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Responses of Reconstructed Human
Epidermis to Trichophyton rubrum
Infection and Impairment of Infection
by the Inhibitor PD169316

Emilie Faway1, Ludivine Cambier2, Evelyne De Vuyst1, Céline Evrard1, Marc Thiry3,
Catherine Lambert de Rouvroit1, Bernard Mignon2 and Yves Poumay1
Despite the threatening incidence of dermatophytosis, information is still lacking about the consequences of
infection on epidermal barrier functions and about the keratinocyte responses that alert immune components.
To identify the mechanisms involved, arthroconidia of the anthropophilic dermatophyte Trichophyton rubrum
were prepared to infect reconstructed human epidermis (RHE) in vitro. Integrity of the barrier was monitored
during infection by measurements of transepithelial electrical resistance and dye-permeation through the RHE.
Expression and release of pro-inflammatory cytokines and antimicrobial peptides by keratinocytes inserted into
the RHE were assessed, respectively, by quantitative reverse transcriptaseePCR (to analyze mRNA content in
tissue extracts) and by ELISA (to detect proteins in culture media). Results reveal that infection by T. rubrum is
responsible for disruption of the epidermal barrier, including loss of functional tight junctions. It additionally
causes simultaneous expression and release of cytokines and antimicrobial peptides by keratinocytes. Potential
involvement of the p38 mitogen-activated protein kinase signaling pathway was evaluated during infection by
targeted inhibition of its activity. Intriguingly, among several p38 mitogen-activated protein kinase inhibitors,
PD169316 alone was able to inhibit growth of T. rubrum on Sabouraud agar and to suppress the process of
infection on RHE. This suggests that PD169316 acts on a specific target in dermatophytes themselves.
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INTRODUCTION
Dermatophytosis is a superficial mycosis, whose prevalence
is estimated between 20 and 25% in the global human
population and has increased over the last decade
(Havlickova et al., 2008; Hayette and Sacheli, 2015;
Seebacher et al., 2008; Zhan and Liu, 2017). The anthro-
pophilic Trichophyton rubrum species is the most common
dermatophyte responsible for glabrous skin infections (Lee
et al., 2015; Tomoyuki et al., 2014), which are generally
limited to the stratum corneum (SC) (Weitzman and
Summerbell, 1995). The confinement of fungal hyphae and
spores in superficial epidermal layers is thought to be asso-
ciated with both the epidermal barrier itself and the appro-
priate activation of the immune system (Martinez-Rossi et al.,
2017; Mignon et al., 2008; Vermout et al., 2008). The latter is
known to induce not only innate immune responses but also
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an adaptive immune response involving TCR-mediated
immunity, which is critical for fungal clearance and clinical
recovery (Burstein et al., 2018; Calderon and Hay, 1984;
Heinen et al., 2018). However, the consequences of derma-
tophytic infection on the epidermal barrier and on the kera-
tinocyte responses that alert innate immune components
remain poorly understood.

The epidermal barrier protects the organism against
external aggressions and water loss (Bäsler et al., 2016). Its
efficiency is possible because of the collaboration between
its physical components, that is, the SC and tight junctions
(TJs), antimicrobial peptides (AMPs), cells of the immune
system, and the skin microbiome (Brandner, 2016; Proksch
et al., 2008). The SC is composed of corneocytes held
together by corneodesmosomes across the intercellular lipid
matrix and is extremely resistant to physical stress, as well as
relatively impermeable to water and many chemicals
(Haftek, 2015; van Smeden and Bouwstra, 2016). TJs are
intercellular junctions established between granular kerati-
nocytes and are responsible for the paracellular imperme-
ability in the epidermis (Kirschner et al., 2013).

In case of infection, keratinocytes are the cells initially
encountered by dermatophytes. They can detect pathogens
via pathogen-associated molecular pattern recognition, by
using pattern recognition receptors: toll-like receptors (TLRs)
2, 4, and 6, notably (Brasch et al., 2014; Cambier et al.,
2016; Garcı́a-Madrid et al., 2011). Activation of pattern
recognition receptors on keratinocytes induces signaling
pathways, leading to expression and release of pro-
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inflammatory cytokines and AMP. Particularly, the p38
mitogen-activated protein kinase (MAPK) signaling pathway
can be activated in response to environmental stresses and its
involvement is implied in a variety of cellular processes,
including inflammation (Kyriakis and Avruch, 2012; Zarubin
and Han, 2005). Interestingly, the p38 MAPK signaling
pathways were involved in AMP expression by keratinocytes
exposed to a cell wall component of Candida albicans (Li
et al., 2011) and were found to be activated in keratino-
cytes exposed to Trichophyton equinum dermatophytes
(Achterman et al., 2015). Moreover, several studies per-
formed in vitro on keratinocyte monolayers have shown
increased expression and release of cytokines, such as tumor
necrosis factor(TNF)-a, IL-1a, IL-1b, IL-6, and IL-8, in
response to stimulation by dermatophytes (Nakamura et al.,
2002; Shiraki et al., 2006; Tani et al., 2007).

In addition, the exposure of keratinocytes cultured as
monolayers to fungal cells is poorly representative of in vivo
infection. In vivo models of dermatophytosis using guinea
pigs (Baldo et al., 2010) or mice (Cambier et al., 2014;
Heinen et al., 2018) are useful to study the immune re-
sponses against dermatophytosis, but differences could exist
with human infection. Therefore, cultures of human skin
equivalents appear to be quite relevant models to study
human dermatophytosis.

Such a model of dermatophytosis was setup through
infection of reconstructed human epidermis (RHE) by
arthroconidia of the anthropophilic species T. rubrum (Faway
et al., 2017). This model appears rather representative of
human dermatophytosis, with fungal components prolifer-
ating over time and invading the SC. Herein, this model has
been used in order to assess damage to the epidermal barrier,
as well as to detect specific activation of keratinocyte re-
sponses during infection. While investigating the potential
involvement of the p38 MAPK signaling pathway in the re-
ported keratinocyte responses to infection, the unique effects
of PD169316 compound were highlighted on growth and
infection properties of dermatophytes—PD169316 com-
pound being a well-known inhibitor of p38 MAPK.

RESULTS
Fungal hyphae invaded the SC by progressing between
corneocytes

Progression of fungal elements through RHE infected by
T. rubrum arthroconidia was monitored over time by
morphological analysis (Figure 1a). A progressive invasion
into SC was observed: on the first day, hyphae emerging from
arthroconidia spread over the SC surface and penetrated SC
by sneaking between corneocytes (Figure 1b); on the fourth
day, hyphae were found in the intercellular space through the
full thickness of SC (Figure 1c).

T. rubrum infection simultaneously altered integrity of the
epidermal barrier and activated keratinocyte responses

The epidermal barrier integrity of RHE was assessed during
infection by measurement of transepithelial electrical resis-
tance and assessment of its permeability to Lucifer yellow
fluorescent dye (Figure 2aec). Sudden barrier alterations
appeared on the fourth day following infection. Conversely,
the barrier was strengthened over time in non-infected RHE.
Additionally, inside-out permeability of RHE was studied
Journal of Investigative Dermatology (2019), Volume -
using biotin dissolved in culture medium, revealing that the
integrity of TJs was reduced on the fourth day after infection
(Figure 2d). Accordingly, the TJ protein claudin-1 exhibited
an altered distribution in infected RHE, as assessed by im-
munostaining (see Supplementary Figure S1 online).

Infection of RHE further triggered mRNA expression in
keratinocytes, as well as the cells’ release of cytokines (IL-8,
IL-1a, IL-1b, TNFa, TSLP, and G-CSF), of protein TNFa-
stimulated gene 6, and AMP (human b-defensin-2 [hBD2]
and -3 [hBD3], S100A7) as revealed, respectively, by quan-
titative reverse transcriptaseePCR (RT-qPCR) and ELISA
(Figure 2e and f and see Supplementary Figure S2 online).
Conversely, except for transglutaminase-1, which was slightly
overexpressed 1 day after infection, the expression of differ-
entiation markers (filaggrin, involucrin, or loricrin) or of
TLR2, TLR5, and TLR6 exhibited no alteration during infec-
tion (see Supplementary Figure S3 online). Expression and
release of all factors studied remained unaltered inside RHE
exposed either to phosphate buffered saline (PBS) alone or to
heat-killed arthroconidia.

The copy number (CN) for the DEFB4 gene, encoding
hBD2, can range from 2 to 12 and is linked to variations in
basal expression levels for hBD2 (Hollox et al., 2003). High
CN in patients affords reduced susceptibility to dermatophy-
tosis (Jaradat et al., 2015). The most frequentDEFB4 CN in the
population is 4, hence a CN of <4 is considered “low” and
that of >4 as “high” (Jaradat et al., 2013). Eight primary ker-
atinocyte cultures in our laboratory were genotyped to count
DEFB4 CN. Data revealed between 3 and 5 CN for this gene
(see Supplementary Figure S4 online). Keratinocytes with 3
DEFB4 CN were selected for RHE production in this study.

p38 MAPK inhibitor PD169316 hampers infection of RHE by
affecting dermatophyte growth

Because activation of p38 MAPK has been associated with
infection by dermatophytes (Achterman et al., 2015) and is
also found in untreated RHE (Figure 3), a potential role for
p38 MAPK during T. rubrum infection of RHE was investi-
gated using the PD169316—a p38 MAPK-specific inhibitor.
No further activation of p38 MAPK can be observed during
RHE infection (Figure 3a). Thus, the actual inhibition of p38
MAPK activity by PD169316 was assessed through detection
of phosphorylation of heat shock protein 27—considering
that this is a known phosphorylation target of p38 MAPK in
keratinocytes (Garmyn et al., 2001)—in RHE exposed to
H2O2 in order to activate p38 MAPK signaling pathway (Peus
et al., 1999; Mathay et al., 2008) (Figure 3b).

Interestingly, the presence of PD169316 prevents the
epidermal barrier alterations that are usually induced on the
fourth day after T. rubrum infection (Figure 4aec). Further-
more, the extent of SC invasion by arthroconidia is also
reduced (Figure 4d) whereas the overexpression of IL-8,
IL-1a, IL-1b, TNFa, hBD2, and hBD3, usually induced by
infection, is not observed in the presence of PD169316
(Figure 4e and see Supplementary Figure S5 online).

Because p38 MAPK activity seems unaltered during
infection of RHE, a potential effect of PD169316 on
T. rubrum growth itself was hypothesized and studied by
seeding arthroconidia on Sabouraud agar (2% glucose and
1% peptone) containing PD169316. After a 7-day incubation



Figure 1. Fungal hyphae invade SC in RHE by progressing through intercellular space. (a) PAS staining with a-amylase treatment of histological sections

prepared from RHE infected by Trichophyton rubrum arthroconidia for 1 (D0 þ 1 day), 2 (D0 þ 2 days), 3 (D0 þ 3 days), or 4 (D0 þ 4 days) days. Scale bar ¼
50 mm. (b, c) SC colonization and invasion of RHE by T. rubrum arthroconidia respectively assessed (b) by scanning electron microscopy performed 1 day

after infection (D0 þ 1 day) or (c) by transmission electron microscopy performed 4 days after infection (D0 þ 4 days). Yellow dotted lines indicate limits

between SC and stratum granulosum. Scale bars ¼ 5 mm. PAS, periodic-acid Schiff; RHE, reconstructed human epidermis; SC, stratum corneum.
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at 27 �C, the number of colony-forming units was reduced in
the presence of PD169316, and colonies appeared smaller
and more compact, while fungal hyphae seemed thinner and
presented fewer septa when analyzed through scanning
electron microscopy (Figure 5a and b). In good accordance
with PD169316 having an effect on dermatophytes, the
growth of T. rubrum arthroconidia on lyophilized RHE was
impaired by PD169316 (Figure 5c). Similar growth inhibition
was observed for two other species, Trichophyton inter-
digitale and Trichophyton benhamiae, seeded on Sabouraud
agar containing PD169316 (Figure 5d and e). Conversely
though, other p38 MAPK inhibitors, namely SB202190,
SB203580, VX-702, and BIRB796, did not alter growth of
T. rubrum (Figure 6), T. interdigitale, or T. benhamiae (see
Supplementary Figure S6 online) on Sabouraud agar, nor the
infection of RHE by T. rubrum arthroconidia (data not
www.jidonline.org 3
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shown). Moreover, culture in presence of PD169316 or
SB203580 did not suppress the growth of the fission yeast
Schizosaccharomyces pombe, whereas strain knockout for
sty1, the yeast homolog for p38 MAPK, exhibited drastically
reduced cell growth under any culture condition (see
Supplementary Figure S7 online).
Journal of Investigative Dermatology (2019), Volume -
DISCUSSION
The in vitro model of T. rubrum dermatophytosis in RHE has
been previously validated as representative of in vivo human
cutaneous dermatophytosis lesions (Faway et al., 2017). Here,
we characterized the consequences of infection on epidermal
barrier integrity, and the primary responses of keratinocytes.



Figure 3. p38 MAPK is constitutively

phosphorylated in RHE and its

activity can be inhibited by

PD169316. (a) Levels of p38 MAPK

and phosphorylated p38 MAPK

investigated by western blotting, using

antibodies specific for p38 MAPK or

phosphorylated p38 MAPK, after

protein extraction from RHE, during

Trichophyton rubrum infection (0 to 4

days). (b) Levels of p38 MAPK and

phosphorylated p38 MAPK, as well as

levels of HSP27 and phosphorylated

HSP27 assessed by western blotting,

using specific antibodies, on protein

extracts from RHE, either previously

treated for 24 hours with PD169316

(15 mM), a p38 MAPK-specific

inhibitor, or not treated, then exposed

to H2O2 (1 mM) for 20 or 60 minutes.

The detection of RPL13a protein was

used as loading control. HSP27, heat

shock protein 27; MAPK, mitogen-

activated protein kinase; RHE,

reconstructed human epidermis.

E Faway et al.
Dermatophytosis Inhibition by PD169316
Hyphae of T. rubrum invade SC and disrupt the epidermal
barrier

Electron microscopy images suggest that T. rubrum hyphae
invade the SC via intercellular progression between corneo-
cytes. Furthermore, hyphae of Trichophyton mentagrophytes
have previously been shown to invade the SC between cor-
neocytes in both infected SC sheets (Aljabre et al., 1992) and
skin sections (Duek et al., 2004). These results suggest that
dermatophytes are able to orientate the direction of hyphal
growth in relation to the physical and topographical features
of the substrate, a phenomenon known as thigmotropism and
regulated by complex molecular signaling pathways
(Almeida and Brand, 2017). Thigmotropism is required
in vitro and in vivo for invasion of host surfaces by patho-
genic fungi, such as C. albicans and dermatophytes
(Jayatilake et al., 2005; Perera et al., 1997; Piérard et al.,
2007). These observations also suggest that dermatophytes
may degrade corneodesmosomes and parts of the lipid
extracellular matrix while hyphae invade the SC. As derma-
tophytes secrete several proteases during in vivo infection
(Méhul et al., 2016; Tran et al., 2016), hyphae may thus be
responsible for altering the barrier integrity observed during
infection of RHE.
In the absence of an immune system and microbiome,
the RHE barrier relies on physical components of SC and
TJs (Proksch et al., 2008); this explains the observation
that it strengthens over time in untreated RHE as a likely
result of SC thickening. Barrier function of RHE that has
been temporarily covered with PBS, increases similarly,
suggesting that transient moistening of the epidermal sur-
face does not alter barrier integrity. By contrast, the bar-
rier of infected RHE is suddenly disrupted on the fourth
day after infection by T. rubrum arthroconidia, in line
with an observed increase of transepithelial water loss in
biopsies from dermatophytosis cutaneous lesions (Jensen
et al., 2007). In addition, the function of TJs is lost on
the fourth day after RHE infection, concomitantly with the
altered localization of claudin-1. Perturbed TJs have been
reported as well in vitro and in vivo during Staphylo-
coccus aureus infection, in association with simultaneous
redistribution of TJ proteins (Bäsler et al., 2017; Ohnemus
et al., 2008). Taken together, these observations suggest
that invading hyphae progressively increase permeability
of the SC. On the fourth day following infection, hyphae
reaching the top of granular layer induce the alterations of
TJs that correspond to the sudden loss in epidermal barrier
www.jidonline.org 5
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integrity. In the absence of immune cells, this barrier
disruption allows dermatophytes to colonize the full
thickness of RHE. Further evidence is provided by histo-
logical demonstration that fungal elements invade living
cell layers of RHE from the fifth day after infection (Faway
et al., 2017). It is of note that mRNA expression of
epidermal differentiation markers remains unaltered dur-
ing T. rubrum infection of RHE, even though T. rubrum
infection disturbs epidermal morphology. This observation
does not exclude concomitant redistribution of differenti-
ation markers, as previously observed in dermatophytosis
lesions (Jensen et al., 2007).

T. rubrum infection induces inflammatory responses in RHE

Keratinocytes of infected RHE overexpress and release
several cytokines (IL-1a, IL-1b, TNFa, IL-8) and AMP
(hBD2, hBD3, S100A7) from the fourth day after infection.
Release of G-CSF, an early response of epithelial cells to
Candida albicans infection (Moyes et al., 2016), was
detected at low concentration in our model, whereas IL-6
and RNase7 expression was scarcely detectable. In
Journal of Investigative Dermatology (2019), Volume -
contrast, neither transient moistening of the tissue, nor
exposure to killed arthroconidia induced those responses.
Some in vitro studies report release of these cytokines by
infected keratinocytes, while others do not (Achterman
et al., 2015; Nakamura et al., 2002; Shiraki et al., 2006;
Tani et al., 2007). Expression of pro-inflammatory cyto-
kines and subsequent activation of T helper type 1 and T
helper type 17 immunity have been observed in a mouse
model of dermatophytosis (Cambier et al., 2014; Heinen
et al., 2018). Furthermore, overexpression and release of
hBD2, hBD3, RNase7, and S100A7 in response to derma-
tophytes have been demonstrated in vitro (Firat et al., 2014)
and in vivo (Brasch et al., 2014). The apparent discrep-
ancies in cytokine profiles may represent distinct keratino-
cyte responses to different dermatophytes species. In line
with this, specific cytokine profiles characterize the re-
sponses to anthropophilic versus zoophilic dermatophytes
species (Shiraki et al., 2006; Tani et al., 2007). In addition
to inflammatory cytokines, TSG-6, an anti-inflammatory
protein, was produced in response to T. rubrum infection
of RHE. Accordingly, infection by T. rubrum induces the
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release of the anti-inflammatory cytokine IL-10 by macro-
phages (Campos et al., 2006).

The simultaneous activation of keratinocyte responses and
epidermal barrier disruption suggests that both events are
related. Perturbation of the epidermal barrier allows contact
between dermatophytes and living granular keratinocytes
that are able to recognize fungal molecular patterns through
TLR (Netea et al., 2008), inducing production of cytokines
and AMP. However, a reverse mechanism cannot be
excluded: during invasion of SC by dermatophytes, granular
keratinocytes could recognize fungal secreted material
(Brouta et al., 2003; Descamps et al., 2003) and react by
producing cytokines and AMP which can, in turn, influence
the epidermal barrier (Kirschner et al., 2009).

PD169316 inhibits growth of dermatophytes

As p38 MAPK activation had been previously associated
with dermatophyte infection (Achterman et al., 2015), its
role during infection of RHE was monitored using
PD169316, a p38 MAPK-specific inhibitor (Jans et al., 2004;
Mathay et al., 2008). Unexpectedly, PD169316 was shown
to inhibit growth of arthroconidia from T. rubrum,
T. interdigitale, and T. benhamiae, both on RHE and on
Sabouraud agar. Moreover, colonies grown in vitro in the
www.jidonline.org 7
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arthroconidia were seeded on Sabouraud agar containing 15 mM of different

p38 MAPK-specific inhibitors and incubated for 7 days at 27 �C. (a) Growth

percentage of T. rubrum evaluated by CFU counting (n ¼ 3; mean � standard

deviation) and (b) by microscopic observations of colonies in the presence of

the inhibitors. Scale bar ¼ 1 mm. ***P < 0.001, Student t test. CFU, colony-

forming unit; MAPK, mitogen-activated protein kinase.
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presence of PD169316 are smaller and display abnormal
morphology.

A candidate fungal target of PD169316 is a T. rubrum p38
protein kinase ortholog with 50% amino acid identity to
human p38. However, PD169316 does not alter growth of
yeast S. pombe, whose p38 MAPK ortholog (Sty1) shares
84% identity with T. rubrum p38 protein kinase. This
observation suggests that the fungal target of PD169316,
whose inhibition leads to dermatophytes growth impairment,
could not be the p38 protein kinase. In addition, other p38
MAPK inhibitors SB202190, SB203580, VX-702, and
BIRB796, do not inhibit dermatophyte growth on Sabouraud
agar, nor infection of RHE. Thus, among the p38 MAPK in-
hibitors, PD169316 exhibits unique effects, as observed in a
study investigating antiviral activities against Enterovirus71
(Zhang et al., 2017).
Summary

This report illustrates that T. rubrum infection of RHE results
in simultaneous epidermal barrier disruption and activation
of keratinocyte responses. It shows that PD169316 inhibits
dermatophyte growth and thereby qualifies as a candidate
drug against dermatophytosis.
Journal of Investigative Dermatology (2019), Volume -
MATERIALS AND METHODS
Dermatophyte strains, culture, and production of
arthroconidia

The strains IHEM 13894 of T. rubrum, IHEM 00584 of

T. interdigitale, and IHEM 20163 of T. benhamiae, isolated from

naturally infected humans, were obtained from the Belgian Coor-

dinated Collections of Microorganisms (BCCM/IHEM collection of

biomedical fungi and yeasts, Brussels, Belgium). Arthroconidia were

produced as previously described in Tabart et al. (2007). Briefly,

dermatophytes grown at 27 �C on Sabouraud agar (containing 2%

glucose and 1% peptone) were recovered and cultured on YEN agar

(containing 2% yeast extract and 1% peptone) at 30 �C in an

atmosphere containing 12% CO2. The surface of the mycelium was

scraped, added to sterile PBS, and this solution was stirred overnight

at 4 �C and then filtered through three Miracloth layers (22e25 mm
pore size; Millipore, Overijse, Belgium) to recover unicellular fungal

elements corresponding to arthroconidia. Heat-killed arthroconidia

were obtained by 10-minute incubation in a boiling water bath,

followed by PBS washes.

Infection of RHE by T. rubrum dermatophyte

RHE was prepared as described (De Vuyst et al., 2014) and cultured

in EpiLife medium (Cascade Biologics, Mansfield, UK), supple-

mented with Human Keratinocyte Growth Supplement (Cascade

Biologics, Mansfield, UK) and containing 1.5 mM Ca2þ, 10 ng/ml

keratinocyte growth factor (R&D system, Abingdon, UK), and 50 mg/
ml vitamin C.

The procedure used for infection was previously described (Faway

et al., 2017). Concisely, RHE was infected on day 0 (D0) by topical

application of a PBS-suspension of T. rubrum arthroconidia, in order

to reach a density of 1,700 arthroconidia per cm2. Four hours later,

the suspension was removed from RHE, followed by washes with

PBS. Infected RHE was then cultured at 37 �C in a humidified

atmosphere containing 5% CO2 for 4 additional days with the

culture medium renewed daily.

PBS-treated RHE consisted of RHE that only PBS was applied on

D0 and that had undergone washes. For infection of RHE with heat-

killed arthroconidia, PBS was first topically applied on D0, followed

by washes four hours later. On the fourth day following PBS-

exposure, 1,000,000 heat-killed T. rubrum arthroconidia were

applied topically and infected RHE was finally analyzed, after four

hours of incubation.

Histological analysis

For histological analysis, RHE was processed as described by

De Vuyst et al. (2014). Periodic-acid Schiff staining was performed

with hemalum counterstaining and pretreatment with a-amylase as

previously described (Faway et al., 2017).

Assessment of epidermal barrier integrity

Transepithelial electrical resistance of RHE was measured using a

Millicell ERS-2 Voltohmmeter (Millipore, Overijse, Belgium) and

expressed as percentages of values determined in the RHE

control.

To assess the permeability of RHE, 150 ml of fluorescent dye

(Lucifer yellow vs. dilithium salt; Sigma-Aldrich, Munich, Germany)

were laid on the surface of RHE placed over 200 ml of culture

medium. RHE was incubated at 37 �C for 6 hours in a humidified

atmosphere containing 5% CO2. The amount of Lucifer yellow in the

medium under the RHE was finally determined by measuring its

fluorescence using a fluorescence reader. In addition, sections of
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RHE were observed using a fluorescent microscope in order to

localize Lucifer yellow in tissue.

To investigate efficiency of the inside-out barrier, we assessed

biotin diffusion from culture media to the apical surface of RHE.

After washes with PBS containing 1 mM CaCl2, RHE was incubated

at 37 �C in a humidified atmosphere containing 5% CO2 for 30

minutes, over 500 ml of the same solution containing 2 mg/ml biotin

(EZ-Link Sulfo-NHS-LC-Biotin; ThermoScientific, Rockford, IL). RHE

was washed with PBS containing CaCl2 and 100 mM glycine, fixed

for 24 hours in 4% formaldehyde solution and, finally, embedded in

paraffin. Tissue sections were stained with streptavidin conjugated to

Alexa Fluor 488 (dilution 1:500; Invitrogen, Aalst, Belgium) and the

localization of biotin was observed using a fluorescence

microscope.

Immunostaining, electron microscopy, RNA extraction,
RT-qPCR ELISA, and western blot

For detailed description of immunofluorescence staining of claudin-

1, scanning and transmission electron microscopy, total RNA

extraction, reverse-transcription and quantitative PCR, ELISA, and

protein extraction and western blot analysis, see the Supplementary

Materials and Methods.

p38 MAPK inhibitors

BIRB796 was purchased from Tocris (Abingdon, UK), PD169316

from Santa Cruz biotechnology (Heidelberg, Germany), SB202190

and SB203580 from InvivoGen (Toulouse, France), and VX-702 from

Selleckchem (Munich, Germany). Concentration of each inhibitor

was 15 mM.

In order to study the efficiency of PD169316, the p38 MAPK

signaling pathway was stimulated by treating RHE for 20 or 60

minutes with 1 mM H2O2 added to the culture media, followed by

one hour of recovery. PD169316 was present in culture media of

RHE 24 hours before addition of H2O2 and during treatment and

recovery.

Statistical analyses

All statistical analyses were carried out using SigmaPlot software,

version 11.0. One-way analysis of variance and Student t test were

performed to analyze the data.
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E Faway et al.
Dermatophytosis Inhibition by PD169316
SUPPLEMENTARY MATERIALS AND METHODS
Claudin-1 immunostaining

For immunostaining of claudin-1, tissue sections were incu-
bated in 10 mM citrate buffer pH 6 at 100 �C for 20 minutes.
After slow cooling at room temperature, sections were
immersed in phosphate buffered saline (PBS) containing 0.1
M glycine. Blocking was performed in PBS containing 0.2%
BSA for 30 minutes, before overnight incubation at 4 �C with
rabbit polyclonal antieclaudin-1 antibody (dilution 1:50;
Invitrogen, Aalst, Belgium). Sections were then incubated for
45 minutes with goat anti-rabbit IgG H&L (Alexa Fluor 488;
dilution 1:1000; Abcam, Cambridge, UK). Finally, coverslips
were mounted in Mowiol and tissue sections were observed
using confocal microscopy. Negative control was obtained
by incubation overnight at 4 �C in PBSeBSA, instead of the
solution containing the primary antibody.

Scanning and transmission electron microscopy

To observe Trichophyton rubrum colonies over Sabouraud
agar by scanning electron microscopy, an agar surface of
approximately 1 cm2 was seeded. Infected reconstructed
human epidermis (RHE) was analyzed after 24 hours of cul-
ture. All samples were fixed for 4 hours with 2.5% glutaral-
dehyde in 0.1 M sodium cacodylate buffer pH 7.4 at 4 �C.
Then, they were rinsed three times with 0.2 M sodium
cacodylate buffer pH 7.4 and dehydrated with increasing
ethanol concentration (30e100%). After critical-point drying
for infected RHE, or Hexamethyldisilazane drying for col-
onies over Sabouraud agar, and gold-coating, samples were
analyzed using JSM-7500F scanning electron microscope
(JEOL, Tokyo, Japan) at 5 kV.

For observation by transmission electron microscopy,
control and infected RHE were fixed at 4 �C for 1 hour with
2.5% glutaraldehyde in 0.1 M Sörensen’s buffer, rinsed three
times with this buffer, and postfixed for 1 hour with 2% OsO4

in the same buffer. After three washes in distilled water,
samples were dehydrated in ascending concentrations of
ethanol (70e100%) and embedded in Epoxy resin. Finally,
ultrathin sections were contrasted with uranyl acetate and
lead citrate and observed using JEM-1400 transmission
electron microscope (JEOL) at 80 kV.

RNA extraction, reverse-transcription, and quantitative PCR
analysis

Total RNAwas extracted from infected and control (i.e., PBS-
treated RHE and RHE exposed to heat-killed arthroconidia)
RHE using RNeasy Mini Kit (Qiagen, Hilden, Germany) ac-
cording to the manufacturer’s instructions. Concentration and
purity of extracted RNA were determined using a NanoDrop
1000 Spectrophotometer (Thermo Scientific, Rockford, IL).
Subsequently, RNA was reverse-transcribed into cDNA using
the SuperScript III Reverse Transcriptase kit (Invitrogen, Aalst,
Belgium). The cDNA was diluted 1:20 in distilled water and
stored at e20 �C.

All primers used for QPCR showed an efficacy between
85% and 110% and are described in Supplementary Table S1
(online). The QPCR mixture was composed of Takyon ROX
SYBR Master Mix (Eurogentec, Seraing, Belgium), 300 nM of
each primer and 5 ml of cDNA 1:20 in a total volume of 20 ml.
The amplification protocol started with a 10-minute dena-
turation at 95 �C, followed by 45 cycles of denaturation for
10 seconds at 95 �C, annealing for 10 seconds at 60 �C, and
elongation for 10 seconds at 72 �C, and was performed using
Light Cycler 96 (Roche, Basel, Switzerland). RPLP0 was used
as reference gene.

ELISA

To assess the release of cytokines or antimicrobial peptides by
keratinocytes, ELISA was performed on culture media using
the commercial ELISA kits listed in Supplementary Table S2
(online).

Protein extraction and western blotting

Proteins were extracted from RHE via 5-minute incubation in
twice-concentrated Laemmli buffer (62.5 mM Tris-HCl, 2%
SDS, 8.7% glycerol, 0.05% bromophenol blue, 0.2% dithio-
threitol) in a boiling water bath. Then, proteins were analyzed
by sodium dodecyl sulfateepolyacrylamide gel electropho-
resis and transferred onto polyvinylidene difluoride membrane
(ThermoScientific, Rockford, IL). Blocking of the membrane in
PBS containing 1% Tween 20 and 5% powdered milk was
followed by overnight incubation at 4 �C with primary anti-
body. After washes, the membrane was incubated for one hour
at room temperature with horseradish peroxidase-conjugated
secondary antibody before chemiluminescent detection per-
formed using BM Chemiluminescence Blotting Substrate
(Roche Diagnostics, Mannheim, Germany). The detection of
RPL13a protein was used as a loading control. Primary anti-
bodies used for western blotting are described in
Supplementary Table S3 (online).

DEFB4 gene copy number

Genomic DNA was extracted from keratinocytes using the
DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Genomic DNA
was then subjected to a quantitative PCR amplification, using
the TaqMan Copy Number Assays (Applied Biosystems,
Lennik, Belgium) and copy number of the DEFB4 gene was
determined in relation to a reference DNA with known copy
number of the DEFB4 gene (DNA C0913, Culture Collections
from Public Health England, UK).

Schizosaccharomyces pombe growth assay

Wild-type (#94 h-) and sty1 knockout (#903 h- sty1::kanR)
strains of S. pombe were grown in liquid YES medium at 37
�C overnight. The optical density at 595 nm was measured
and cultures were diluted to optical density 0.05 (corre-
sponding to 5.5 � 105 cells/ml) and divided into control and
treated conditions (0.1% DMSO, 15 mM PD169316, 15 mM
SB203580). The different cultures were then grown at 37 �C
in YES medium for 24 hours; DMSO, PD169316, or
SB203580 being added in culture suspension after two hours.
Growth was monitored over time by measuring the optical
density at 595 nm 0, 2, 4, 6, 10, and 24 hours after the culture
began.
www.jidonline.org 10.e1
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Supplementary Figure S1. Cldn-1 relocalizes in keratinocytes during infection of RHE by Trichophyton rubrum arthroconidia. Immunofluorescence

localization of Cldn-1 before (D0) and after 4 days of infection (D0 þ 4 days), either in low or in high infection area. Some cross-reaction between the antibody

to Cldn-1 and T. rubrum arthroconidia can be noticed. Control staining without primary antibody (inset); dotted lines indicate localization of the filter. Scale

bars ¼ 50 mm. Cldn-1, claudin-1; RHE, reconstructed human epidermis.
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Inflammatory cytokines, TSG-6

protein, and (AMP) are overexpressed

and released by keratinocytes during

Trichophyton rubrum infection.

(a) Expression and (b) release of

inflammatory cytokines (IL-1a, IL-1b,
IL-6, TNFa, TSLP, G-CSF), TSG-6

protein, and AMP (RNase7, S100A7)

by keratinocytes inside infected RHE

compared with those parameters

determined in control RHE, and in

RHE exposed to PBS only or to HK

arthroconidia. Expression was

evaluated by RT-qPCR after RNA

extraction from control and infected

RHE (n ¼ 3; mean � confidence

interval 95%) and cell release was

measured by ELISA assay on culture

media (n ¼ 3; mean � standard

deviation). *P < 0.05, **P < 0.01,

***P< 0.001, compared with D0, one-

way ANOVA. AMP, antimicrobial

peptides; ANOVA, analysis of

variance; HK, heat-killed; PBS,

phosphate buffered saline; RHE,

reconstructed human epidermis;

RT-qPCR, quantitative reverse

transcriptaseePCR.
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with RHE exposed to PBS only or to

heat-killed arthroconidia (n ¼ 3; mean

� confidence interval 95%). *P <

0.05, **P < 0.01, compared with D0,

one-way ANOVA. ANOVA, analysis

of variance; FLG, filaggrin; IVL,

involucrin; LOR, loricrin; PBS,

phosphate buffered saline; RHE,

reconstructed human epidermis;

TGM1, transglutaminase-1; TLR, toll-

like receptor.
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Supplementary Figure S4. Copy number of DEFB4 gene, encoding antimicrobial peptide hBD2, in strains of primary keratinocytes used to produce RHE.

DEFB4 gene CN assessed by quantitative PCR after genomic DNA extraction from primary keratinocytes cultured from eight patients. The most frequent DEFB4

CN in the population is 4; CN <4 is considered low while those >4 are considered high CN. Investigations reveal between three and five copies of this gene in

available strains. Primary keratinocytes cultured from patients 3 and 8, characterized by low DEFB4 CN, were selected to produce RHE in our study. CN, copy

number; RHE, reconstructed human epidermis.
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Supplementary Figure S5. PD169316 hampers the expression of inflammatory cytokines IL-1a, IL-1b, and TNFa by keratinocytes during Trichophyton

rubrum infection. RHE was cultured in presence or not of PD169316 (15 mM) in medium and analyzed on the fourth day following infection (D0 þ 4 days).

Relative mRNA expression of inflammatory cytokines was measured by RT-qPCR after RNA extraction (n ¼ 3; mean � confidence interval 95%). *P < 0.05, **P

< 0.01, ***P < 0.001, one-way ANOVA. ANOVA, analysis of variance; RHE, reconstructed human epidermis; RT-qPCR, quantitative reverse transcriptaseePCR;

TNFa, tumor necrosis factor-a.
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Supplementary Figure S6. Among

five p38 MAPK inhibitors, PD169316

is the only one that impedes growth

in other Trichophyton species. (a, b)

Trichophyton interdigitale or (c, d)

Trichophyton benhamiae

arthroconidia were seeded on

Sabouraud agar containing 15 mM of

different p38 MAPK-specific inhibitors

(PD169316, SB202190, SB203580,

BIRB796, VX-702) or without

inhibitors (Control) and incubated for

7 days at 27 �C. (aec) Growth

percentage calculated by counting

CFUs (n ¼ 3; mean � standard

deviation) and (bed) by microscopic

observation of colonies compared

with control conditions. Scale bars ¼
1 mm. ***P < 0.001, Student t test.

CFU, colony-forming unit; MAPK,

mitogen-activated protein kinase.
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Supplementary Figure S7. PD169316

does not affect growth of

Schizosaccharomyces pombe. WT

or sty1e/e strains of S. pombe were

cultured in liquid YES medium at

37 �C during 24 hours in presence

or not of PD169316 (15 mM) or

SB203580 (15 mM), or of DMSO

(0.1%). Growth was monitored over

time by measuring the OD at 595 nm

0, 2, 4, 6, 10, and 24 hours after

culture beginning. DMSO,

PD169316, or SB203580 were added

in culture suspension after two hours.

OD, optical density; sty1e/e, sty1

knockout; WT, wild-type.

Supplementary Table S1. Sequence of Primer Pairs Used for QRT-PCR

Gene Symbol Forward Primer Reverse Primer

FLG GGGCACTGAAAGGCAAAAAG CACCATAATCATAATCTGCACTACCA

hBD-2 ATCAGCCATGAGGGTCTTGT GAGACCACAGGTGCCAATTT

hBD-3 TCCAGGTCATGGAGGAATCAT CGAGCACTTGCCGATCTGT

IL-1a AACCAGTGCTGCTGAAGGAGAT TGGTCTCACTACCTGTGATGGTTT

IL-1b TCCCCAGCCCTTTTGTTGA TTAGAACCAAATGTGGCCGTG

IL-6 CCTGAACCTTCCAAAGATGGC TTCACCAGGCAAGTCTCCTCA

IL-8 GCAGAGGGTTGTGGAGAAGTTT TTGGATACCACAGAGAATGAATTTTT

IVL TGAAACAGCCAACTCCAC TTCCTCTTGCTTTGATGGG

LOR TCATGATGCTACCCGAGGTTTG CAGACCTAGATGCAGCCGGAGA

RNase 7 CGTGTCCCTGACCATGTGTAA GACTTGTTCTGTCGCTTCTCTT

RPLP0 ATCAACGGGTACAAACGAGTC CAGATGGATCAGCCAAGAAGG

S100A7 ACGTGATGACAAGATTGAGAAGC GCGAGGTAATTTGTGCCCTTT

TGM1 GTCGTCTTCCGGCTCGAA TCACTGTTTCATTGCCTCCAAT

TLR2 ATCCTCCAATCAGGCTTCTCT GGACAGGTCAAGGCTTTTTACA

TLR5 TCCCTGAACTCACGAGTCTTT GGTTGTCAAGTCCGTAAAATGC

TLR6 TTCTCCGACGGAAATGAATTTGC CAGCGGTAGGTCTTTTGGAAC

TNFa GAGGCCAAGCCCTGGTATG CGGGCCGATTGATCTCAGC

TSLP CGCGTCGCTCGCCAAAGAAA TGAAGCGACGCCACAATCCTTG

Supplementary Table S2. Commercial ELISA Kits

Cytokine/
AMP ELISA Kit

G-CSF Human G-CSF DuoSet ELISA (R&D system,
Abingdon, UK)

hBD-2 Human BD-2 Mini ABTS ELISA Development Kit
(PeproTech, London, UK)

hBD-3 Human BD-3 Mini ABTS ELISA Development Kit
(PeproTech, London, UK)

IL-1a Human IL-1 alpha/IL1F1 DuoSet ELISA
(R&D system, Abingdon, UK)

IL-1b Human IL-1 beta/IL-1F2 DuoSet ELISA
(R&D system, Abingdon, UK)

IL-8 Human IL-8/CXCL8 DuoSet ELISA
(R&D system, Abingdon, UK)

IL-6 Human IL-6 DuoSet ELISA (R&D system, Abingdon, UK)

TNFa Human TNF-alpha DuoSet ELISA
(R&D system, Abingdon, UK)

TSLP Human TSLP DuoSet ELISA (R&D system, Abingdon, UK)

Supplementary Table S3. Primary Antibodies Used for
Western Blotting

Protein Species Company Dilution

HSP27 Mouse Cell Signaling Technology,
Leiden, Netherlands

1/1000

Phospho-HSP27 Rabbit Millipore, Overijse, Belgium 1/5000

p38 MAPK Rabbit Cell Signaling Technology,
Leiden, Netherlands

1/1000

Phospho-p38 MAPK Rabbit Cell Signaling Technology,
Leiden, Netherlands

1/1000

RPL13a Rabbit Cell Signaling Technology,
Leiden, Netherlands

1/1000
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