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Abstract
The present paper introduces an original experiment allowing students to relate the Brownian motion of a set of superparamagnetic

colloidal particles to their macroscopic diffusion. An external and constant magnetic field is firstly applied on the colloidal suspension
so the particles self-organize into chains. When the magnetic field is removed, particles then freely diffuse from their positions in
the chain. It is worthwhile to notice that all the particles initially have the same coordinate on the axis perpendicular to the initial
chain. This configuration then enables the observer to study the one dimensional diffusion process, while actually seeing the underlying
Brownian motion of the microscopic particles. Moreover, by studying the evolution of the particles distribution, a measurement of
the diffusion coefficient is performed. By repeating this measurement with fluids of various viscosities, the Stokes-Einstein relation is
eventually illustrated.

I. INTRODUCTION

Establishing the properties of a macroscopic system from
the behavior of its individual microscopic particles is the
main principle of statistical physics. A key topic where such
relation is achieved is the macroscopic diffusion resulting
from Brownian motion of colloidal particles. Indeed, many
papers and introductory courses focus on the link between
the Brownian motion and the diffusion to introduce statisti-
cal physics concepts.1–6 The basic principle of most experi-
ments presented in these papers is to track the trajectory of
colloidal particles to deduce the diffusion coefficient by mea-
suring the mean-squared displacement along time. However,
the tracking of single particles require to apply ready-to-use
image analysis softwares with embedded high-level functions.
While students can benefit from learning using those kinds
of tools, it may also give them the feeling to use black boxes.

Another regular topic of statistical physics is to study the
organization of particles due to their mutual interactions.
An example of interaction between particle is the magnetic
dipoles’ interaction, whose description is then pedagogically
relevant. This interaction can be observed with superpara-
magnetic colloids, which are magnetic nanoparticles inserted
in a matrix of non-magnetic material (polystyrene or silica)
to obtain particles with diameter d ranging from 102nm to
a few micrometers. These composite particles are combining
a quasi-zero remanent magnetization and a high magnetic
response.7,8 Quasi-zero remanent magnetization means that,
as soon as no magnetic field is applied on the particles, they
no longer have any non-negligible magnetic moment and then
behave as non-magnetic colloids. A high magnetic response
implies that if the particles are immersed in a magnetic field
they acquire magnetic dipoles with the same order of mag-
nitude as ferromagnetic particles. This last property implies
that particles can efficiently self-organize themselves when
immersed in an external magnetic field. If this field is con-
stant, the particles form chains aligned with the field.7,9–14

Those chains of superparamagnetic colloids are used in a
wide range of applications namely protein isolation, cell sep-

aration, waste capture, bacteria processing, chromatography,
etc7,15–18 and are still a matter of current research topic with
various configurations of the external magnetic field.14,19–29

The objective of this paper is to present an experiment
about the diffusion of superparamagnetic colloids, which only
requires basic image analysis algorithms to obtain main re-
sults. Moreover, exploring the magnetic interactions between
those colloids as an example of anisotropic interaction with
some analytical model can also educationally benefit the stu-
dents. The experiment introduced in the present paper is
then particularly suitable for introductory lessons of exper-
imental statistical physics and introduces a direct link be-
tween the standard topics and some current research area in
that field.

II. BASIC THEORY

A. Diffusion

When colloidal particles are immersed in a fluid, they ex-
perience interactions with the surrounding molecules of that
fluid. Those interactions create a random force acting on the
colloidal particle which moves then randomly. They follow a
so-called Brownian motion, from the name of Robert Brown
who reported it in the literature after observing this behavior
with pollen molecules in 1827.30 During that motion, it can
be shown that the probability density ρ(~r, t) for the particle
to be at position ~r at time t obeys the diffusion law:

∂ρ(~r, t)

∂t
= D∆rρ(~r, t) (1)

where ∆r is the Laplace operator andD is called the diffusion
coefficient. For a perfect sphere, the diffusion coefficient is
related to the temperature T , the viscosity η and the radius
of the particle R through the Stokes-Einstein relation

D =
kBT

6πRη
, (2)
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where KB is the Boltzmann constant. If n is the dimension
of the studied system, and if the position ~r0 of the particle
at time t0 = 0 is known, the initial condition of this equation
is ρ(~r, t0) = δ(~r0), with δ the delta function. The solution of
the Equation (1) is then, for t > t0,

ρ(~r, t) =
ρ0

(4πDt)
n/2

exp−
(~r − ~r0)

2

4D(t− t0)
. (3)

The parameter ρ0 is equal to one in this case of a single
particle. However, when a set of many particles are ob-
served instead of only one, the evolution of their concen-
tration is a realization of the density probability and, in case
of an infinite number of particles, the parameter ρ can be re-
lated to this concentration. Subsequently, given the chosen
units, the concentration may be not normalized. The ini-
tial concentration amplitude can then be ρ0 6= 1 (with then
ρ(~r, t0) = ρ0δ(~r0) if all the particles are initially at the same
position). However, the concentration of the particles still
evolves as described by the Equation (3). Then the random
walk of the particles lead to a global spreading of the par-
ticles since the Full Width at Half Maximum (FWHM) W

of this Gaussian curve evolves as W = 4
√

ln (2)Dt. Experi-
mentally, the difficulty to study a system with a large number
of particles, and obeying those laws, comes from obtaining
the initial condition ρ(~r, t0) = ρ0δ(~r0). In one dimension,
this would require to have all the particles aligned along a
given axis at some initial time. Fortunately, the interac-
tions between superparamagnetic colloids offer a possibility
to achieve this situation.

B. Superparamagnetic colloids

In a wide range of experimental situations, superparam-
agnetic colloidal particles can be approximated as spheri-
cal dipoles for modeling purposes.7–10,31–39 This means their
magnetic dipole ~µ is a sufficient parameter to describe every
other magnetic property of a given particle. Indeed, spherical
dipole is equivalent to point dipole40 and create a magnetic
field

~Bµ =
µ0

4π

3 (~µ · ~er)~er − ~µ

r3
(4)

at any point ~r if the dipole is at the origin ~r = ~0, with µ0 the
magnetic permeability of vacuum and ~er = ~r

r . It is worth
to notice that if the dipole is not surrounded by vacuum,
this relation remains true if µ0 is replaced by the magnetic
permeability of the surrounding medium. However, main
diamagnetic media, as water and air, have a magnetic per-
meability close to µ0. Using µ0 to compute the field in those
media is then a good approximation. Any dipole immersed

in an external field ~B(~r) and at position ~r also has a mag-

netic energy U(~r, ~µ) = −~µ · ~B(~r). The potential energy of
magnetic interaction between two dipoles ~µ1 and ~µ2 is then
given by

U(~r, ~µ1, ~µ2) =
µ0

4π

~µ1 · ~µ2 − 3(~µ1 · ~er)(~µ2 · ~er)

r3
, (5)

where ~r is then the vector going from the position of the first
dipole to the position of the other one.

By definition, in case of (super-)paramagnetic materials, as

long as the amplitude of the external magnetic field ~B = B~ez,

~ez being a unitary vector in the direction of ~B, is under some
saturation value, the dipolar moment of a given particle of
radius R can be expressed as

~µ =
χ4πR3 ~B

3µ0

, (6)

with χ the particle susceptibility and µ0 the magnetic per-

meability of the vacuum. If the magnetic field ~B is over
that saturation value, the magnetic susceptibility χ can not
be considered as a constant anymore. From equation (6),
we can infer that those particles have a magnetic energy

Um ≡ −~µ· ~B = −χ4πR3

3µ0

~B · ~B and all have a magnetic moment

in the direction of the field (unless they have a susceptibility
χ ≈ 10, the field created by the neighboring dipoles has a
negligible amplitude in comparison with the external field).
Moreover, from equations (6) and (4), and the potential en-
ergy of magnetic interaction between two of the particles can
then be expressed as

U(r, θ) =
χ24πR6B2

9µ0

(

1− 3 cos2 θ

r3

)

, (7)

if θ = arccos (~ez · ~er). Two particles then tend to attract
each other and to create a pair of particles aligned with the

external magnetic field ~B, since the minimum value of their
interaction energy is reached when θ = 0 or π and r is mini-
mal (i.e. r = R for solid particles). It is worthwhile to notice
that the radial part of the magnetic force

~Fr = −
∂U

∂r
~er =

χ24πR6B2

3µ0

(

1− 3 cos2 θ

r4

)

~er (8)

vanishes if θ = arccos 1√
3
≈ 55◦ or θ = arccos− 1√

3
≈ 125◦

and is repulsive if 55◦ < θ < 125◦. It is attractive in other
cases. The magnetic interaction potential as well as the at-

tractive and repulsive zones of ~Fr are illustrated in Figure
1.
This interaction implies notably that when particles

are immersed in a constant and homogeneous magnetic

field ~B, they self-organize into chains aligned with that
field.7,9,10,31–35 The exact mechanism of aggregation as well
as the distribution of the chains size at thermodynamical
equilibrium is still a current research topic, given the ob-
served behavior are not yet fully understood.7,10–12,14 This
organization is reversible in that meaning that the particles
begin to diffuse freely when the magnetic field is switched
off, due to the quasi-zero remanence (Figure 3).11,35

The self-assembly into chains can be used to create initial
conditions where one dimensional diffusion, resulting from
the visible random walk of the particles, can be quantita-
tively studied. Indeed, if the magnetic field is aligned with
the y-axis, then all particles from a given chain have a given
abscissa x0. The initial distribution of the particles center
can then be approximated as ρ(~r, t0) = ρ0δ(~r0). Actually,
the thermal agitation enlarge this distribution implying it is
closer from a gaussian curve. But since this is the distribu-
tion obtained from an initial delta function, and given the
diffusion equation is time invariant, one can just redefine the
initial time. This ensures the distribution of the particles
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FIG. 1. Graphics of the magnetic interaction potential. The
different parameters of U(r, θ) are illustrated on this graph, and

the attractive and repulsive zones of ~Fr are delimited by dotted
lines. The background colors indicate the value of U at each point,
from the blue (largely negative) to the red (largely positive). The
orange color denotes a negligible magnetic energy.

FIG. 2. Sketch of the experimental set-up. A transparent cham-
ber containing the colloidal suspension is placed between two coils
generating a constant and homogenous magnetic field ~B. The
sample is enlightened from the top and observed from the bottom
thanks to an inverted microscope. An image obtained during the
formation of the chains with a low magnification (10x) is shown
on the right.

has then the same evolution as described previously in Eq
(3). By analyzing the growth of the FWHM of the parti-
cles distribution W as a function of time, one can determine
the effective diffusion coefficient of the particles. By doing
this for different liquid phases, with varying viscosity, one
can also verifies the robustness of the Stokes-Einstein rela-
tion by verifying the trend D ∝ 1

η . Next section details an

experimental protocol to achieve these goals.

III. METHODS

A sketch of the experimental set-up designed to study the
diffusive disintegration of those chains is presented in the
Figure 2. The experiments were performed with superpara-

magnetic microspheres dispersed in water (Estapor R© M1-
070/60), with a volumic fraction of φ = 2 10−3. A 1 µl drop
of the suspension is placed inside a cylindrical chamber of
diameter D = 5 mm and thickness h = 50 µm. The chamber
is formed by two parallel glass plates. The first glass plate
is covered with a 50 µm layer of epoxy at the exemption of
a circular region (commercial glasses available, for instance,
by Thermo Scientific or Fisher Scientific). A 1 µl droplet of
suspension is placed inside this region. Afterward, the sec-
ond glass plate is placed on the first one. A small quantity
of low viscosity silicon oil is placed on the epoxy to asses the
watertightness of the chamber. The suspension is observed
from the bottom with a 40x magnification. A constant and
homogeneous magnetic field B is applied by sending a con-
stant current in surrounding coils. When chains are formed,
the camera is focused on a long and isolated chain. The cur-
rent in the coils is then removed to observe the free diffusion
of the particles. Images are recorded at the rate of one frame
per second, and the field direction is chosen to create chains
parallel to one border of the image. An illustrative video of
this process is available as supplementary material.41

Primary images typically contain about ten chains of su-
perparamagnetic colloids. To study the diffusion of the par-
ticles, the first step is then to select one chain and crop the
obtained image sequence around that chain (which is the
simplest way to define an area of interest for the image anal-
ysis and is really straightforward with ImageJ). Once this is
done, the distribution of particles can be found by a simple
image analysis method we suggest to give as a Matlab coding
exercise to students with the following guidelines. The first
step is binarizing the image (Most programs have a built-in
function able to calculate Otsu’s threshold value, which min-
imize the sum of the intensities variance inside white pixels
on one hand and black on the other hand42). Then, the
distribution of particles along the axis perpendicular to the
chain can be found by averaging the intensity of the binary
image along the axis parallel to the chain, if the particles are
white and the background is black. (Clue: this can be done
in a single Matlab command, provided the chain is parallel
to one side of the picture.) This gives the blue functions in
the bottom of the Figure 3. The width W of this experimen-
tal distribution can be assessed by the FWHM of a Gaussian
fit (which students can perform in Matlab or with any other
data analysis software). By plotting this width W as a func-
tion of time t, one can then estimate the diffusion coefficient
D from another fit, with the law W = 4

√

ln (2)D(t− t0),
where D and t0 are then fitting parameters. ImageJ guide-
lines and macro, performing both the image analysis and the
required fits, are provided as supplementary material as well
as a more evolved example of Matlab code.41

Since several chains are available from only one image se-
quence, this image analysis can be performed several times
on different chains. This will provide a distribution of diffu-
sion coefficient, whose standard deviation provides an experi-
mental error for this coefficient. For initial chains containing
around hundred particles, the typical relative error should
be about 10% as suggested by Poisson law since we actually
count the particles in the image analysis.

By repeating this process for surrounding liquids having
various viscosity, the validity of the Stokes-Einstein relation
can be assessed by fitting the measured diffusion coefficients
as a function of the viscosity D = C

η , with C a fit coefficient
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FIG. 3. Experimental illustration of particles diffusion from a chain in water when external magnetic field ~B is switched off. First
picture is taken just before the field is suppressed, and there is 2s between each image. In blue, the distribution of particles along the
x-axis is shown for each image, and adjusted by a red Gaussian curve. The units are arbitrary. The width of the distribution increases
as time elapses.
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FIG. 4. Evolution of the sqaure of the FWHM W of the Gaussian
obtained by fitting experimental data along time t (dots with
error bars), for a mixture of glycerol and water containing 40%
in volume of glycerol (η = 4.8 mPa s). The evolutions obtained
for three different chains have been plotted (each symbol, circle,
square or triangle, is related to a specific chain). The data have

been fitted with the relation W = 4
√

ln (2)D(t− t0) ⇔ W 2 =
16 ln (2)D(t− t0) (solid lines).

whose value is theoretically given by the mean value of kBT
6πR

from the Stokes-Einstein relation. We then propose to per-
form the process described herein above for different mixture
of glycerol and water. The viscosity of such mixture can be
calculated or found in tables,43 but this property can be ver-
ified with a rheometer for educative purposes. We always
obtained value agreeing with the tables within 5% variation,
consistent with the errors in the measurements required to
do the mixture. Detailed results are described in the next
section.
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FIG. 5. Typical evolutions of the square of the FWHM W of
the Gaussian obtained by fitting experimental data along time t
(dots with error bars), for three different mixture of glycerol and
water. The viscosity has been measured with a classical rheometer
and is consistent with the various concentrations, respectively 6%,
25% and 40% of glycerol in volume. The evolutions obtained
for three different chains have been plotted (each symbol, circle,
square or triangle, is related to a specific chain). The data have

been fitted with the relation W = 4
√

ln (2)D(t− t0) ⇔ W 2 =
16 ln (2)D(t− t0) (solid lines).

IV. RESULTS AND DISCUSSION

Typical evolutions of the FWHM W of the Gaussian dis-
tribution, given by the image analysis protocol introduced
previously, are represented in the Figures 4 and 5. For clar-
ity purposes, only three chains have been pictured, but the
analysis was done with five chains for each glycerol and wa-
ter mixture. Gathering all the data gives the diffusion coef-
ficients shown in the Figure 6. From those results, we can
clearly observe the predicted behavior of D ∝ 1

η from the

Equation (2).
Those measurement can be compared more accurately to
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TABLE I. Numerical results and predictions

η [mPas] 〈D〉 [µm2/s] σD [µm2/s] D
(〈

1

R

〉)

[µm2/s] D
(√

〈

1

R2

〉

)

[µm2/s]

1 5.6 10−1 0.4 10−1 3.9 10−1 6.5 10−1

1.1 5.8 10−1 0.6 10−1 3.6 10−1 5.9 10−1

1.2 6.0 10−1 2. 10−1 3.3 10−1 5.4 10−1

1.5 4.2 10−1 0.6 10−1 2.6 10−1 4.4 10−1

2.4 3.3 10−1 0.2 10−1 1.6 10−1 2.7 10−1

4.8 1.1 10−1 0.2 10−1 0.8 10−1 1.4 10−1

6.3 1.2 10−1 0.1 10−1 0.6 10−1 1.0 10−1

8.4 7.2 10−2 0.8 10−2 4.7 10−2 7.8 10−2

11.5 5.7 10−2 0.4 10−2 3.4 10−2 5.7 10−2
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FIG. 6. Diffusion coefficients D obtained for mixtures with dif-
ferent viscosities η. The points are the data, fitted with a law
D = C

η
(solid line) as predicted by the Stokes-Einstein relation

(2). The points in different colors represent the sets of data con-
taining the curves from the figure 5 with the same color. The fit
is characterized by a coefficient of determination R2 = 0.96 and
the parameter C = 6 10−16 ± 1 10−16 kg m s−2.

the Stokes-Einstein relation (2), if the distribution of the
radius R of the particles is known. But actually, such a com-
parison requires a choice of characteristic radius. Indeed, our
results summarized in the Table I, along with two theoreti-
cal predictions. The size of the particles can be determined
through classical image analysis of microscopic photographs.
For the same particles as previously, we obtained a wide dis-
tribution characterized by a mean value of the inverse radius
〈 1
R 〉 = 1.7 106m−1. According to that distribution and the

Stokes-Einstein relation, at room temperature T = 300 K,
one might think that the predicted value of the diffusion coef-
ficient D = kBT

6πη

〈

1
R

〉

. The values obtained from this relation

have been labelled D
(〈

1
R

〉)

in the Table I. One can clearly
observe that those theoretical values systematically underes-
timate the diffusion coefficient. This offset comes from the
determination of the effective mean radius of the particles.
Indeed, the distribution of the particle’s radius is very wide
and there are many ways to determine a typical inverse ra-
dius from this sample. Actually, any quantity which can be

expressed as Ri,j ≡

(

〈Ri〉
〈Rj〉

)
1

i−j

, {i, j} ∈ Z can be such a typ-

ical radius.44 However, the viscous forces act on the surface

of the particles. The drag, which is one of the main features
leading to the Stokes-Einstein relation, is then a surface-
driven effect. Therefore it is more consistent to use an in-
verse radius derived from the average of the inverse of the
surface (∝ R2) which can be given by R−2,0 = 2.9 106 m−1,
so that the effective value of the diffusion coefficient is given

by D
(
√

〈

1
R2

〉

)

= kBT
6πη

√

〈

1
R2

〉

. The values given by this

expression are also listed in the Table I. The experimental
data oscillate around those values without any systematic off-
set. Moreover the predicted value of the fit parameter C =
kBT
6π

√

〈

1
R2

〉

= 6.5 10−16 kg m s−2 is then lying in the error

bars of our fitting value of C = 6 10−16 ± 1 10−16 kg m s−2.
This enhances how important it is to consider the right char-
acteristic length and how the width of a parameter’s distri-
bution can have a strong influence on theoretical predictions.
However, we can conclude that the value we obtained by our
method of measurement is then consistent with the distribu-
tion of size of the particles and the Stokes-Einstein relation.

V. CONCLUSION

The present paper has described a simple but original ex-
periment suitable to introduce the diffusion of particles as
a result from their random walk due to Brownian motion,
which is a standard topic of statistical physics to students.
Moreover, this experiment involves superparamagnetic col-
loids and may be used to show them the relation between
this current area of research and standard topics of statistical
physics. This experiment also offers an opportunity to intro-
duce some basic image analysis techniques as experimental
physics skills as well as some examples of experimental fits
to compare with theoretical laws.
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