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Abstract

The Thue-Morse set is the set of those nonnegative integers whose binary expan-

sions have an even number of 1. We obtain an exact formula for the state complexity of

the multiplication by a constant of the Thue-Morse set T with respect with any base b
which is a power of 2. Our proof is constructive and we are able to explicitely provide

the minimal automaton of the language of all 2p-expansions of the set of integers mT
for any positive integers m and p.

1 Introduction

This papers is a contribution to the study of recognizable sets of integers. Many descriptions
of such sets were given by various authors. Among them, we point [3, 5, 6]. A complete
description of the minimal automaton recognizing mN in any given base b was given in
[1]. Strucural properties of minimal automata recognizing mN are known in various non-
standard numeration systems as well [4]. A deep knowledge of the structures of such
automata is important. For example, they can be fruitfully used to obtain e�cient decision
procedures of periodicty problems [2, 8]. In the present work, we propose ourselves to
initiate a study of the state complexity of the multiplication by a constant of recognizable
subsets X of N. In doing so, we aim at generalizing the previous framework concerning the
case X = N only. Our study starts with the well-known Thue-Morse set T consisting of the
natural numbers whose base 2-expansions contain an even number of occurrences of the
digit 1. Our goal here is to provide a complete characterization of the minimal automata
recognizing the sets mT for any multiple m and any base b which is a power of 2.

2 Basics

In this text, we use the usual de�nitions and notation (alphabet, letter, word, language,
free monoid, automaton, etc.) of formal language theory; for example, see [7, 9].

Nevertheless, let us give a few de�nitions and properties that will be central in this
work. The empty word is denoted by ε. For a �nite word w, |w| designates its length and
|w|a the number of occurrences of the letter a in w. A regular language is a language which
is accepted by a �nite automaton. For L ⊆ A∗ and w ∈ A∗, the (left) quotient of L by w
is the language

w−1L = {u ∈ A∗ : wu ∈ L}.
As is well known, a language L over an alphabet A is regular if and only if is has �nitely
many quotients, that is, the set of languages

{w−1L : w ∈ A∗}
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is �nite. The state complexity of a regular language is the number of its quotients:
Card({w−1L : w ∈ A∗}). It corresponds to the number of states of its minimal automa-
ton. The following characterization of minimal automata will be used several times in this
work: a deterministic �nite automaton (or DFA for short) is minimal if and only if it is
complete, reduced and accessible. A DFA is said to be complete if the transition function
is total (i.e. from every state start transitions labeled with all possible letters), reduced if
languages accepted from distinct states are distinct and accessible if every state can be
reached from the initial state. The language accepted from a state q is denoted by Lq.
Thus, the language accepted by a DFA is the language accepted from its initial state (we
always consider automata having a single initial state).

In what follows we will need a notion that is somewhat stronger than that of reduced
DFAs. We say that a DFA has disjoint states if the languages accepted from distinct states
are disjoint: for distinct states p and q, we have Lp ∩ Lq = ∅. A state q is said to be
coaccessible if Lq 6= ∅ and, by extension, an automaton is coaccessible if all its states are
coaccessible. Thus, any coaccessible DFA having disjoint states is reduced.

Now, let us give some background on numeration systems. Let b ∈ N≥2. We de�ne Ab
to be the aphabet {0, . . . , b−1}. Elements of Ab are called digits. The number b is called
the base of the numeration. In what follows we will make no distinction between a digit c
in Ab and its value c in [[0, b−1]]. Otherwise stated, we identify the alphabet Ab and the
interval of integers [[0, b−1]]. Note that here and throughout the text, we use the notation
[[m,n]] to designate the interval of integers {m,m+1, . . . , n}. The b-expansion of a positive
integer n, which is denoted by repb(n), is the �nite word c`−1 · · · c0 over Ab de�ned by

n =
`−1∑
j=0

cjb
j , c`−1 6= 0.

The b-expansion of 0 is the empty word: repb(0) = ε. Conversely, for a word w = c`−1 · · · c0
over Ab, we write valb(w) =

∑`−1
j=0 cjb

j . Thus we have repb : N → A∗b and valb : A∗b → N.
Clearly, the function valb ◦ repb is the identity from N to N. Moreover, for any w ∈ A∗b ,
the words repb(valb(w)) and w only di�er by the potential leading zeroes in w. Also note
that for all subsets X of N, we have val−1b (X) = 0∗repb(X). A subset X of N is said to be
b-recognizable if the language repb(X) is regular. In what follows, we will always consider
automata accepting val−1b (X) instead of repb(X). The state complexity of a b-recognizable
subset X of N with respect to the base b is the state compexity of the language val−1b (X).

We will need to represent not only natural numbers, but also pairs of natural numbers.
If u = u1 · · ·un ∈ A∗ and v = v1 · · · vn ∈ B∗ are words of the same length n, then we use
the notation (u, v) to designate the word (u1, v1) · · · (un, vn) of length n over the alphabet
A×B:

(u, v) = (u1, v1) · · · (un, vn) ∈ (A×B)∗.

For (m,n) ∈ N2, we write

repb(m,n) = (0`−|repb(m)|repb(m), 0`−|repb(n)|repb(n))

where ` = max{|repb(m)|, |repb(n)|}. Otherwise stated, we add leading zeroes to the
shortest expansion (if any) in order to obtain two words of the same length. Finally, for a
subset X of N2, we write

val−1b (X) = (0, 0)∗repb(X).
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3 Method

The Thue-Morse set, which we denote by T , is the set of all natural numbers whose base-2
expansions contain an even number of occurrences of the digit 1:

T = {n ∈ N : |rep2(n)|1 ∈ 2N}.

The Thue-Morse set T is 2-recognizable since the language val−12 (T ) is accepted by the
automaton depicted in Figure 1. More precisely, the Thue-Morse set T is 2p-recognizable

T

B

0

0

1 1

Figure 1: The Thue-Morse set is 2-recognizable.

for all p ∈ N≥1 and is not b-recognizable for any other base b. This is a consequence of the
famous theorem of Cobham.

Two positive integers are said to be multiplicatively independent if their only common
integer power is 1.

Theorem 1 ([5]).

• Let b, b′ be two multiplicatively independent bases. Then a subset of N is both b-
recognizable and b′-recognizable if and only if it is a �nite union of arithmetic pro-

gressions.

• Let b, b′ be two multiplicatively dependent bases. Then a subset of N is b-recognizable
if and only if it is b′-recognizable.

In the case of the Thue-Morse set, it is easily seen that, for each p ∈ N≥1, the language
val−12p (T ) is accepted by the DFA ({T,B}, T, T,A2p , δ) where for all X ∈ {T,B} and all
a ∈ A2p ,

δ(X, a) =

{
X if a ∈ T
X else

where T = B and B = T . For example this automaton is depicted in Figure 2 for p = 2.
In order to avoid a systematic case separation, we introduce the following notation: for

X ∈ {T,B} and n ∈ N, we de�ne

Xn =

{
X if n ∈ T
X else.

With this notation, we can simply rewrite the de�nition of the transition function δ as
δ(X, a) = Xa.

The following proposition is well known; for example see [3].
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T

B

0, 3

0, 3

1, 2 1, 2

Figure 2: The Thue-Morse set is 4-recognizable.

Proposition 2. Let b ∈ N≥2 and m ∈ N. If X is b-recognizable, then so is mX. Otherwise

stated, multiplication by a constant preserves b-recognizability.

In particular, for any m ∈ N and p ∈ N≥1, the set mT is 2p-recognizable. The aim of
this work is to show the following result.

Theorem 3. Let m ∈ N and p ∈ N≥1. Then the state complexity of mT with respect to

the base 2p is equal to

2k +

⌈
z

p

⌉
if m = k2z with k odd.

Our proof of Theorem 3 is constructive. In order to describe the minimal DFA of
val−12p (mT ), we will successively contruct several automata. First, we build a DFA AT ,2p
accepting the language

val−12p (T × N).

Then we build a DFA Am,b accepting the language

val−1b
(
{(n,mn) : n ∈ N}

)
.

Note that we do the latter step for any integer base b and not only for powers of 2. Next,
we consider the product automaton Am,2p ×AT ,2p . This DFA accepts the language

val−12p
(
{(t,mt) : t ∈ T }

)
.

Finally, a �nite automaton Π(Am,2p×AT ,2p) accepting val−12p (mT ) is obtained by projecting
the label of each transition in Am,2p × AT ,2p onto its second component. At each step of
our construction, we check that the automaton under consideration is minimal (and hence
deterministic) and the ultimate step precisely consists in a minimization procedure.

From now on, we �x m ∈ N and p ∈ N≥1. We also let z and k be the unique integers
such that m = k2z with k odd.

4 The automaton AT ,2p

In this section, we build and study a DFA AT ,2p accepting the language val−12p (T ×N). This
DFA is a modi�ed version of the automaton accepting val−12p (T ) de�ned in the previous
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section. Namely, we replace each transition labeled by a ∈ A2p by 2p copies of itself labeled
by (a, b), for each b ∈ A2p . Formally,

AT ,2p = ({T,B}, T, T,A2p ×A2p , δT ,2p)

where, for all X ∈ {T,B} and all a, b ∈ A2p , we have δT ,2p(X, (a, b)) = Xa. For example,
the automata AT ,2 and AT ,4 are depicted in Figure 3.

T

B

(0, 0)
(0, 1)

(0, 0)
(0, 1)

(1, 0)
(1, 1)

(1, 0)
(1, 1)

T

B

(0, 0), (0, 1), (0, 2), (0, 3)
(3, 0), (3, 1), (3, 2), (3, 3)

(0, 0), (0, 1), (0, 2), (0, 3)
(3, 0), (3, 1), (3, 2), (3, 3)

(1, 0), (1, 1), (1, 2), (1, 3)
(2, 0), (2, 1), (2, 2), (2, 3)

(1, 0), (1, 1), (1, 2), (1, 3)
(2, 0), (2, 1), (2, 2), (2, 3)

Figure 3: The automata AT ,2 (left) and AT ,4 (right).

Now we prove some properties of the automaton AT ,2p that will be useful for our
concerns.

Lemma 4. The automaton AT ,2p is complete, accessible, coaccessible and has disjoint

states. In particular, it is the minimal automaton of val−12p (T × N).

Proof. These properties are all straightforward veri�cations.

Lemma 5. Let u, v ∈ A∗2p. Then val2p(uv) ∈ T if and only if, either val2p(u) ∈ T and

val2p(v) ∈ T , or val2p(u) /∈ T and val2p(v) /∈ T .

Proof. Let τ : A∗2p → A∗2p be the p-uniform morphim de�ned by τ(a) = 0p−|rep2(a)|rep2(a)
for each a ∈ A2p . Then, for all w ∈ A∗2p , we have val2p(w) = val2(τ(w)). Therefore,
val2p(w) ∈ T if and only if |τ(w)|1 ∈ 2N. Since τ is a morphism, we have |τ(uv)|1 =
|τ(u)|1 + |τ(v)|1. Hence |τ(uv)|1 is even if and only if |τ(u)|1 and |τ(v)|1 are both even or
both odd.

Lemma 6. For all X ∈ {T,B} and (u, v) ∈ (A2p ×A2p)
∗, we have

δT ,2p(X, (u, v)) = Xval2p (u).
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Proof. We do the proof by induction on |(u, v)|. The case |(u, v)| = 0 is trivial. The case
|(u, v)| = 1 holds by de�nition of AT ,2p . Now letX ∈ {T,B} and let (ua, vb) ∈ (A2p×A2p)

∗

with a, b ∈ A2p . We suppose that the result is satis�ed for (u, v) and we show that it is also
true for (ua, vb). Let Y = δT ,2p(X, (u, v)). By induction hypothesis, we have Y = Xval2p (u).
Thus we obtain

δT ,2p(X, (ua, vb)) = δT ,2p(Y, (a, b)) = Ya = (Xval2p (u))a = Xval2p (ua).

where we have used Lemma 5 for the last step.

5 The automaton Am,b
In this section, we consider an arbitrary integer base b. Let

Am,b = ([[0,m−1]], 0, 0, Ab ×Ab, δm,b)

where the (partial) transition function δm,b is de�ned as follows: for i, j ∈ [[0,m−1]] and
d, e ∈ Ab, we set

δm,b(i, (d, e)) = j ⇐⇒ bi+ e = md+ j.

The DFA Am,b accepts the language val−1b
(
{(n,mn) : n ∈ N}

)
. We refer the interested

reader to [10]. For example, the automaton A6,4 is depicted in Figure 4.

0 1 2 3 4 5

(0, 0)

(1, 3)

(1, 0)

(2, 3)

(2, 0) (3, 3)

(0, 1)

(0, 2)

(0, 3)
(0, 0)

(0, 1)

(1, 2)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 1)

(3, 2)

(3, 3)
(3, 0)

(3, 1)

(3, 2)

Figure 4: The automaton A6,4 accepts the language val−14

(
{(n, 6n) : n ∈ N}

)
.

Note that the automaton Am,b is not complete (see Remark 7). Also note that there is
always a loop labeled by (0, 0) on the initial state 0.

Remark 7. For each i ∈ [[0,m−1]] et e ∈ Ab, there exist unique d ∈ Ab and j ∈ [[0,m−1]]
such that δm,b(i, (d, e)) = j. Indeed, d and j are unique since they are the quotient and
remainder of the Euclidean division of bi+ e by m. We still have to check that d < b. We
have

bi+ e = md+ j ⇐⇒ d =
bi+ e− j

m
.
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Since i ≤ m−1, j ≥ 0 and e < b, we have

bi+ e− j
m

≤ b(m−1) + e

m
= b− b− e

m
< b.

Lemma 8. For i, j ∈ [[0,m−1]] and (u, v) ∈ (Ab ×Ab)∗, we have

δm,b(i, (u, v)) = j ⇐⇒ b|(u,v)| i+ valb(v) = m valb(u) + j.

Proof. We do the proof by induction on n = |(u, v)|. If n is equal to 0 or 1, the result is
clear. Now let i, j ∈ [[0,m−1]] and let (du, ev) ∈ (Ab×Ab)∗ with d, e ∈ Ab and |(u, v)| = n.
We suppose that the result is satis�ed for (u, v) and we show that is also true for (du, ev).
We use the notation DIV(x, y) and MOD(x, y) to designate the quotient and the remainder
of the Euclidean division of x by y (thus, we have DIV(x, y) =

⌊
x
y

⌋
). By de�nition of the

transition function, we have

δm,b(i, (du, ev)) = j ⇐⇒ d = DIV(bi+ e,m) and δm,b(MOD(bi+ e,m), (u, v)) = j.

By using the induction hypothesis, we have

δm,b(bi+ e−md), (u, v)) = j ⇐⇒ bn (bi+ e−md) + valb(v) = m valb(u) + j

⇐⇒ bn+1 i+ valb(ev) = m valb(du) + j.

To be able to conclude the proof, we still have to show that

bn+1 i+ valb(ev) = m valb(du) + j (1)

implies
d = DIV(bi+ e,m).

Thus, suppose that (1) is true. Then

bn+1 i+ bne+ valb(v) = m(bnd+ valb(u)) + j.

Since valb(u) and valb(v) are less than bn, d ≥ 0, j < m and bnd+ valb(u) ≥ 0, we obtain

d = DIV(bnd+ valb(u), bn)

= DIV(DIV(bn+1 i+ bne+ valb(v),m), bn)

= DIV(DIV(bn+1 i+ bne+ valb(v), bn),m)

= DIV(b i+ e,m)

as desired.

Remark 9. It is easily checked that Remark 7 extends from letters to words: for each i ∈
[[0,m−1]] and v ∈ A∗b , there exist unique u ∈ A∗b and j ∈ [[0,m−1]] such that δm,b(i, (u, v)) =
j. In particular, the word u must have the same length as the word v, and hence valb(u) <
b|v|.

Let us describe a few properties of the automaton Am,b.

Proposition 10. The automaton Am,b is accessible, coaccessible and has disjoint states.
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Proof. For each i ∈ [[0,m−1]], we have δm,b(0, repb(0, i)) = i from Lemma 8. Therefore
Am,b is accessible. It is a little trickier to �nd a word (u, v) that leads from i to 0. The
reason is that there is a length constraint to respect: we must �nd words u, v ∈ A∗b of the
same length n such that bni + valb(v) = m valb(u). Equivalently, we have to �nd n ∈ N
and d, e ∈ [[0, bn − 1]] such that bni+ e = md.

We claim that for all n ∈ N and i ∈ [[0,m−1]], there exists such d and e if and only if
the following two inequalities hold⌈

bni

m

⌉
− bn

m
<
bni

m
≤ bn − 1. (2)

First, suppose that d, e ∈ [[0, bn−1]] are such that bni+e = md. Then bni
m = d− e

m ≤ d ≤ b
n−

1. Moreover bni
m ≤ d = bni+e

m < bn(i+1)
m . Since d is an integer, we get that d bnim e <

bn(i+1)
m .

Conversely, suppose that the two inequalities (2) hold. Let d = d bnim e and e = md− bni. It
su�ces to show that d, e ∈ [[0, bn − 1]]. Clearly d, e ∈ N. From the inequality on the right,
we get d ≤ bn − 1 and from that on the left, we get e = md− bni < bn(i + 1)− bni = bn.
This proves the claim.

For a given i ∈ [[0,m−1]], the inequalities (2) may not be satis�ed for small n but it
is easily checked that they are both satis�ed for all n large enough. Therefore, the claim
implies that Am,b is coaccessible.

Finally, let i, j ∈ [[0,m−1]] and let (u, v) ∈ Li ∩ Lj . By Lemma 8, we have

b|(u,v)|i+ valb(v) = m valb(u) and b|(u,v)|j + valb(v) = m valb(u),

which implies that i = j. We have thus obtained that i 6= j =⇒ Li ∩ Lj = ∅, i.e. that
Am,b has disjoint states.

In a reduced DFA, there can be at most one non co-accessible state. Thus, we deduce
from Proposition 10 that Am,b is indeed the trim minimal automaton of the language
val−1b

(
{(n,mn) : n ∈ N}

)
, that is the automaton obtained by removing the only non co-

accessible state from its minimal automaton.

6 The projected automaton Π(Am,b)
In this section, we study the automaton obtained by projecting the label of each transition
of Am,b onto its second component. We denote by Π(Am,b) the automaton obtained thanks
to this projection. For example, the automaton Π(A6,4) is depicted in Figure 5.

Remark 11. The automaton Π(Am,b) corresponds to the automaton that is commonly
built for accepting the language val−1b (mN). For each i, j ∈ [[0,m−1]], there is a transition
labeled by e ∈ Ab from the state i to the state j if and only if j = bi+ e mod m.

Corollary 12. The automaton Π(Am,b) is complete, accessible and coaccessible.

Proof. The accessibility and coaccessibility of the automaton Π(Am,b) are straightforward
consequences of Proposition 10. The fact that it is complete comes from Remark 11: for
every state i ∈ [[0,m−1]] and every digit e ∈ Ab, there is a transition labeled by e from i
to the state bi+ e mod m.
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Figure 5: The projected automaton Π(A6,4).

The automaton Π(Am,b) is not minimal: it is minimal if and only if m and b are
coprime; see for example [1]. In fact, whenever m and b are coprime, we have a stronger
property than minimality as shown in the following proposition. This result will be useful
in our future considerations.

Proposition 13. If m and b are coprime, then the automaton Π(Am,b) has disjoint states,
and hence it is the minimal automaton of val−1b (mN).

Proof. Let i, j ∈ [[0,m−1]] and let v ∈ A∗b be a word accepted from both i and j in Π(Am,b).
By Remark 9, there exist unique words u and u′ of the same length as v such that (u, v)
and (u′, v) are accepted from i and j in Am,b respectively. By Lemma 8, it is equivalent to
say that

b|v|i+ valb(v) = m valb(u) and b|v|j + valb(v) = m valb(u
′).

Thus, we have
b|v|i−m valb(u) = b|v|j −m valb(u

′). (3)

Therefore m valb(u) ≡ m valb(u
′) (mod b|v|). By using the hypothesis of coprimality of m

and b, we obtain that valb(u) ≡ valb(u
′) (mod b|v|). Since valb(u) and valb(u

′) are both
less than b|v|, we obtain the equality valb(u) = valb(u

′). Finally, we get from (3) that i = j,
which proves that Π(Am,b) has disjoint states.

To end this section, we prove some useful properties of the automaton Π(Am,b) under
the more restrictive hypotheses of this work: b = 2p and m = k2z with k odd.

Lemma 14. If k > 1 and n = |rep2p
(
(k − 1)2z

)
|, then pn ≥ z.

Proof. Then

n = blog2p(k − 1)2z)c+ 1 =

⌊
log2p((k − 1) +

z

p

⌋
+ 1 ≥

⌊
z

p

⌋
+ 1 ≥

⌈
z

p

⌉
.

Thus pn ≥ p
⌈
z
p

⌉
≥ z.
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For k > 1 and n = |rep2p
(
(k−1)2z

)
|, we let σ be the permutation of the integers in

[[0, k−1]] de�ned by σ(j) = −j2pn−z mod k. Further, we de�ne

wj = 0n−|rep2p (σ(j)2
z)|rep2p(σ(j)2z)

for each j ∈ [[0, k−1]]. Note that the words wj are well de�ned since, by the choice of n,
we have σ(j)2z ≤ (k−1)2z < bn for every j ∈ [[0, k−1]].

Proposition 15. Suppose that k > 1 and let j, j′ ∈ [[0, k−1]]. Then the word wj is accepted
from j′ in the automaton Π(Am,2p) if and only if j = j′.

Proof. Let n = |rep2p
(
(k−1)2z

)
|. Then |wj | = n for all j ∈ [[0, k−1]] and from Lemma 14,

we know that pn ≥ z. the result follows from the following computations:

j′2p|wj | + valb(wj) ≡ 0 (mod m) ⇐⇒ j′2pn + σ(j)2z ≡ 0 (mod k2z)

⇐⇒ j′2pn−z + σ(j) ≡ 0 (mod k)

⇐⇒ j′2pn−z − j2pn−z ≡ (mod k)

⇐⇒ j ≡ j′ (mod k)

⇐⇒ j = j′.

Proposition 16. Suppose that k > 1 and let j, j′ ∈ [[0, k−1]]. Then the word wjrep2p(m)
is accepted from j′ in the automaton Π(Am,2p) if and only if j = j′.

Proof. Let n = |rep2p
(
(k−1)2z

)
|, let L = |rep2p(m)| and, for each j ∈ [[0, k−1]], let xj =

wjrep2p(m). From Lemma 14, we know that pn ≥ z. Therefore, we have

j′2p|xj | + valb(xj) ≡ 0 (mod m) ⇐⇒ j′2p(n+L) + valb(wj)2
pL ≡ 0 (mod m)

⇐⇒ j′2p(n+L) + σ(j)2z+pL ≡ 0 (mod k2z)

⇐⇒ j′2p(n+L)−z + σ(j)2pL ≡ 0 (mod k)

⇐⇒ j′2pn−z − j2pn−z ≡ (mod k)

⇐⇒ j ≡ j′ (mod k)

⇐⇒ j = j′

and the result follows.

7 The product automaton Am,2p ×AT ,2p

In this section, we study the product automaton Am,2p ×AT ,2p . Since the states of Am,2p
are numbered from 0 to m−1 and those of AT ,2p are T and B, we denote the states of the
product automaton by

(0, T ), . . . , (m−1, T ) and (0, B), . . . , (m−1, B),

or, when there is no ambiguity, simply by

0T, . . . , (m−1)T and 0B, . . . , (m−1)B.
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The transitions of Am,2p×AT ,2p are de�ned as follows. For i, j ∈ [[0,m−1]], X,Y ∈ {T,B}
and d, e ∈ A2p , there is a transition labeled by (d, e) from the state (i,X) to the state
(j, Y ) if and only if

2pi+ e = md+ j and Y = Xd.

We denote by δ× the (partial) transition function of this product automaton. The state
(0, T ) is both initial and �nal, and there is no other �nal state.

Lemma 17. For all i, j ∈ [[0,m−1]], X,Y ∈ {T,B} and (u, v) ∈ (A2p × A2p)
∗, we have

δ×((i,X), (u, v)) = (j, Y ) if and only if

2p |(u,v)| i+ val2p(v) = m val2p(u) + j and Y = Xval2p (u).

Proof. It su�ces to combine Lemmas 6 and 8.

In Figure 6, we have depicted the automaton A6,4×AT ,4, as well as the automata A6,4

and AT ,4, which we have placed in such a way that the labels of the product automata
can be easily deduced. We have drawn a full cycle in purple. It is of course not the only
such cycle. This shows that the automaton A6,4 × AT ,4 is accessible and coaccessible. It
will be true in general for the product automaton Am,2p ×AT ,2p . We give a proof of this
fact below.

Corollary 18. The word rep2p(1,m) is accepted from the state (0, B) in Am,2p × AT ,2p .
In particular, the state (0, B) is coaccessible in Am,2p ×AT ,2p.

Proof. This follows from Lemma 17.

Lemma 19. For each i ∈ {0, . . . ,m−1}, the states (i, T ) et (i, B) of the automaton Am,2p×
AT ,2p are disjoint.

Proof. This comes from the fact that AT ,2p has disjoint states.

Lemma 20. For distinct i, j ∈ [[0,m−1]] and for X,Y ∈ {T,B}, the states (i,X) et (j, Y )
are disjoint in Am,2p ×AT ,2p .

Proof. Let i, j ∈ [[0,m−1]] and X,Y ∈ {T,B}. Suppose that there exists a word (u, v) ∈
(A2p ×A2p)

∗ which is accepted from both (i,X) and (j, Y ) in Am,2p ×AT ,2p . Then (u, v)
is accepted from both i and j in Am,2p . Since the automaton Am,2p has disjoint states by
Proposition 10, this implies that i = j.

We are now ready to establish the main properties of the product automaton Am,2p ×
AT ,2p .

Proposition 21. The automaton Am,2p × AT ,2p is complete, accessible, coaccessible and

has disjoint states. In particular, it is the minimal automaton of val−12p ({(t,mt) : t ∈ T }).

Proof. By construction of the product automaton and since

{(n,mn) : n ∈ N} ∩
(
T × N

)
= {(t,mt) : t ∈ T },

we get that the product automaton Am,2p ×AT ,2p accepts the language

val−12p ({(t,mt) : t ∈ T }).
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By Lemma 17, we can check that for every i ∈ [[0,m−1]], the states (i, T ) and (i, B) are
accessible thanks to the word rep2p(0, i) and rep2p(1,m+ i) respectively. Hence, Am,2p ×
AT ,2p is accessible. To show the coaccessibility, we now �x some i ∈ [[0,m−1]] and X ∈
{T,B}. By Proposition 10, we already know that the automaton Am,2p is coaccessible.
Therefore, we can �nd (u, v) ∈ (A2p × A2p)

∗ such that there is a path labeled by (u, v)
from i to 0 in Am,2p . Thus, by reading (u, v) from the state (i,X) in Am,2p × AT ,2p , we
reach either the state (0, T ) or the state (0, B). If we reach (0, T ), then the state (i,X) is
coaccessible. If we reach (0, B) instead, then we may apply Corollary 18 in order to obtain
that (i,X) is coaccessible as well. Finally, in order to see that Am,2p ×AT ,2p has disjoint
states, it su�ces to combine Lemmas 19 and 20.

8 The projection Π (Am,2p ×AT ,2p) of the product automaton

The aim of this section is to provide a DFA accepting the language val−12p (mT ). This
automaton is denoted by Π (Am,2p ×AT ,2p) and is de�ned from the automaton Am,2p ×
AT ,2p by only considering the second component of each label. Formally, the states of
Π (Am,2p ×AT ,2p) are

(0, T ), . . . , (m−1, T ) and (0, B), . . . , (m−1, B),

the state (0, T ) is both initial and �nal and no other state is �nal, and the transitions are
de�ned as follows. For i, j ∈ [[0,m−1]], X,Y ∈ {T,B} and e ∈ A2p , there is a transition
labeled by e from the state (i,X) to the state (j, Y ) if and only if there exists d ∈ A2p such
that

2pi+ e = md+ j and Y = Xd.

Example 22. The automata A6,4 × AT ,4 and Π (A6,4 ×AT ,4) are depicted in Figures 6
and 7 respectively. In Figure 7, all edges labeled by 0 (1, 2 and 3 respectively) are repre-
sented in black (blue, red and green respectively).

Lemma 23. For every i ∈ [[0,m−1]], the states (i, T ) and (i, B) are disjoint in the projected

automaton Π (Am,2p ×AT ,2p).

Proof. Let i ∈ [[0,m−1]]. It follows from Remark 7 and the de�nitions of the transition
functions of Am,2p×AT ,2p and Π (Am,2p ×AT ,2p) that if a word v over A2p is accepted from
both (i, T ) and (i, B) in Π (Am,2p ×AT ,2p), then there exists a unique word u over A2p of
length |v| such that the word (u, v) is accepted from both (i, T ) and (i, B) in Am,2p×AT ,2p .
The conclusion then follows from Lemma 19.

Proposition 24. The automaton Π (Am,2p ×AT ,2p)

• accepts val−12p (mT )

• is deterministic

• is complete

• is accessible

• is coaccessible

13
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Figure 7: The projected automaton Π (A6,4 ×AT ,4).

• has disjoint states if m is odd

• is minimal if m is odd.

Proof. By construction, Π (Am,2p ×AT ,2p) accepts val−12p (mT ); see Section 3. The fact
that this automaton is deterministic and complete follows from Remark 7. It is accessible
and coaccessible because so is Am,2p×AT ,2p . Now we turn to the last two items. If a word v
over A2p is accepted from some state (i,X) in Π (Am,2p ×AT ,2p), then there exists a word
u over A2p of length |v| such that the word (u, v) is accepted from (i,X) in Am,2p ×AT ,2p .
We deduce that (u, v) is accepted from the state i in Am,2p and in turn, that v is accepted
from the state i in Π (Am,2p). Therefore, and by combining Proposition 13 and Lemma 23,
we obtain that if m is odd then the automaton Π (Am,2p ×AT ,2p) has disjoint states. It
directly follows that Π (Am,2p ×AT ,2p) is minimal if m is odd.

Corollary 25. If m is odd, then the state complexity of mT with respect to the base 2p is
2m.

Note that Corollary 25 and Theorem 3 are consistent in the case where m is odd, i.e.
where z = 0. However, we will see in the next section that the DFA Π (Am,2p ×AT ,2p) is
never minimal for even m because it contains several states accepting the same language.

9 Minimization of Π (Am,2p ×AT ,2p)
We start by de�ning some classes of states of Π (Am,2p ×AT ,2p). Our aim is twofold.
First, we will prove that those subsets consist in indistinguishable states, i.e. accepting the
same language. Second, we will show that states belonging to di�erent such subsets are
distinguishable, i.e. accepts di�erent languages. Otherwise stated, these classes correspond
to the left quotients w−1L where w is any word over the alphabet A2p and L = rep2p(mT ).

14



De�nition 26. For (j,X) ∈
(
[[1, k−1]]× {T,B}

)
∪ {(0, B)}, we de�ne

[(j,X)] = {(j + k`,X`) : 0 ≤ ` ≤ 2z−1}

and [(0, T )] = {(0, T )}. We say that [(j,X)] is the class of the state (j,X).

Remark 27. Note that the classes [(j,X)] are pairwise disjoint: [(j,X)]∩ [(j′, X ′)] = ∅ if
(j,X) 6= (j′, X ′). If m is odd, i.e. if z = 0, then all these classes are reduced to a single
state. If m is a power of 2, i.e. if k = 1, then there is no class of the form [(j,X)] with
j ≥ 1.

De�nition 28. For α ∈ [[0, z−1]], we de�ne a pre-class Cα of size 2α:

Cα = [(k2z−α−1, B)] = {(k2z−α−1 + k2z−α`, B`) : ` ∈ [[0, 2α−1]]}.

Then, for β ∈ [[0, d zpe−2]], we de�ne a class Γβ as follows:

Γβ =

βp+p−1⋃
α=βp

Cα.

In addition, we set

Γd z
p
e−1 =

z−1⋃
α=
(⌈

z
p

⌉
−1
)
p

Cα.

Remark 29. Note that the classes Γβ are pairwise disjoint. If m is odd, i.e. if z = 0, then
there is no such class Γβ .

Remark 30. If a class [(j,X)] or Γβ exists, then it is nonempty. Moreover, the classes Γβ
together with the class [(0, T )] form a partition of {(k`, T`) : ` ∈ [[0, 2z−1]]. Therefore, the
classes [(j,X)] and Γβ form a partition of the set of states of Π (Am,2p ×AT ,2p).

Example 31. For m = 24 and p = 2, the classes de�ned above are

[(0, T )] = {(0, T )}
[(1, T )] = {(1, T ), (4, B), (7, B), (10, T ), (13, B), (16, T ), (19, T ), (22, B)}
[(2, T )] = {(2, T ), (5, B), (8, B), (11, T ), (14, B), (17, T ), (20, T ), (23, B)}
[(0, B)] = {(0, B), (3, T ), (6, T ), (9, B), (12, T ), (15, B), (18, B), (21, T )}
[(1, B)] = {(1, B), (4, T ), (7, T ), (10, B), (13, T ), (16, B), (19, B), (22, T )}
[(2, B)] = {(2, B), (5, T ), (8, T ), (11, B), (14, T ), (17, B), (20, B), (23, T )}

Γ0 = C0 ∪ C1 = {(12, B)} ∪ {(6, B), (18, T )} = {(6, B), (12, B), (18, T )}
Γ1 = C2 = {(3, B), (9, T ), (15, T ), (21, B)}.

In Figure 8, the states of the automaton Π (A24,4 ×AT ,4) are colored with respect to these
classes.
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Figure 8: The classes of the projected automaton Π (A24,4 ×AT ,4).

9.1 States of the same class are indistinguishable

In order to prove that two states (j,X) and (j′, X ′) of the automaton Π (Am,2p ×AT ,2p) are
indistinguishable, we have to prove that L(j,X) = L(j′,X′). The general procedure that we
use for proving that L(j,X) ⊆ L(j′,X′) goes as follows. Let v ∈ L(j,X) and let n = |v|. Then
we know that there exists a word u over A2p of length |v| such that (u, v) is accepted from
the state (j,X) in Am,2p ×AT ,2p (before the projection). If d = val2p(u) and e = val2p(v),
then, in view of Lemma 17, we must have

2p|v|j + e = md and Xd = T

(since the only �nal state of Am,2p × AT ,2p is (0, T )). Moreover, since n = |v|, we have
d, e ∈ [[0, 2pn−1]]. Now, in order to prove that v ∈ L(j′,X′), we have to �nd a word u′ over
A2p of length n such that (u′, v) is accepted from (j′, X ′) in Am,2p ×AT ,2p . But then, we
necessarily have that

val2p(u
′) =

2p|v|j′ + e

m
.

Let thus d′ = 2p|v|j+e
m . We obtain that v ∈ L(j′,X′) if and only if d′ ∈ [[0, 2pn−1]] and

X ′d′ = T . Indeed, in this case, |rep2p(d
′)| ≤ n and thus, we can take the word u′ =

0n−|rep2p (d
′)|rep2p(d

′).

First, we show that two states of the same class of the form [(j,X)] are indistinguishable.

Proposition 32. Let j ∈ [[1, k−1]], X ∈ {T,B} and ` ∈ [[0, 2z−1]]. We have

L(j,X) = L(j+k`,X`)

in Π (Am,2p ×AT ,2p).

Proof. Let v ∈ A∗2p , n = |v|, e = val2p(v), d = 2pnj+e
m and d′ = 2pn(j+k`)+e

m . We have to
prove that d ∈ [[0, 2pn−1]] and Xd = T if and only if d′ ∈ [[0, 2pn−1]] and (X`)d′ = T .

Since 1 ≤ j < k and 0 ≤ e < 2pn, we have

0 < d =
2pnj + e

m
<

2pnk

m
= 2pn−z. (4)

Since d′ = d + 2pnk`
m = d + 2pn−z`, it follows from (4) that if d and d′ are both integers,

then we must have
rep2(d

′) = rep2(`)0
pn−z−|rep2(d)|rep2(d).

Therefore, d ∈ T if and only if either ` ∈ T and d′ ∈ T , or ` /∈ T and d′ /∈ T , and hence
Xd = (X`)d′ .

Now, suppose that d ∈ [[0, 2pn−1]] and Xd = T . It follows from (4) that pn > z, for
otherwise we would have 0 < d < 1, which is not possible since d is an integer. Therefore,
we get that d′ = d+ 2pn−z` is a positive integer. We also get from (4) that

d′ = d+ 2pn−z` < 2pn−z(`+ 1) ≤ 2pn.
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Consequently, d′ ∈ [[0, 2pn−1]] and (X`)d′ = T .
Conversely, suppose that d′ ∈ [[0, 2pn−1]] and (X`)d′ = T . In view of (4) and since

d = d′ − 2pn−z`, in order to obtain that d ∈ [[0, 2pn−1]], it is enough to show that pn > z.
Proceed by contradiction and suppose that pn ≤ z. Let q =

⌊
`

2z−pn

⌋
. On the one hand,

since j ≥ 1 and e ≥ 0, we obtain

d′ =
2pn(j + k`) + e

m
>

2pnk`

m
=

`

2z−pn
≥ q.

On the other hand, since ` ≤ (q + 1)2z−pn−1, e < 2pn and j ≤ k−1, we obtain

d′ <
2pn(j + k(q + 1)2z−pn − k) + 2pn

m
= q + 1 + 2pn

j − k + 1

m
≤ q + 1.

This is not possible since d′ is an integer, and hence pn > z. Consequently, d ∈ [[0, 2pn−1]]
and Xd = T as desired.

Proposition 33. Let ` ∈ [[1, 2z−1]]. We have

L(0,B) = L(k`,B`)

in Π (Am,2p ×AT ,2p).

Proof. Let v ∈ A∗2p , n = |v|, e = val2p(v), d = e
m and d′ = 2pnk`+e

m . We have to prove that
we have d ∈ [[0, 2pn−1]] and Bd = T if and only if d′ ∈ [[0, 2pn−1]] and (B`)d′ = T .

Since 0 ≤ e < 2pn, we have

0 ≤ d =
e

m
<

2pn

m
=

2pn−z

k
. (5)

Since k ≥ 1, it follows that d < 2pn−z and we get that Bd = (B`)d′ as in the proof of
Proposition 32, provided that both d and d′ are integers.

Now, suppose that d ∈ [[0, 2pn−1]] and Bd = T , that is, that d is an integer and that
d /∈ T . If pn ≤ z then we get from (5) that 0 ≤ d < 1. But since d is an integer, this
implies that d = 0, which is impossible because d /∈ T . Thus, pn > z and d′ = d+ `2pn−z

is a nonnegative integer. Moreover, we have

d′ = d+ `2pn−z <
2pn−z

k
+ (2z−1)2pn−z = 2pn + 2pn−z

(
1

k
− 1

)
≤ 2pn.

Hence d′ ∈ [[0, 2pn−1]] and (B`)d′ = T .
Conversely, suppose that d′ ∈ [[0, 2pn−1]] and (B`)d′ = T . In particular, we have

d′ ∈ T ⇐⇒ ` /∈ T . From (5), we know that 0 ≤ d < 2pn. We claim that pn > z. Proceed
by contradiction and suppose that pn ≤ z. Let q =

⌊
`

2z−pn

⌋
. Then, on the one hand, we

have

d′ =
2pnk`+ e

m
≥ `

2z−pn
≥ q.

On the other hand, since ` ≤ (q + 1)2z−pn−1 and e < 2pn, we obtain

md′ = 2pnk`+ e < 2pnk((q + 1)2z−pn−1) + 2pn = m(q + 1)− 2pn(k−1) ≤ m(q + 1),

and hence d′ < q + 1. Since d′ is an integer, we get that d′ = q, e = 0 and ` = 2z−pnd′.
But then we would have

rep2(`) = rep2(d
′)0z−pn,

contradicting that d′ ∈ T ⇐⇒ ` /∈ T . Thus pn > z and d = d′ − `2pn−z is an integer.
Altogether, we get that d ∈ [[0, 2pn−1]] and Bd = T .
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Corollary 34. For each (j,X) ∈
(
[[1, k−1]] × {T,B}

)
∪ {(0, B)}, all states of the class

[(j,X)] are indistinguishable in Π (Am,2p ×AT ,2p).

Now, we show that two states of the same class of the form Γβ are indistinguishable.

Proposition 35. Suppose that z ≥ 1 and let α ∈ [[0, z−1]] and ` ∈ [[1, 2α−1]]. We have

L(k2z−α−1,B) = L(k2z−α−1+k2z−α`,B`)

in Π (Am,2p ×AT ,2p).

Proof. Let v ∈ A∗2p , n = |v|, e = val2p(v), d = 2pnk2z−α−1+e
m and d′ = 2pn(k2z−α−1+k2z−α`)+e

m .
We have to show that we have d ∈ [[0, 2pn−1]] and Bd = T if and only if d′ ∈ [[0, 2pn−1]]
and (B`)d′ = T .

Using that k ≥ 1, e < 2pn and α < z, we get

0 < d =
k2pn+z−α−1 + e

m
< 2pn−α−1 +

2pn−z

k
≤ 2pn−α−1 + 2pn−z ≤ 2pn−α. (6)

Since d′ = d+ k2pn+z−α`
m = d+ 2pn−α`, we obtain that if both d and d′ are integers then

rep2(d
′) = rep2(`)0

pn−α−|rep2(d)|rep2(d),

and hence Bd = (B`)d′ .
Now, suppose that d ∈ [[0, 2pn−1]] and Bd = T . Then, we get from (6) that pn > α and

d′ = d + 2pn−α` is a nonnegative integer. Moreover, d′ < 2pn−α(` + 1) ≤ 2pn. Therefore
d′ ∈ [[0, 2pn−1]] and (B`)d′ = T .

Conversely, suppose that d′ ∈ [[0, 2pn−1]] and (B`)d′ = T . In particular, we have that
d′ ∈ T ⇐⇒ ` /∈ T . From (6), we know that 0 ≤ d < 2pn. We claim that pn > α. Proceed
by contradiction and suppose that pn ≤ α. Let q = DIV(`, 2α−pn). Then, on the one hand,
we have

d′ = d+
`

2α−pn
≥ q.

On the other hand, since ` ≤ (q + 1)2α−pn−1, e < 2pn, k ≥ 1 and α < z, we successively
obtain that

md′ < 2pn(k2z−α−1 + k2z−α((q + 1)2α−pn−1)) + 2pn

= m(q + 1) + 2pn(k2z−α−1 − k2z−α + 1)

= m(q + 1) + 2pn(1− k2z−α−1)

≤ m(q + 1).

We obtain that q ≤ d′ < (q + 1), hence d′ = q and ` = 2α−pnd′, contradicting that
d′ ∈ T ⇐⇒ ` /∈ T . Thus, we have that pn > α and d = d′ − 2pn−α` is an integer. It
follows that d ∈ [[0, 2pn−1]] and Bd = T .

Corollary 36. For all α ∈ [[0, z−1]], all states of the pre-class Cα are indistinguishable in

Π (Am,2p ×AT ,2p).

Proposition 37. Suppose that z ≥ 1 and let β ∈ [[0,
⌈
z
p

⌉
−2]] and c ∈ [[1, p−1]]. Then

L(k2z−βp−1,B) = L(k2z−(βp+c)−1,B)

in Π (Am,2p ×AT ,2p).
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Proof. Let v ∈ A∗2p , n = |v|, e = val2p(v), d = 2pnk2z−βp−1+e
m and d′ = 2pnk2z−(βp+c)−1+e

m .
We have to show that we have d ∈ [[0, 2pn−1]] and Bd = T if and only if d′ ∈ [[0, 2pn−1]]
and Bd′ = T .

We have d = 2pn−βp−1 + e
m and d′ = 2pn−βp−c−1 + e

m . Since z > (β+1)p and p ≥ c+1,
we have

e

m
< 2pn−z < 2pn−(β+1)p ≤ 2pn−βp−c−1.

Thus, if both d and d′ are integers and if m divides e then we obtain that

rep2(d) = 10pn−βp−1−|rep2(
e
m)|rep2

( e
m

)
and

rep2(d
′) = 10pn−βp−c−1−|rep2(

e
m)|rep2

( e
m

)
.

In this case, we have that d ∈ T ⇐⇒ d′ ∈ T , hence Bd = Bd′ .
Now, suppose that d ∈ [[0, 2pn−1]] and Bd = T . Since k ≥ 1 and d = d′ + 2pn−βp−1(1−

2−c), we obtain that 0 < d′ < d < 2pn. We claim that pn ≥ βp + c + 1. Proceed by
contradiction and suppose that pn < βp + c + 1. Then, since c + 1 ≤ p and β ≤

⌈
z
p

⌉
− 2,

we obtain that pn ≤ βp < z − p. Therefore, we have

d = 2pn−βp−1 +
e

m
<

1

2
+

2pn−z

k
< 1

contradicting that d is a positive integer. Thus pn ≥ βp+ c+ 1, and hence both d′ and e
m

are integers. Therefore, we obtain that d′ ∈ [[0, 2pn−1]] and Bd′ = T .
Conversely, suppose that d′ ∈ [[0, 2pn−1]] and Bd′ = T . Using that z ≥ 1, we obtain

0 ≤ d = 2pn−βp−1 +
e

m
< 2pn−βp−1 + 2pn−z ≤ 2pn.

We claim that pn ≥ βp+c+1. Proceed by contradiction and suppose that pn < βp+c+1.
Since c+ 1 ≤ p, we obtain that n ≤ β and

d′ = 2pn−βp−c−1 +
e

m
< 2−c−1 + 2pn−z ≤ 1

2
+ 2βp−z <

1

2
+ 2−p < 1

contradicting that d′ is a positive integer. Thus d = d′ − 2pn−βp−1(1 − 2−c) is an integer,
and consequently, so is e

m . Therefore, we obtain that d ∈ [[0, 2pn−1]] and Bd = T .

Corollary 38. For all β ∈ [[0,
⌈
z
p

⌉
−2]], all states of the class Γβ are indistinguishable in

Π (Am,2p ×AT ,2p).

Proposition 39. Suppose that z ≥ 1 and let β =
⌈
z
p

⌉
−1 and c ∈ [[1, z−βp−1]]. We have

L(k2z−βp−1,B) = L(k2z−(βp+c)−1,B)

in Π (Am,2p ×AT ,2p).

Proof. The proof is a straightforward adaptation of that of Proposition 37.

Corollary 40. In Π (Am,2p ×AT ,2p), all states of Γd z
p
e−1 are indistinguishable.
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9.2 States of di�erent classes are distinguishable

In this section, we show that, in the projected automaton Π (Am,2p ×AT ,2p), states from
di�erent classes [(j,X)] or Γβ are pairwise distinguishable, that is, for any two such states,
there exists a word which is accepted from exactly one of them.

Proposition 41. Let β ∈ [[0,
⌈
z
p

⌉
−1]]. In Π (Am,2p ×AT ,2p), the word 0β+1 is accepted

from all states of Γβ.

Proof. From Corollaries 38 et 40, it su�ces to show that 0β+1 is accepted from the state
(k2z−βp−1, B). Let

d =
2p(β+1)k2z−βp−1

m
.

We have to show that d ∈ {0, . . . , 2p(β+1)} \ T . It is immediate since d = 2p−1.

Proposition 42. Let β, γ ∈ [[0,
⌈
z
p

⌉
−1]] such that γ > β. In Π (Am,2p ×AT ,2p), the word

0β+1 is not accepted from any state of Γγ.

Proof. From Corollaries 38 et 40, it su�ces to show that 0β+1 is not accepted from the
state (k2z−γp−1, B). Suppose to the contrary that 0β+1 is accepted from (k2z−γp−1, B).
Then

2p(β+1)k2z−γp−1

m
= 2p(β−γ+1)−1

must be an integer, and hence p(β − γ + 1) ≥ 1, contradicting that γ > β. The conclusion
follows.

Proposition 43. Let (j,X) ∈ ([[1, k−1]] × {T,B}) ∪ {(0, B)} and β ∈ [[0,
⌈
z
p

⌉
−1]]. In

Π (Am,2p ×AT ,2p), the word 0β+1 is not accepted from any state of [(j,X)].

Proof. Since there is a loop labeled by 0 on the state (0, T ) and in view of Corollary 34, it
su�ces to show that the word 0dz/pe is not accepted from the state (j,X). If 0dz/pe were
accepted from the state (j,X), then we would get that

d =
2
p
⌈
z
p

⌉
j

m
=

2

⌈
z
p

⌉
−z
j

k

is an integer and that Xd = T . If j 6= 0, then d cannot be an integer since k is odd and
0 < j < k. If j = 0, then we get that d must belong to T , which is not possible either
since in this case we have d = 0. Hence the conclusion.

Proposition 44. Suppose that k > 1 and let (j,X), (j′, X ′) ∈ ([[1, k−1]]×{T,B})∪{(0, B)}
be distinct. In Π (Am,2p ×AT ,2p), the states (j,X) and (j′, X ′) are distinguishable.

Proof. First, suppose that j = j′. Then X 6= X ′ by hypothesis and the states (j,X) and
(j,X ′) are disjoint by Lemma 23. Since Π (Am,2p ×AT ,2p) is coaccessible by Proposition 24,
we obtain that the states (j,X) and (j,X ′) are distinguishable.

Now suppose that j 6= j′. By Proposition 15, the word wj is accepted from j in the
automaton Π(Am,2p) but is not accepted from j′. Then, there exists a word u of length
|wj | such that (u,wj) is accepted from j in the automaton Am,2p but is not accepted from
j′. Then, this word (u,wj) is accepted either from (j, T ) or from (j, B) in the automaton
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Am,2p × AT ,2p but is not accepted neither from (j′, T ) nor from (j′, B). Now, two cases
are possible.

First, suppose that (u,wj) is accepted from (j,X) in Am,2p × AT ,2p . Then, in the
projection Π (Am,2p ×AT ,2p), the word wj is accepted from (j,X) but not from (j′, X ′).
Thus, the word wj distinguishes the states (j,X) and (j′, X ′).

Second, suppose that (u,wj) is accepted from (j,X) in Am,2p × AT ,2p . Then there
is a path labeled by (u,wj) from (j,X) to (0, B) in Am,2p × AT ,2p . By Corollary 18,
in Am,2p × AT ,2p , the word rep2p(1,m) is accepted from (0, B), and hence the word
(u,wj)rep2p(1,m) = (u0|rep2p (m)|−11, wjrep2p(m)) is accepted from (j,X). Therefore the
word wjrep2p(m) is accepted from the state (j,X) in Π (Am,2p ×AT ,2p). Besides, the word
wjrep2p(m) cannot be accepted from (j′, X ′) in Π (Am,2p ×AT ,2p) for otherwise it would
also be accepted from j′ in Π (Am,2p), which is impossible by Proposition 16. Thus, the
word wjrep2p(m) distinguishes the states (j,X) and (j′, X ′).

Corollary 45. In the automaton Π (Am,2p ×AT ,2p), two states belonging to di�erent

classes are distinguished.

9.3 The minimal automaton of val−12p (mT ).

We are ready to construct the minimal automaton of val−12p (mT ). Since the states of
Π (Am,2p ×AT ,2p) that belong to the same class [(j,X)] or Γβ are indistinguishable, they
can be glued together in order to de�ne a new automaton Mm,T ,2p that still accepts the
same language. Formally, the alphabet ofMm,T ,2p is A2p . Its states are the classes [(j,X)]
for j ∈ [[0, k−1]] and the classes Γβ for β ∈ [[0, d zpe−1]]. The class [(0, T )] is the initial
state and the only �nal state. The transitions ofMm,T ,2p are de�ned as follows: there is a
transition labeled by a letter a in A2p from a class J1 to a class J2 if and only if there exists
j1 ∈ J1 and j2 ∈ J2 such that, in the automaton Π (Am,2p ×AT ,2p), there is a transition
labeled by a from the state j1 to the state j2.

Example 46. In Figure 9, the classes of Π (A6,4 ×AT ,4) are colored in white, blue, grey,
yellow, fushia, orange and purple. Figure 10 depicts the minimal automaton M6,T ,4 of
val−14 (6T ), where states corresponding to the same color are glued together to form a
single state.

Theorem 47. Let p and m be positive integers. The automaton Mm,T ,2p is the minimal

automaton of the language val−12p (mT ).

Proof. By construction, the language accepted byMm,T ,2p is val−12p (mT ). In order to see
that Mm,T ,2p is minimal, it su�ces to prove that it is complete, reduced and accessible.
The fact that Mm,T ,2p is reduced follows from the results of Sections 9.1 and 9.2. We
know from From Proposition 24 that the automaton Π (Am,2p ×AT ,2p) is complete and
accessible, which in turn implies thatMm,T ,2p is complete and accessible as well.

Note that Proposition 24 and Theorem 47 are consistent in the case where m is odd,
i.e. where z = 0.

We are now ready to prove Theorem 3.

Proof of Theorem 3. In view of Theorem 47, it su�ces to count the number of states of
Mm,T ,2p . By de�nition, it has 2(k−1) + 2 = 2k states of the form [(j,X)] and d zpe states
of the form Γβ .
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Figure 9: The classes of the automaton of Π (A6,4 ×AT ,4).

Example 48. The minimal automaton of the language rep4(6T ) has 7 states. We can
indeed compute that 2 · 3 + d12e = 7.
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