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Abstract This paper presents a tuning methodology to design a vibration absorber
able to mitigate the vibratory amplitude of multiple resonances of a nonlinear struc-
ture. The linear characteristics of the absorber are first tuned to obtain the equal-peak
design on every mode to be controlled when the structure is behaving linearly. Non-
linearities are then introduced intentionally in the absorber to counteract the effect of
the nonlinearities inside the host structure. Their functional form is chosen according
to a principle of similarity, and their coefficients are determined to enforce equal
peaks in the nonlinear regime.

1 Introduction

Engineering structures are becoming lighter and more complex to suit the needs of
an ever-increasing demand for performance and to comply with stringent regula-
tions. This trend comes with several challenges, one of which being the increased
susceptibility to high-amplitude vibrations. These vibrations can be detrimental to
the device performance and lifetime, or even be threatening safety. Passive vibration
reduction techniques can provide a solution to this issue. The linear tuned vibration
absorber (LTVA, also often referred to as "tunedmass damper" or "dynamic vibration
absorber") enters this category and is a widely-used device of proven efficiency [4].

TheLTVAwas first proposed by Frahm [5]. By attaching a one-degree-of-freedom
undamped oscillator to a host structure, one particular vibration mode can be com-
pletely suppressed. Ormondroyd and den Hartog [11] proposed to add a damping
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element to broaden the bandwidth in which the absorber is efficient. They based the
tuning methodology on invariant points in the frequency response function. These
points are insensitive to the absorber damping. The stiffness of the absorber is tuned
to make the amplitude of the frequency response function at these points equal and
the absorber damping may be chosen so that one of this two points is a local max-
imum of the frequency response function, yielding two possible values. Brock [1]
later proposed to take the average of these damping values to yield a nearly optimal
design. Almost sixty years later, Nishihara and Asami [10] found the exact closed-
form solution to this problem, based on the minimization of the maximal vibratory
amplitude of the host structure. With this design, the frequency response function
of the controlled structure exhibits two peaks of equal amplitude near the original
resonance of the host structure. Hence, this design was termed equal-peak design.

Many structures might have multiple resonances inside a frequency band of inter-
est. Considering a structure with multiple modes brings new challenge to the design
of tuned vibration absorbers. The influence of non-resonant modes might detune the
absorber, which is detrimental for its performance. Krenk andHøgsberg [9] proposed
to introduce quasi-dynamic background corrections to take into account the influence
of non-resonant modes. Ozer and Royston [12] proposed a numerical optimization
algorithm based on the invariant points of the frequency response function to tune
the absorbers. If the excitation frequency is uncertain or varying, or the structure is
subjected to a multiharmonic or broadband forcing, multiple resonances might be
excited. A simultaneous control of these resonances may be desirable.

Lighter and more flexible structures are more prone to high-amplitude vibrations.
These vibrations can trigger the nonlinearities present in the structure. One pecu-
liarity of nonlinear structures is their frequency-energy dependence: the resonance
frequencies of a nonlinear structure may change with the forcing amplitude. This
can be particularly detrimental to tuned vibration absorbers, as the nonlinear reso-
nance frequencies shift away from their initial position, detuning the absorber. This
detuning is often the cause for a loss of performance. Habib and Kerschen [8] pur-
posely used a nonlinear stiffness in a nonlinear tuned vibration absorber (NLTVA)
to counteract this undesirable phenomenon. They proposed to use a principle of
similarity for the design of nonlinear vibration absorbers. This principle states that
the functional form of the nonlinearity in the absorber should be identical to that
of the host structure. They designed a nonlinear vibration absorber able to maintain
equal peaks over a broader range of forcing amplitude than when using a linear
vibration absorber. This same principle of similarity was recently used by Habib
and Kerschen [7] to modify the characteristics of multiple nonlinear resonances.
By introducing and properly tuning nonlinearities in a structure, they were able to
linearise its dynamics.

The purpose of this work is to associate the multimodal and nonlinear aspects
of a tuned vibration absorber. More specifically, this paper describes how to design
a vibration absorber able to mitigate the vibratory amplitude of multiple nonlinear
resonances. To this end, the absorber is first designed considering the underlying lin-
ear dynamics of the host structure. A design approach based on a modal expansion
of the frequency response function of the host structure is proposed. If more preci-
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sion is required in the tuning, an objective function for an optimisation algorithm
is proposed. The nonlinear behaviour of the structure is then taken into account.
Nonlinearities are intentionally introduced in the absorber. Their functional form is
chosen according to a principle of similarity. The same formalism as [7] is used
to impose equal peaks in the nonlinear frequency response function. With this new
design, the working range of vibration absorbers can be extended to higher forcing
amplitudes.

2 Multimodal Linear Tuned Vibration Absorber

This section introduces a tuning methodology for multiple LTVAs placed on an
undamped structure. The structure is modelled as a one-degree-of-freedom oscillator
from the point of view of the absorber, similarly to [9]. With this model, it is possible
to tune the parameters of the absorber. If a further precision is required, a cost
function for an optimisation algorithm is proposed.

The undamped equations of motion of the host structure are given by

M0 Üx0+K0x0 = f0(t), (1)

where M0 is the structural mass matrix, K0 is the structural stiffness matrix, x0 is
the vector of generalized coordinates and f0(t) is the generalized loading vector. The
subscript 0 indicates quantities exclusively related to the host structure. Under the
assumption of a periodic forcing, i. e. f0(t) = f0 cosωt, the equations of motion can
be solved by expanding the response in the basis of the structural normal modes and
by projecting them onto this basis [6]. Eventually, by reconstructing the physical
response from the modal response,

x0 = Φ0

(
Ω2

0−ω
2I

)−1
ΦT

0 f0, (2)

where Φ0 is the matrix of mass-normalized mode shapes, Ω0 is a diagonal matrix
containing the associated mode frequencies, I is the identity matrix and the super-
script T denotes a transposition. This harmonic response can be used in the design
of the absorbers. Assuming that the absorber is placed at a location given by the
localisation vector w, its base displacement can be found as u = wTx0. Introducing

wTΦ0 =
[
φu,1, · · · , φu,N0

]
, (3)

ΦT
0 f0 =

[
φ f ,1, · · · , φ f ,N0

]T f0, (4)

with the number of modes N0 and the forcing amplitude f0, the forced harmonic
response can be expressed as a sum of contributions from the different modes
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u =
N0∑
i=1

φu,iφ f ,i

ω2
i −ω

2
f0. (5)

Around the resonance frequency of mode i, the harmonic response may be ap-
proximated by that of a single-degree-of-freedom spring-mass system. Neglecting
all the terms different than those related to mode i in the sum of Equation (5), the
modal mass mi and the modal stiffness ki are identified as

mi =
1

φu,iφ f ,i
, ki =

ω2
i

φu,iφ f ,i
, (6)

respectively. Using this one-degree-of-freedom approximation, the stiffness ka,i and
damping ca,i of an LTVA of mass ma,i designed to mitigate the vibrations of mode i
can be determined using the classical one-degree-of-freedom absorber design ([11]
and [1] or [10]) from the modal characteristics in Equation (6) and the modal mass
ratio

µi =
ma,i

mi
. (7)

Moreover, Equations (6) and (7) give guidelines on where to place the absorber.
Since the vibration reduction increases with the modal mass ratio, it is desirable
to maximize this ratio. For a given absorber mass and a given forcing, the best
placement is the one that maximizes the modal amplitude φu,i in the position at
which the absorber is placed.

To mitigate multiple resonances, multiple LTVAs can be placed on the structure.
The above procedure can be repeated N times to tune the characteristics of N
vibration absorbers. This would result in a reduced amplitude around the N targeted
resonances, with ideally N pairs of equal peaks.

Because the truncation of the harmonic response in Equation (5) involves neglect-
ing several terms due to the non-resonantmodes and because the interactions between
the LTVAs are not properly taken into account by the aforementioned method, the
frequency response function (FRF) will generally not exhibit perfectly equal peaks,
as in the single-degree-of-freedom case. Numerical optimisation may be used to
enforce equal peaks up to the desired accuracy. If two peaks related to mode i are
located at the frequencies ωi,1 and ωi,2 and if H denotes the square modulus of the
FRF for which equal peaks should be enforced, the following cost function can be
used

f (ma,1,ca,1, ka,1, · · · ,ma,N,ca,N, ka,N ) =
N∑
i=1

(
H(ωi,1)−H(ωi,2)

)2 (8)

Minimizing this cost function will result in a design with N pairs of equal peaks.
The peaks may be found by sampling the FRF, by using suitably initialised gradient
ascent algorithms or by using H∞ norm computation algorithms [2] in a limited range
of frequencies to properly locate all the peaks. The sensitivity of the cost function
may be computed numerically through finite differences, or analytically.
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3 Multimodal Nonlinear Tuned Vibration Absorber

In this section, nonlinear elements are added to each absorbers to improve the vibra-
tion reduction in the nonlinear regime. It is assumed that the linear characteristics of
the absorbers have been properly tuned so that the frequency response function of
the controlled structure exhibits equal (or nearly equal) peaks in the linear regime.
The functional form of the introduced nonlinear elements is chosen according to
a principle of similarity, and their coefficients are computed by requiring that the
nonlinear frequency response function exhibit equal peaks in the nonlinear regime.

The same formalism as Habib and Kerschen [7] is used in the following. The
nonlinear equations ofmotion of the structure and of the nonlinear absorbers attached
to it are given by

MÜx+CÛx+Kx+ knl

(
bnl(x)+

N∑
i=1

bnl,ibnl,i(x)

)
= f(t), (9)

where bnl represents the nonlinearities in the primary structure, and bnl,i are the
nonlinearities in the absorbers. According to the principle of similarity [8], the
latter are chosen to have the same mathematical form as the former. The remaining
unknowns are the nonlinear coefficients of the absorbers, bnl,i .

The equations of motion are normalised considering y = x/ f , with f being a
forcing amplitude

MÜy+CÛy+Ky+α

(
bnl(y)+

N∑
i=1

bnl,ibnl,i(y)

)
=

f(t)
f
. (10)

α is a nonlinearity parameter that depends on both the nonlinearity and the forcing.
For a polynomial nonlinear force of type fnl(x) = knl xp , it is given by

α = f p−1knl (11)

This parameter can be seen as ameasure of how the structural behaviour is affected
by the nonlinearities. The solution of Equation (10) under a harmonic forcing can
be approximated with a first-order harmonic balance (HB) method. Using

y = qc cos(ωt)+qs sin(ωt), (12)

and introducing qT = [qT
c ,qT

s ], Equation (10) becomes

Wq+α

(
d1,nl(q)+

N∑
i=1

bnl,id1,nl,i(q)

)
= c. (13)

In Equation (13), the matrix W represents the linear dynamics, c is the forc-
ing term, and the terms d1,nl and d1,nl,i represent the nonlinearities in the primary
structure and in the ith absorber, respectively. These vectors can be computed from
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q either analytically, or numerically with the alternating frequency/time-domain
technique [3]. Thanks to the HB method, the set of nonlinear ordinary differential
equations given in Equation (10) has been transformed into a set of nonlinear al-
gebraic equations. To find an approximate solution, it is further assumed that the
nonlinearity parameter α is small. Hence, the nonlinear response of the system may
be expressed as a series expansion in terms of α as

q =
∞∑
i=0

αiq(i). (14)

Inserting Equation (14) into (13) and equating coefficients of like powers of α up
to first order leads to the following explicit relations :

q(0) =W−1c, (15)

q(1) = −W−1

(
d1,nl(q(0))+

N∑
i=1

bnl,id1,nl,i(q(0))

)
= q(1)

nl
+

N∑
i=1

bnl,iq(1)nl,i . (16)

Equation (15) indicates that q(0) represents the response of the system when no
nonlinearity is present. Equation (16) shows that first-order terms q(1) are generated
by the nonlinear forces triggered by the zeroth-order motion. These terms can be
separated into terms due to the nonlinearities inside the primary structure q(1)

nl
and

terms due to the nonlinearities inside the ith absorber q(1)
nl,i

. The square of the
frequency response function at a given degree of freedom is given by

H = (qc)
2
j + (qs)

2
j . (17)

Inserting the solution of (15) and (16) into (17) and keeping only the first-order
terms leads to

H =
(
q(0)c

) 2

j
+

(
q(0)s

) 2

j
+ α

[
2
(
q(0)c

)
j

(
q(1)
c,nl

)
j
+2

(
q(0)s

)
j

(
q(1)
s,nl

)
j

]
+ α

[
N∑
i=1

bnl,i

[
2
(
q(0)c

)
j

(
q(1)
c,nl,i

)
j
+2

(
q(0)s

)
j

(
q(1)
s,nl,i

)
j

] ]
= H(0) + αH(1)

nl

+ α

N∑
i=1

bnl,iH
(1)
nl,i

.

(18)
In Equation (18), three types of term can be identified. The term H(0) stands for

the frequency response function of the underlying linear structure. The term αH(1)
nl

is
the modification brought by the (supposedly small) nonlinear forces generated by the
linear motion in the nonlinearities of the primary structure. The term αbnl,iH

(1)
nl,i

is
the modification brought by the (supposedly small) nonlinear forces generated by the
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linear motion in the nonlinearitiy i of the absorbers. Thanks to the straightforward
expansion, all these effects can be separated to first order in α.

With Equation (18), it is now possible to impose N conditions on the first-order
nonlinear FRF. This yields a system of size N ×N , where the nonlinear coefficients
bnl,i are the unknowns. Depending on the imposed conditions, this system can be
linear and the nonlinear coefficients may or may not depend on the parameter α.

3.1 Equal peaks in the nonlinear regime

A condition enforcing equal peaks in the nonlinear regime will now be derived. The
linear absorbers are assumed to result in the equal-peak design, i. e. the peaks are
equal in magnitude and located at frequencies ωi,1 and ωi,2 in the linear regime. The
nonlinear effects cause a shift in these nonlinear peak frequencies, which are noted
ω̃i,1 and ω̃i,2. Using a series development in α of the nonlinear frequency response,
these nonlinear resonance frequencies are defined as

∂H
∂ω

����
ω̃i, j

=

∞∑
n=0

αn ∂H(n)

∂ω

����
ω̃i, j

= 0 (19)

They can be found by using a second series development in terms of the difference
between the linear and nonlinear resonance frequencies ∆ωi, j = ω̃i, j −ωi, j .

∂H
∂ω

����
ω̃i, j

=

∞∑
n=0

αn
∞∑

m=1

(
∆ωi, j

)m−1

(m−1)!
∂mH(n)

∂ωm

����
ωi, j

= 0 (20)

Keeping terms up to first order in ∆ωi, j and in α in the previous sum leads to

∂H(0)

∂ω

����
ωi, j

+∆ωi, j
∂2H(0)

∂ω2

����
ωi, j

+O
(
∆ωi, j

)2
+α

∂H(1)

∂ω

����
ωi, j

+O
(
∆ωi, jα

)
= 0 (21)

Because H(0) is the linear frequency response function, the first term in Equa-
tion (21) vanishes. Hence, the nonlinear resonance frequency shift is of the order of
α. Now, the nonlinear frequency response at the nonlinear resonance frequency can
be expressed as

H |ω̃i, j
=

∞∑
n=0

αn
∞∑

m=0

(
∆ωi, j

)m
m!

∂mH(n)

∂ωm

����
ωi, j

. (22)

Evaluating Equation (22) at both nonlinear resonance frequencies, equating the
two obtained nonlinear frequency response functions and keeping terms up to first
order in α leads to
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H(0)
���
ωi,1
+∆ωi,1

∂H(0)

∂ω

����
ωi,1

+α H(1)
���
ωi,1
+O(α2)= H(0)

���
ωi,2
+∆ωi,2

∂H(0)

∂ω

����
ωi,2

+α H(1)
���
ωi,2
+O(α2).

(23)
Since equal peaks were assumed in the linear regime, the first terms in the left and

right hand side of Equation (23) cancel out. Moreover, the second terms also van-
ish by definition of the linear resonance frequencies. Then, Equation (23) becomes
independent of α and, using the contributions from the different nonlinearities high-
lighted by Equation (18), it can be written as

N∑
n=1

bnl,n
(
H(1)
nl,n
(ωi,1)−H(1)

nl,n
(ωi,2)

)
= H(1)

nl
(ωi,2)−H(1)

nl
(ωi,1). (24)

Interestingly, the nonlinear resonance frequency shift is not taken into account
in the first-order frequency response function. Thus, the knowledge of the nonlinear
resonance frequencies is not needed to design absorbers, at least to first order in α.
Enforcing Equation (24) for i = 1, · · · ,N yields the following linear system of size
N ×N: 

∆ω1 H(1)
nl,1 ∆ω1 H(1)

nl,2 . . . ∆ω1 H(1)
nl,N

∆ω2 H(1)
nl,1 ∆ω2 H(1)

nl,2 . . .
...

...
...

. . .
...

∆ωN H(1)
nl,1 . . . . . . ∆ωN H(1)

nl,N





bnl,1

bnl,2
...

bnl,N


= −



∆ω1 H(1)
nl

∆ω2 H(1)
nl

...

∆ωN H(1)
nl


, (25)

in which
∆ωi H = H(ωi,1)−H(ωi,2). (26)

Equation (24) expresses that the (first-order) effects of all the nonlinearities is
the same at ωi,1 and ωi,2. Therefore, the perfect equality between the amplitudes
of the resonance peaks is not mandatory in practice. Peaks of approximately equal
amplitude in the linear regime will remain approximately equal in the nonlinear
regime.

Due to the series expansions limited to first order, this approach is a local approach,
in the sense that the obtained results will gradually lose their validity with increasing
α, that is, as the forcing amplitude or the nonlinear coefficients become large.
Nevertheless, it is expected that the nonlinear absorbers yield better result than their
linear counterparts for small values of α.

4 Numerical example

To demonstrate the efficiency of the proposed approach, a five-degree-of-freedom
structure depicted in Figure 1 is studied, with numerical parameters given in Table 1.
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A cubic spring is attached to the first mass. A harmonic forcing is applied to this
mass and the structural response is measured at this same point.

m m m m m

c

k1

knl

c

k2

c

k3

c

k4

c

k5

c

k6

Fig. 1: Five-degree-of-freedom structure.

k1 k2 k3 k4 k5 k6 knl c m

1 N/m 1 N/m 0.1 N/m 1 N/m 1 N/m 1 N/m 1 N/m3 0.03 Ns/m 1 kg

Table 1: Numerical parameters of the five-degree-of-freedom structure.

Modes 1, 2 and 4 of the structure are targeted for vibration mitigation. The linear
absorbers are placed at the maximum amplitude of the mode they are supposed
to damp. Their parameters are optimised to obtain three pairs of equal peaks. The
numerical values of the parameters are given in Table 2.

Absorber Location ma ca ka knl,a
Mode 1 dof 3 0.05 kg 3.88×10−3 Ns/m 1.16×10−2 N/m 1.38×10−5 N/m3

Mode 2 dof 2 0.05 kg 6.03×10−3 Ns/m 2.19×10−2 N/m 3.02×10−4 N/m3

Mode 4 dof 1 0.05 kg 1.66×10−2 Ns/m 1.27×10−1 N/m 1.95×10−3 N/m3

Table 2: Parameters of the absorbers.

Figure 2 shows the nonlinear frequency response functions (NFRFs) of the struc-
ture with linear and nonlinear absorbers for two values of the nonlinearity parameter
α. The NFRFs were computed with a continuation procedure coupled with a har-
monic balance formalism [3] with five harmonics. For α = 0.01, the nonlinear effects
are strong enough to detune the linear absorber of mode 2, whereas adding a non-
linear spring to that absorbers helps enforcing equal peaks. Mode 1 and 4 are less
affected, namely due to their lower vibratory amplitude. When α is increased, mode
4 becomes affected. Equal peaks can be obtained thanks to the nonlinearities in the
absorber for mode 4. As for mode 2, the peaks can no longer be considered as equal,
but the situation is still improved compared to that of the linear absorbers. Indeed,
the maximum vibratory amplitude is lower when nonlinear absorbers are used.

Figure 3 shows how the amplitudes of the six peaks evolve with α. When no
nonlinear effect is present (α = 0), the linear and nonlinear absorbers are equivalent.
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Fig. 2: NFRFs of the five-degree-of-freedom structure with linear (—: stable
solution, - -: unstable solution, •: fold bifurcation) and nonlinear (—) absorbers:

α = 0.01 N3/m3 (a) and α = 0.09 N3/m3 (b).

As α increases, the two lines representing the pair of peaks associated to a particular
mode diverges more quickly when no nonlinearity is used in the absorbers. Thanks
to Equation (24), these lines are tangent at α = 0 when the nonlinearities are properly
tuned, which slows down their divergence for small α. This means that equal peaks
are enforced over a broader amplitude range when using nonlinear absorbers. It is
also clear that using nonlinear absorbers in this case leads to a lower maximum
vibratory amplitude.

0 0.02 0.04 0.06 0.08 0.1

 (N3/m3)
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1.5
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2.5
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P
ea

k 
am
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itu

de
 (

m
/N

)

Mode 2

Mode 1

Mode 4

Fig. 3: Evolution of the peaks amplitudes with the nonlinearity parameter α: linear
(—) and nonlinear (—) absorbers.

Going beyond that nonlinear regime can reveal more on the behaviour and the lim-
itations of the proposed multimodal nonlinear tuned vibration absorber. The NFRFs
of the structure in the strongly (α = 0.36) and in the extremely (α = 0.81) nonlinear
regimes are shown in Figures 4 and 5, respectively. With nonlinear absorbers, the
onset of quasiperiodic oscillations can be observed on mode two, with the appear-
ance of a pair of Neimark-Sacker bifurcations. The amplitude of those vibrations can
be computed through direct time integration of the equations of motion. The linear
absorbers are progressively detuned, which results in higher vibratory amplitudes
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as α increases. With the nonlinear absorbers, a detached resonance curve (DRC)
merges with the rightmost peak of mode 4 at α = 0.518, leading to the possibil-
ity of much higher vibration amplitudes. At this point, there is little difference of
performance (in terms of maximal vibratory amplitude) between the linear and the
nonlinear absorbers. Interestingly, the DRC of the nonlinear absorbers is connected
to the NFRF through a branch of quasiperiodic solutions, which seems to lose its
stability when the lower-amplitude periodic solutions become stable again, as the
behaviour of the amplitude obtained with time integration seems to indicate.
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Fig. 4: NFRFs of the five-degree-of-freedom structure with linear (—: stable
solution, - -: unstable solution, •: fold bifurcation) and nonlinear (—: stable

solution, - -: unstable solution, •: fold bifurcation, H: Neimark-Sacker bifurcation, •
: time-integrated solution) absorbers at α = 0.36 N3/m3: close-up on modes 1 and 2

(a) and close-up on mode 4 (b).
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Fig. 5: NFRFs of the five-degree-of-freedom structure with linear (—: stable
solution, - -: unstable solution, •: fold bifurcation) and nonlinear (—: stable

solution, - -: unstable solution, •: fold bifurcation, H: Neimark-Sacker bifurcation, •
: time-integrated solution) absorbers at α = 0.81 N3/m3: close-up on modes 1 and 2

(a) and close-up on mode 4 (b).
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5 Conclusion

This paper proposed a tuning methodology for a multimodal nonlinear tuned vibra-
tion absorber. The linear characteristics of this absorber are first tuned. Based on a
modal expansion of the frequency response function of the structure at the degree
of freedom at which the absorbers are placed, an equivalent one-degree-of-freedom
model is derived. The tuning rules of the absorber for a single-degree-of-freedom
system can thus be used with multiple vibration absorbers to mitigate multiple reso-
nances. A better equality between the peaks amplitudes can be obtained with the help
of numerical optimisation. Nonlinearities are then added to the absorbers. Thanks
to a principle of similarity, the functional form of these nonlinearities are chosen
to be identical to those of the host structure. Their coefficients are determined by
enforcing equal peaks in the nonlinear regime.

The example showed that the nonlinear absorbers placed on a nonlinear structure
are more efficient than their linear counterpart. Not only are they able to enforce
equal peaks over a broader amplitude range, but they also allow to obtain frequency
response functions with lowermaximal amplitudes thanwhen using linear absorbers.
The nonlinear absorbers trigger nonlinear phenomena, such as quasiperiodic oscil-
lations and detached resonance curves. But even when these phenomena arise, the
situation is at worse equivalent to that of the linear absorbers.

Future work may involve the use of a modal approach to simplify the computation
of the nonlinear coefficients, therefore not requiring the full structural matrices.
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