions of T and p only.
In the. atmosphere, for instance (Van Mieghem and Dufour, 1975)
a a a o . Voo v \ - .
X' xg o (T - Tg) 5 X'~ Xg + op (T = Tg) i
x° ~X3+c;(T—T0) +5—)E:;~"’)(p
*
where p§ is the mass of condensed water per unit volume of condensed
water (not per unit volume of the atmospheric mixture ; pi # pc)
One has also (Van Mieghem, 1975) ’

a a a T b a a
n ~ng+c, In— -R, 1In H p ~ ¢"R,pT
0 P Ty a pa 4 a
T .
W ~nh+tep ln - -R B ;i p' ~c'reT
To Pg
c c c Iz . . =% -
n no+cp 1n T nP : R, = Cp cy

(p* and p' are the partial pressures).
Thus (p,T,c? constant)

Y
N = oo = @ MY =t e n T g
wpe o SRaoapt By apt
pa aca[ Pv 3c®
a 1 8(p* + ")
U7 NT et

where

- a~a

46) g =T ' (q - I q'F)

is the flux of entropy.
With the assumption that the viscous stress tensor is symme-

tric (Woods, 1975), the entropy production rate ¢ is given by

(47) o = T,:D - q,.vr - ¢ q°.v%" - 3 o"%°

where D denotes the symmetrical part of Vv, i.e.

(48) Dy =3

(49) o =X JX
1

where the X; 's , assumed to be independently assignable, are the
"affinities"” while the conjugate scalars J; , assumed to be dependent
on the affinities, are the "processes".

One generally assumes linear relationships between processes

and affinities, viz

(50) Jy = ;ﬂ Lij Xj ) i=1,2,...

Egs. (50) are the "constitutive equations" providing the re-

quired parametefization of the fluxes qa v qn , the viscous stress

tensor ...

.23
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The adoption of linear constitutive relations would seem to
be strictly valid only for small deviations from equilibrium and might
appear to somewhat restrict the range of validity of process thermody-
namics. However, well-known linear laws such as those of heat and
electrical conduction, mass diffusion ... have been found experimen-—

tally to apply to systems well removed from equilibrium.

In practice, comparatively simple constitutive equations are
used, inspired by semi-empirical relationships like the proportionnality
of the viscous stress tensor to the deformation tensor, the heat flux
to the gradient of temperature (Fourier's law) and the molecular mass

’ *
fluxes to the gradients of concentrations (Fick's law) ...

In most geophysical problems, molecular diffusion processes,
are negligible as compared with that part of the advection which is
the deed of macroscopic microscale turbulent motions creating a dis-

persiop, similar to molecular diffusion but several orders of magni-

tude more efficient.

If one keeps in mind that there is a molecular sink and that
microscale turbulence is organized to transfer variance to it and must
be parameterized accordingly, one may negléct molecular diffusion.

So doing, one does not ignore molecular effects but simply relegates

them to infinite wave number.

* The parameterization of the migration flux associated, for instance,
with falling rain in the atmosphere is another special case of eq. (50).
The affinities

T—l 'V’{Ip 7

. ~ } . v
with up = Xp ~ Tnp - uv ~ (pp (T) - R, T ln p + ]'::
give contributions proportional to

e R, T 3p¥ 1 p glps - p)
S e T T TP IR
P X3 ps %% Py
‘The vertical migration flux, proportional to g (p¢ - p) may be identified

as the product of a vertical migration velocity — the terminal velocity of
a represéntative falling rain drop (Batchelor, 1967) — by the specific mass

of condensed water.
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Radiation.
Photons as the n+ 1 constituent.

Let 0 av av ay

frequency interval dv centered around v, in the volume 4V and with

denote the number of photons in the

directions of propagation within the solid angle dy about the direc-

tion 8.
Conservation of photons can be expressed by an equation si-

milar to eq. (1), viz.

vs
(51) %%—+ V.{(c 8 n®) =19

vé

where c is the speed of light (c ~ ¢y = 3 108 ms~! in the atmosphere,

1

c ~ 2.3 10% ms” in the ocean), & the unit vector in the direction

of propagation and st the local rate of photon production.

5 : . . ;
Iold can be written as the sum of four contributions i.e.

1) & 8 8 8
¢ - A" o+ s - s

I
=

(52) Q

where

5 ) '
E and Eﬁ represent the gain of photons per unit time respectively

by spontaneous emission and by scattering in the direction & from the
directions &' ; 4

a’® and SBs represent the loss of photons per unit time by absorp-
tion (induced emission deducted) and by scattering in other directions,

respectively.

Eq. (51) can be transformed into an equation for the radiation
energy by multiplying all terms by hv, i.e. the energy of a photon of
frequency Vv (h is the Planck constant).

Neglecting the time derivative as compared to the divergence

of the flux which is proportional to the speed of light and setting

(53) i = hvnlc ]
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(54) rvs = nv (Avs _ Evs) i*®  denotes the black body radiance. It has been assumed
that spontaneous emission obeys Kirchoff's law.
(55) svs = hv (S'i”i - Sgs) The sum KZ =a” + d” is called the "extinction" coefficient
and
one gets . ) &
(60) o = —
a¥ + &
(56) V.i"s - sv& _ rmS "
Using egs. (57), (58), (59) and (60) and introducing the
s . "directional derivative" 8.V, eq. (56) may be written
The vector i is known in optics as the (spectral) radiance.
Its magnitude or intensity Fidd specifies the radiant energy flux per : .
unit spectral band-width and steradian of the beam § at any given point. (61) 5.V = Kb (5% - 1%
Introducing the scattering coefficient d@” and the absorption
coefficient a’ *, one can write s*° and r”® in the form o 4 where
vé dv Ve’ voe, 7] v ' ' ' T vy, .vhb o’ vé! v ' '
(57) s =i [i ¢ (8',8) - i ¢ (8,81 ay (62) 3 = (1 - a )i allenll B ¢ (8,8") ay
© 4w . . N 47
(58) BRI N E A L ' ’ . The energy lost by the photons is gained by the fluid.
Thus
The scattering (or "phase'") function ¢ specifies the frac- ee
v
tion of energy scattered from a monochromatic beam of direction &, ) (63) R = I av r dy
0 4

per unit travel distance, into another particular direction &'.

The scattering function is normalized so that .
Integrating eq. (57), one has .

(59) f[ 6’ (8,8') ay' = 1 : . -
™ . vé
4 . (64) av s dy = 0

o
EN
By

Hence, introducing the radiation flux

* The absorption coefficient is independent of the direction of the
incident radiation. The scattering coefficient is independent of the di-
rection of thg incident radiation if the scattered .particles are distributed : "
at random. (65) q, = f av f i dy
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and integrating eq. (56) over all solid angles and frequencies, one

gets

(66) R =] av ] 2 ay = - v.q,
0

The temperature equation and the equation of state.

Combining egs. (37), (40) and (44), one gets

ar _ on dp ~ de’ Yy -
(67) PCp Fp BT aT +p I ox, at - R+ T, : Vy V.q,

The specific mass p must be regarded as a function of T ,p
and the c®'s - or, alternatively, n,p and the c¢* % -, the exact form
of which is specified by the equation of state.

Thus, using eqs. (40), (41) and (42)

(68)

BpT a ~
- B2 4n +*a—§+ $ *3, dc®

where a and *a denote respectively the speeds of sound at constant

temperature and at constant entropy, with

1 1
69 —— = -
(€9 . 2 a?

and where p, and *pa are the partial derivatives of p with respect

to c¢®, respectively at constant temperature and at constant entropy.

Introducing the Gibbs function

(70) €=E+E‘-Tn

one can write, using eq. (40),

(71) d;=-ndT+9pR+z§“dc“
and
2
- 9
(720 B, = -2 T = - o2 (B
3p dc 3P ;e
2 ~a
SR SRR - i
(73) . Ma 3T dct C3r )p,ca

Thus, by egs. (40), (41) and (42)

~ ~ ~ N gr ,au*
N _ + BeT - _ .2
(74) Pq Pa o N, p [(_Bp )T,c"' be, (5 )p,ca]

The reference state.
It is convenient to define a (hypothetical) state of reference
which displays the main features of most geohydrodynamic situations and

to which actual situations can be referred as (small) perturbations.
The state of reference, indicated by the
subscript "p", has the following characteristics

(1) horizontal homogeneity

(ii) constant composition* and constant entropy, i.e.,

29

* The condition (75) does not require an ocean of pure water or a "standard"

atmosphere of dry air (e.g. Iribarne and Godson, 1973). It allows constant
[within the

salinity and humidity as close as possible to natural values
limits of eqg. (79) for the humidity].
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dcg dng
(75}, (76) T 0 i — =0

dX3

(iid) macroscopic eguilibrium

(77), (78), (79) Vo =0 i g~ T P09 i 98 =0

Eg. (45) can be written in the alternative form

~a  dc”
R=-V.q, -2 wp g+ T,

(80) pPT —
which reduces, in the present case, to

(81) Rg = V.q =0

It is assumed that eg. (81) is satisfied by equilibrium of

the radiation field (Ry; = 0) and constant heat flux (V.q 0 0)
€,

i.e. constant temperature gradient.

Taking egs. (75) and (76) into account, one gets, from eq. (40)

dTo dpo
(82) PoCp dx3 = BOTO ?‘T;g—

hence, using eq. (78)

aTy . _ Bo9Ty

(83) dxg
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In the atmosphere

pr ~ 1, vy~ ~ o(10°

P
In the ocean
y ~ o(10™h)
Neglecting second order correcéions, one may regard Yy — and

thus the temperature gradient — in the reference state as a constant.

In the ocean, the temperature variations in the reference rate
(less than 1 K from surface to bottom) are so small that one can regard
the reference temperature as uniform. The situation is different in the

atmosphere (1 X per 100 m). In the atmosphere, vy 1is called the "dry

adiabatic temperature gradient".

In the reference state, eg. (74) can be written, using eqs; (75),

(78), (79) and (83)

. ~ ~ BoP ~
"Pa0 Pgo T To Mg
(84)
2 au® T 3p* pg ~
= - p [(__}:l_ BT (_J-l__ ] = 0 Ye

~Q

where ;“ stands in brief for

Combining egs. (68) and (78), one gets

-4
0(10 ) in the atmosphere
(85) 1 .Z'_E.(L = - :—(Lf ~ s
Po ©¥3 ag 0(107°) in the ocean

The variation of the specific mass p in the reference state

can be neglected in the ocean (a length scale of 100 km is much larger

than ocean depths).
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Eq. (68) can be linearized around the reference state, i.e.,

using eq. (84)

T a

dp _ _ Po%o an 1 ap il

(86) at o Foar i Tac” L "Papae
Setting

dp, dp, ‘dpy dp,

(87), (88) ac - V3 ax; 1 d T U3 dx

one can write

(89) 80y , L B
at *ap dt

and, substracting eq. (89), from eq. (86)

d 1 d
(90) Fc (P~ 00) - *ag Er (p - pg) =

Typical geofluid accelerations are much smaller than the acce-
leration of gravity. The gravity force is then essentially balanced
by the vertical pressure gradient and a situation close to hydrostatic
equilibrium prevails in the vertical direction, independently of the

geofluid motion. Thus, to first order,

1 d v d v
- =5 2(p - pPg) ~ - =5 —(p - py) ~ = (p - po)g
*ao dt *ao dX3 *ao
(91)
p - p dpg P~ ppy dp
N_._____O_V3 =ro . - 2 "o ZFo
Po dx, Po dt
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Combining eqgs. (90) and (91) and setting

(92) bs=-—-——g

93) G =T Ee -y

The vertical momentum equation contains the difference of

two very large texrms - %ﬁ— -~ pg. It is convenient to rewrite them
3
as follows
p d(p - pg)
(94) 33 Pg 3% (p Pol g

i.e., pp being a function of x, only,

(95) - Vp +pg=-V(p - pg) + pob
where
(96) b=be3

is the "buoyancy”.

The geohydrodynamic approximation.
In the right-hand side of eq. (94), the small difference

p = py is multiplied by g and cannot be neglected.

In all other terms of the basic equations, p can be replaced

by p, with a very good approximation.
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Egs. (4) and (30) can then be written, using eq. (95)

(97) V.lpgv) =0

(98) Wiyt 282av=--L90p-py) +b+ 200D
Bt o0

where *

(99) v =

is the "kinematic viscosity" (i is the "dynamic viscosity").

In many geophysical situations, these equations can be
further simplified. Going back to eg. (85), one can see that the
typical length scale of variation of p, , A ~ -*—Z‘l)— y
is of the order of 100 km in the ocean and 10 km in the atmosphere.
Thus, if one excepts very large scale atmospheric processes, one may

reasonably neglect the variations of pg. 5

Egs. (97) and (98) can then be written

(100) V.v = 0
v _ 2
(101) —B—E+V.VV+ZQI\V——V1[+}J+\)VV
where
P - Py '
(102) T =
p()

In large scale atmospheric motions, itmay be necessary to take

the variations of Py into account. However such motions are characte-

rized by quasi~hydrostatic equilibrium in the vertical with vertical

The viscous stress tensor is assumed proportional to the deformation
tensor, viz

T, =2u D i vV.T, = 2u Vv.D

Y

accelerations much smaller than g and vertical velocities much smaller

than horizontal velocities. Then, if one sets

(103) 2 2=me, + £ eg

one can write eqs. (97) and (98) in the form
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(104) 3vy + vy . A 3lpgvy) _ 0
: 3%y axy pp 9X3
v 1 3(p-pg) 2 3
105) 24y, - = - 2 22 7F0 S (y.
( 5T v.Vv; fv, + mvy oo 9%, + v Vv +y o, (V.v)
v, 1 3(p-pg) 2 ?
(106) 7T + V.V, + fv) = - B—g—a—X—;—————-l- vV vy, tv 'ég (V.v)
vy 1 3(p-pp) 2 )
— 4 V. - = - — — (V.
(107) Yy v.Vvy mv, b0 3%, + b+ v Vv +v 5% (V.v)

where terms representing negligible contributions have been underlined.

Let
X3
(108) z = [ r dxg i dz = r dx;
0
' _ 3 _ 9
(109) W = Y v, ; Vg 5%3 =W 57
with
p
r = -9
Po

where pg is an appropriate constant reference value of pg.
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Changing variables in egs. (104), (105), (106) and (107)

and taking r ~ 1

negligible corrections, one gets

in the underlined terms which are, in any case,

oV oV
(110) oV o, Y2 3w
9%y 3%y 9z
(111) -B—Y—L+ v - fv +mw=—3n+vV2v
3t ve'vi 2 ax, 1
(112) ﬁ+vv + £ = -2 L vy
3t -V Vi 3x, 2
oW - 2
(113) at+v.\7w mvy = az+b+\) Viw
where
_ 9 9 9 _ 9 9
(114) v.V = vy —-—-axl + vy ———sz + vs _—QX;.; = vy -————axl + v, ———~9X2 + W
and
P - P
(115) T o= 0
o}

[The definition of ® is the same as in eg. (103) since, in eq.

pp 1is regarded as a constant, i.e. Py Po 1.

Egs. (100) and (101) are thus universally applicable if V

are redefined by

(116) vV = vie; + vye, + we,
2 2
(117) v e, bx, 2 3 + ey Py

w and z reducing respectively to v,; and x4 in most cases.
Combining egs. (84) and (93), one obtains

db ac? Pa09 dc®

- v8n oy g
(118) it = \((d.t I Mao 3o ) 0o at

(103},

and V

wla
N
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The contributions due to changes in the concentration c® are
small except, in the atmosphere, in the case of a change of phase. In this
case, the third term in the right-hand side of eg. (118) is negligible as
compared with the second tei‘m which includes a contribution proportional .
to the rate of evaporation and condensation with the corresponding latent

heat as a factor.

Neglecting the last term in the right-hand side of eq. (118) and
using eq. (15) and (80), one gets

ab _ Bo9 T T
(119) at = pye, (B 7 V-9
where
(120) R\ = rR+ T, :9v - & 0°%8
and
(121) q: =q, -z Xeq°

may be regarded as "total heat source" and "total heat flux" respectively®,

Using eq. (40), eqgs. (118) and (119) can also be written

db _ ar BoTo dp, _ Bog T T
(122) ar = Po9lag Poc, At pocy (R Veq.)

Because of the conditions of near-hydrostatic equilibrium, one

may write, with a very good approximation

BoTo dp BoTo g
(123) Poc, dt <y V3 Y Vg

where, as pointed out before, <y may be regarded as a constant. Similarly

the variations of %:/cp may be neglected.

* The minus sign before the sums in egs. (120) and (121) should not be
misleading. For condensation, for instance

-0 (xh - xg) = - Q€ (xg - Xp) > O
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Introducing then the "equivalent temperature" 6 (Matveyev,
1964)*
’)“('a.
(124) 6 =T + yvy + L —% ¢ ,
Cp

one can write eg. (122) in the form

. de
(125) o Gr =@ - v.q
where **
(126) Qe _ R + Tv : Uy . R
Cp Cp
o _ gﬁ_
(127) ¢ = -

The second term in the right-hand side of eq. (119) represents
the effect of a molecular flux of buoyancy. Taking into account that mole-

cular fluxes are small and neglecting small corrections, one may write

B Bo g
(128) N X T e R LY
PoCp € Po Cp €

where A 1is the appropriate "diffusivity coefficient.
Introducing then the "buoyancy production rate"

Bo 9
(129) B = —4— gT
Po Cp

Y
one may write eq. (122) in the simple form

(130) 24 v.vb =B+ 2 b

Egs. (100), (101) and (130) constitute, with the definitions (96)
and (103) the basic geochydrodynamic eguations. '

* In the ocean, where there is no change of phase and where Y is very

small, one may usually take
6 ~T (in the ocean) .

** The heat produced by viscous dissipation may usually be neglected.
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If B 1is negligible or can be expressed as a function of b
only, they constitute a closed system of five partial differential equations

for v, m and b . These eguations are known as the "Boussinesq Equations'’.

In the other cases and in particular when the distinction must
be made between 6 and T, changes of phase must be taken into account,
etc., the Boussinesq equations must be complemented by the mass conservation

equations (15) and the thermodynamic law of phase changes.

Variability of the atmosphere and the ocean.

The basic geohydrodynamic equatiohs established in the previous
sections correspond to a definite selection of the state variables which

are used to describe the geofluids in mathematical terms.

As the equations stand, however, in general form, they are appli-
cable to all kinds of geohydrodynamic phenomena from molecular scales to
climatic scales. The model must, in practice, further be tuned to the
signals one wishes to investigate, i.e., after selecting the nature of the
state variables, one must specify their resolution, both in physical space

and in Fourier space.

Although the variability of the atmosphere and the ocean is uni-
versally recognized (e.g. Monin, 1972; Monin et al., 1974; Nihoul, 1980),
nothing like an unanimous spectral description of geohydrodynamic phenomena
appears to be available in the literature which often offers conflicting
views based on bits and parts of energy spectra plotted in irreconcilable

units.

Yet, to define the "nature" and "resolution" of appropriate state
variables for ocean-atmosphere models, one must identify the "spectral

windows" of the geofluids.

A simple — and, in first approximation, probably appropriate —
spectral scenario takes form if one recognizes that the basic equations
of Geophysical Fluid Dynamics contain three characteristic frequencies :

(i) the Brunt-Vdisdlid frequency n is a measure of the stratification
(n? is defined as the vertical gradient of buoyancyi. The maximum Brunt-
V&isdld frequency is of the order of 107% s7!  in the ocean and a similar

value may presumably be used for the atmosphere;




(ii) the Coriolis frequency f 1is a measue of the effect of the Earth's
rotation (£ is defined as twice the vertical component of the Earth's
rotation vector). In mid-latitudes, £ ~ 1074 s7!;

(iii) the Kibel frequency J is a measure of the effect of the Earth's
curvature. If B denotes the gradient of £ and e the energy dissipation
rate, the Kibel frequency is of the order 3~ el Bws i.e., for

g~ 10 "m™ g7, ¢~ 10° m* s™® in the ocean at corresponding scales,

€ ~5107* m®> s in the atmosphere

5~ 0.6 107% g7t (t;, ~ 18 days)

in the ocean

3~ 1075 g7t (t, ~ 1 day)

in the atmosphere

The characteristic wave-number associated with the Kibel frequency is

(Nihoul, 1980) k, ~ ¢ ¥* g, i.e.

in the ocean kg ~ 1.6 1078 (8, ~ 60 km)

in the atmosphere kg ~ 107° (2 ~ 1000 km)

Schematically, one can distinguish between
(1) microscale motions, for frequencies larger than n~ 10"% g7!,
unaffected by the Earth's curvature, the Earth's rotation and the stratifi-
cation and constituted mainly by three-dimensional turbulence;

(ii) mesoscale motions, in the range of frequencies between the Coriolis
and Brunt-Vdisdld frequencies, affected by the Earth's rotation and by the
stratification and constituted by inertial oscillations, tides, diurnal va-
riations, internal waves and bliny—turbulence*;

(iii) synoptic motions, for frequencies smaller than the Coriolis frequency
(f ~ 107* s7!) and larger, say, that the frequency of annual variations
(~ 1077 s_l), constituted mainly of the so-called "synoptic eddies" of
pseudo-dimensional rosby-turbulence**, with a peak of energy about the
Kibel frequency; )

(iv) climatic motions, for frequencies in the range 1077-10"% 7,

corresponding to periods of 1 to 20 years, characteristics of man's

capabilities of exploiting a climate forecast;

(v) "paleo-climatic" motions for still smaller frequencies.

* A "bliny" (from the Russian blini) is a pancake-shaped eddy, contributing
to an energy cascade to smaller scales via epidermic instabilities and inter-
nal waves. .

** p "yosby" (from the scientist Rosby) is a pseudo two-dimensional eddy
of scale of the order of the Rosby radius of deformation.
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To study geohydrodynamic phenomena in a particular range of scales,
one must smooth out smaller scale fluctuations by appropriate time averaging

and find a suitable representation of larger scales forcing.

From the basic equations, one thus derives
(i) primitive equations by filtering microscale "eddy" turbulence;
(ii) synoptic (weather) eguations by filtering both mesoscale waves,
bliny-turbulence and microscale turbulence;
(iii) climatic equations by filtering out rosby turbulence, bliny turbu-

lence and eddy turbulence.

Weathers and climates of the atmosphere and the ocean.

In the words of Wiin-Nielsen, Secretary General of W.M.O.,

Normally, we consider "weather" as the state of the atmosphere at a par-
ticular place and at a particular time. It is possible to talk about the
weather during any individual day, week, month, season or year.

"Climate", on the other hand is often referred to as "average weather”,
or to use the definition of the World Climate Programme : "Climate is the
synthesis of weather over the whole of a period essentially long enough to
establish its statistical ensemble properties (mean values, variances, pro-
bability of extreme events ...) and is largely independent of any instan-
taneous state". In brief, we may say that climate is the probability of
occurence of different types of weather at a given location for a nominated

calendar period, week, month or season.

These definitions are not, of course, universally accepted. During the
development of GARP, a different concept emerged. The distinction between
"weather" and "climate" became associated with the limits of predictability

of atmospheric states.

The definition of "climate™ in this statement may seem to be dif-
ferent from the definition given in the preceding section and based on the

concept of spectral windows and "climatic"” time scales and length scales.

Climate models are often questioned in this fespect and often
suspected of dealing with "long range weather forecasts" rather than true

climatic predictions.

Long range weather prediction, however, consists really in fore-
casting the day to day variations of the weather and carrying the forecast.
for a long time (ten years, say) while cliﬁate modelling (even considered
for the same decade) is concerned with the evolution of mean — monthly oxr

seasonal — values described by averaged equations derived from the primitive
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equations with the necessary parameterization of non-linear interaction

residues,

The parameterization, in fact, implies a knowledge of the varia-—
bility of smaller time scalejprocesses which is nothing else than what meteo-

rologists call the statistical ensemble properties of weather.

Hence, the scale definition of climate is as much "statistical"
as any other and any small difference there may be is largely aswerable to

the priorities of the different approaches.

Climatic averages.

If one defines the climatic state variables as averages over a
suitable period of time (a month, a season, a year, ...), then mathematical
models of climates must aim at forecasting the evolution of these climatic
variables over one or two decades, i.e., a span of time compatible with

human planning.

The time of averaging, however, cannot be chosen arbitrarily.
To preserve the statistical signification of the mean, it must correspond

to a valley in the spectral distribution of energy.

For the atmosphere, a time of averaging of the order of a month
(2.5 1068 s) seems to be appropriate for climate models. It is more than
ten times larger than the characteristic time of the rosbies ("synoptic

eddies”) .

In‘the ocean, however, the rosbies have a much longer life time
and a much lower mobility than their atmospheric analogues (travelling
cyclones and anticyclones in niid latitudes). A meaningful statistical pro-
cedure which involves a succession of these oceanic features locally would
require an averaging period of at least two or three years. It therefore
would not resolve the annual cycle of Variaus alr-sea interaction processes

which are essential for our understanding of the climate system as a whole.

’

As far as length scales are concerned, the situation is just the
opposite : the characteristic horizontal area of the oceanic rosbies tends
to be more than a hundred times smaller than that of their atmospheric

counterparts. One therefore can get a reduced representation of the large
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scale distribution of climate variables in the ocean by appropriate horizontal
averaging.

Such an average is always included in the numerical modelling pro-
cess as the selection of a numerical grid implies the filtering out of
sub-grid scale processes. A spatial resolution of a few degrees of the
great circle (~ 300-600 km) smoothes out most of the perturbations intro-

duced by travelling ocean rosbies and appears to be adequate.

Thus the combination of time and space averaging, eliminating
most of the variance within time intervals of about one month and within
distances of about 300-600 km, provides the appropriate low pass filter
for the definition of the climatic state variables and the formulation of

ocean-atmosphere climate models.

Examples of application of the geohydrodynamic equations to ocean-atmosphere climate models.

Among the models which have been developed up to now in order to
simulate the climates, one of the most recent and realistic ones is
the three-dimensional gemeral circulation model elaborated at the
National Center for Atmosphéric Research (USA) by Washington et al,
(1980).

This model links separate existing modéls of the atmosphere, the
ocean and the sea ice, and covers the entire gloBe. The oceanic part
of the model is based on the primitive equations and uses the hydro-
static and Boussinesq approximations with a rigid 1id, Unfortunately,
this does not allow net mass fluxes across Boundaries; thus, the
water flux at the surface due to precipitation and évaporation is re—
presented by an equivalent boundary salt flux in the salinity equation.
The runoff from the land into the oceans is not included. This explains

especially why the computed salinity values are too large.

The model of the mixed layer of thie ocean (Fig. 1) is taken from
an earlier model developed by Bryan et al (1975) in which the wind
mixing is parameterized and heat is redistributed downwards through

successive layers so that heat is conserved and the potential energy

"gained during the mixing is equal to the emergy supplied by the wind.
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Fig. 1.

a. Vertical temperature profile of a typical upper oceanic mixed layer
of temperature T and depth h.

b. Typical mixed layer showing turbulent motions with quiescent stratified
water below, the insolation at the sea surface and mixed layer bottom,
R, and R_; respectively, the back flux B, surface wind U; , and
the entrainment rate w,.

When the model becomes gravitationally unstable, a conmvective adjuste-
ment is performed in order to return adjacent layers to a statistically

stable state.

The ocean is subdivided into four layers with thicknesses, from top
to bottom, of 50, 450, 1500 and 2000 m (Kim, 1979; Fig. 2). Heat is
exchanged by diffusion between adjacent layers in proportion to the tempe-

rature gradient between them (thermal diffusivity ~ 107% m?s7!).

Bottom topography is included on a scale consistent with the resolution

(5° horizontal mesh).

The sea ice model is a simple thermodynamic model using a simplified

calculation of heat flux through sea ice.
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Fig. 2.

Representation of the layer temperatures T, and corresponding layer
thicknesses Azk of the four layer OGCM (Kim, 1979), where k may
have the integer values 1,2,3,4 corresponding to the four layers.

The growth and decay of the latter are predicted on the basis of pre-
cipitation and (or) flux budgets and the heat flux within the ice is assumed

to be independent of depth.

The vertical eddy diffusivity for heat and momentum is taken equal to
107* m*s™!, while horizontal eddy diffusivities for momentum and sensible
heat of 10° m’s™! and 2 10* m’s™!, respectively, are chosen. The results

show that these values overestimate the effects of the oceanic eddies.

In order to compute the sensible and latent heat fluxes over the ocean,
monthly averages of the speed of the surface wind U, temperature diffe-—
rence AT and humidity difference Aq are used. The coefficient of momentum
exchange Gp 1s taken to be a function of the bulk Richardson number of
stability and the same drag coefficient is used for energy fluxes. It is
worth noting that th% model works with time-averaged momentum flux rather

than stresses computed from averaged winds.
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Fig. 3a.

Computed and observed ocean surface temperature (°C) and sea
ice limits for January. Observed values from Alexander and
Mobley (1976). Large stippled pattern indicates extent of sea
ice. Sea ice thickness contours on computed maps are in meters.
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COMPUTED OCEAN SURFACE TEMPERATURES AND SEA ICE LIMITS-JuULY
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Fig. 3b.

Computed and observed ocean surface temperature (°C) and sea
ice limits for July. Observed values from Alexander and Mobley
(1976) . Large stippled pattern indicates extent of sea ice.
Sea ice thickness contours on computed maps are in meters.
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COMPUTED OCEAN SURFACE TEMPERATURES AND SEA ICE LIMITS —APRIL
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Fig. 4da.

Computed and observed ocean surface temperature (°C) and sea
ice limits for April. Observed values from Alexander and Mobley
(1976) . Large stippled pattern indicates extent of sea ice.

Sea ice thickness contours on computed maps are in meters.

COMPUTED OCEAN SURFACE TEMPERATURES AND SEA ICE LIMITS-OCTOBER
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Fig. 4b.

Computed and observed ocean surface temperature (°C) and sea
ice limits for October. Observed values from Alexander and
Mobley (1976). Large stippled pattern indicates extent of sea
ice. Sea ice thickness contours on computed maps are in meters.
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This global circulation model simulates reasonably well the ocean COMPUTED OCEAN CURRENTS, FIRST LAYER - JANUARY
surface temperature pattern., Fig. 3 and 4 compare computed and observed sonp oW 0 SOE 0o
values of SST and sea ice limits for January, April, July and October.
The observed and computed values of the amplitude of the seasonal cycle
. of SST agree in phase, but not in magnitude, The calculated ocean .
» temperatures are as much as 3°C too cold locally in the tropics and * 0
up to 4°C too warm in high latitudes. It is well known (Washington
and Chervin, 1980) that small changes in ocean surface temperature o
(< 2°C) result in significant changes in atmospheric structure. A better P//' °
treatment of the oceanic subsystem is thus needed. ?‘\\‘
40_//\/‘
Only the seasonal shift of isotherms towards the summer pole is‘ P~ 0
quite well reproduced. The error on the temperatures affects _ D
the distribution of sea ice : the Antarctic region (which is more . 2 .
influenced by warmer oceans than the Arctic regiom) is not well simu- 902?““""“““"""""“"“ﬂ;x“““”"““"““""“"“““““““““““““““““"““““"“““”““"“uﬂununn;?s
. ‘ ; lated. The thickness and geographical extent of sea ice in the Antarc-
k:‘l~‘ - tic are much less than .observed.
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Fig. 5 and 6 (Meehl, 1980) show the January and July ocean currents
streamlines for computéd surface currents, secqnd—lgyer currents and
observed surface currents. (Note that the 1attgr répreéents the long-
term mean flow). The major ocean current systems are better reproduced
in the second layer. This layer dominates the long-term heat storage

while the other three layers contribute much less.

Fig. 7 shows computed and observed annual values of wind stresses.
Some of the large-scale features such as trade wind and westerly wind
stresses are well reproduced, But the computed values are smaller than
the observed onés by at least a factor 2, and the computed directions
of the Northern Hemisphere westerly wind stress have a larger southward

component than observed.

Fig. 8 shows annual mean vertical velocity at the bottom of the
upper mixed layer (50 m). Observed and computed values agree, although

the model underestimates strong upwellings along coastal regioms.
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Observed ocean currents for July (from Meehl, 1980)
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COMPUTED OCEAN CURRENTS, FIRST LAYER-JULY
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COMPUTED ANNUAL WIND STRESS COMPUTED VERTICAL VELOCITY (107° CM SEC™")
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Computed and observed annually averaged wind stress. Computed January and observed annual mean vertical velocity

Observed values are Hellerman's (1967) from Bryan at bottom of mixed layer. Observed values are from Stommel
and Lewis (1979). (1964) [bottom]. Cross-hatched areas indicate positive (upward)

vertical motion.
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LATITUDE
[ EERRENERNER
T

Top : computed oceanic heat transport as a function of latitude
separated into components; middle : computed horizontal oceanic
heat as function of time; bottom : observed horizontal oceanic
heat transport as function of time (Oort and Vonder Haar, 1976).
On middle and bottom figures, cross hatching indicates south-
ward transport > 2x 10¥ W; stippling indicates northward

> 2x10%w.
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'Computed and observed zonally averaged atmospheric temperature T
distribution for January and July. Top : with coupled model;

bottom : observed.
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Computed and observed zohally averaged wind component u for
January and July. Top : with coupled model; bottom : observed.

If one compares the computed horizontal ocean heat transport
(middle of Fig. 9) with that caleculated by Oort and Vonder Haar (1976)
as a residual term in the earth's heat balance(bottom of Fig.9) by using
available data for the Northern Hemisphere, one can see that these
values are similar, but the computed heat transport maxima are smaller
in magnitude, occur two months before and are centered farther south.
The total transport (top of Fig. 9) is in good agreement with results
found by Bryden and Hall (1979) in their recent estimates of annually
averaged observed oceanic heat transport across the North Atlantic at

25° N.

To determine which mechanisms in the ocean contribute to the trans-—
port, the authors divide the total heat transport (top of Fig. 9) into
three components : meridional, gyre and diffusive transports.

Fig. 9 gives the latitudinal annual time average of each tranmsport.

The meridional term is dominant iq the tropics and subtropics, the dif-
fusion term dominates in the higher latitudes, while the gyre term con-
tributes little to the total heat transport (due especially to the
coarse resolution used : 5° of horizontal fesolu:ion).

Fig. 10 and 11 show computed and obsérved zonally averaged atmos-—
pheric temperature T distril;ution and wind component u for two months :
January and July. The agreement is quite good, however the computed
temperatures are too small and the tropical belt of easterlies is

displaced in the summer hemisphere.

Conclusions.
Faced with dramatic food, energy and environmental problem, man is
today required to provide better and better forecasts of the "weathers"

and climates of the atmosphere and the ocean.

This requires sophisticated interactive ocean-atmosphere models cor-
responding to distinct spectral windows of geophysical processes and, in
particular, climate models able to predict, over one or two decades, the

evolution of, say, monthly mean values.’
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With the recent expansion of computer facilities and the progressive
constitution of extensive data banks — incorporating in particular the data
from large scale oceanographic experiments and from remote sensing — such
ambitious models are coming within reach of the new generations of geophy-

sical fluid dynamicists and modellers.
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