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Abstract—If we account for data uncertainty, centralized
microgrid control can be decomposed in four tasks: estimating
the parameters of the microgrid devices, forecasting the con-
sumption and the renewable production, operational planning
to anticipate weather effects and human activities, and real-
time control to adapt planned decision to the reality of the
moment. As the devices of a microgrid deteriorate over their
lifetime and microgrids are by definition small systems, it is of
paramount importance to automate the meta-parameterization of
these stages to maximize the microgrid efficiency and decrease its
maintenance costs. This paper studies how reinforcement learning
can be used to address this problem. As reinforcement learning
makes use of microgrid operation data (or of simulated data
before the microgrid is actually operated) to learn an operation
policy, it inherently merges the four stages above, and can in
theory adapt to some types of changes without having to perform
manual tuning.

Index Terms—Microgrid control, optimization, reinforcement
learning, uncertainty.

I. INTRODUCTION

Microgrids are small electrical networks composed of flex-
ible consumption, distributed power generation (renewable
and/or conventional) and storage devices. The operation of
a microgrid is optimized in order to satisfy the demand
while ensuring maximum reliability and power quality and
to maximize the renewable energy harvested locally while
minimizing the total system cost.

Centralized microgrid control is usually decomposed in four
tasks: i) estimating the parameters of the microgrid devices
(for instance the charge efficiency of a battery storage device
as a function of the state of charge and temperature, or the
actual capacity of a battery after a number of cycles), ii)
forecasting the consumption and the renewable production, iii)
operational planning to anticipate weather effects and human
activities, and iv) real-time control to adapt planned decision
to the reality of the moment. These tasks are preformed
sequentially during the lifetime of a microgrid in order to
achieve near optimal operation and to maximize the benefits
arising from distributed generation.

The estimation of the system parameters is a critical task for
the optimization of the microgrid operation. The most impor-
tant parameters are the operation costs as well as the capacities
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of the different components and the battery efficiency [1]. This
process is usually carried out using measured data and is very
specific to each microgrid configuration. These parameters are
then used in the simulation model where the system operation
is modeled.

After the parameters’ estimation, it is important for the
efficient microgrid operation to incorporate in the decision
making process all the sources of uncertainty. To this end, fore-
casting techniques are deployed for the stochastic production
and consumption. Forecasts are collected several times before
the physical delivery in order to improve the accuracy of the
forecasted value in the light of new information. There is a
variety of forecasting techniques in the literature ranging from
fundamental models of consumption and renewable energy
production [2] to statistical models using measured data [3].

Following the recent advances in artificial intelligence and
the data availability, the forecasting of renewable energy
sources (RES) is proposed using artificial neural networks
(ANN) in [4], where a hybrid model combines ANNs together
with a Clear Sky Solar Radiation Model (CSRM) for the PV
forecasting. The resulting model is using weather forecasts
and real hourly photovoltaic power data. Short-term load
forecasting (STLF) for microgrids using artificial intelligence
is proposed in [5]. A three-stage architecture where first a self-
organizing map (SOM) is applied to the input. The outputs
are clustered using k-means algorithm, and finally demand
forecasting for each cluster is performed with an ANN.

Subsequently, the outputs of the forecasting models in com-
bination with the system parameters are used to compute the
optimal control actions that need to be taken. The optimization
of the control actions can be performed using the simulation
model of the microgrid. However, the nonlinearities introduced
by the system components make this problem hard to solve and
without any optimality guarantees. Therefore, it is common
in the literature to use a mixed integer linear approximation
of the system model that can be solved easy with modern
techniques and to optimality. A rolling horizon strategy is
then usually adopted where the optimization is performed
with some predefined look-ahead period [6]. Alternatively, a
model predictive control (MPC) strategy is used for achieving
economic efficiency in microgrid operation management [1].
An MPC policy is a feedback control law meant to compensate
for the realization of uncertainty.

Given the data availability, the two preceding tasks, namely
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forecasting and optimization, can be merged into one task
and a control action can be derived directly from the data
observed. To this end, reinforcement learning can be leveraged
as a methodology to deal with the uncertainty and the non-
linearities of the system components. The benefit from this
approach is twofold, i) the nonlinearities of the simulator are
accounted for in the optimization process and ii) the training
of parameters is performed in the direction of an objective
function that corresponds to the system cost instead of the
mean squared error that is in the case of forecasting methods.

A modeling framework for the control of the storage device
in the context of an interconnected microgrid is presented
in [7]. Optimal Q-values are computed using the Q-learning
method. In this setting the state and the action spaces are dis-
cretized in order to reduce the computational complexity and
the results show increased utilization of the RES production
compared to optimization methods.

Following the recent advancements in the field of Deep
Reinforcement Learning (DRL), a Deep Q-learning approach
is proposed in [8] for the control of seasonal storage in an
isolated microgrid. In this framework, a specific deep learning
structure is presented in order to extract information from
the past RES production and consumption as well as the
available forecasts. Despite the highly dimensional continuous
state space, a control policy that is able to utilize optimally
the storage is obtained.

In this paper, we present an open-source reinforcement
framework for the modeling of an off-grid microgrid for rural
electrification. Moreover, we formulate the control problem of
an isolated microgrid as a Markov Decision Process (MDP).
Due to the high-dimension continuous action space we define
a set of discrete meta-actions in a similar way to [9]. We apply
state of the art techniques for solving both the continuous and
the discrete case. We investigate how reinforcement learning
can utilize simulated data in order to learn an operation policy
that minimizes the total system cost. Two benchmarks are
selected for the performance evaluation of the obtained policy.
A rule-based control that takes decisions in a myopic manner
based only on current information and an optimization-based
controller with look-ahead is applied are considered for com-
parison purposes.

This paper is organized as follows. Section II describes
the simulation environment used for applying the methods
presented in Section IV to the problem stated in Section III.
Section V describes the case study and results. Section VI
concludes and provides avenues for future research.

II. SIMULATOR, MODELS AND REFERENCE CONTROLLERS

To apply the proposed RL methods, it is of paramount
importance to have a realistic simulator of the target environ-
ment for learning good policies before applying them to the
actual system. This section details how our simulator, avail-
able as open source1, is implemented in OpenAI gym [10].
The gym framework standardizes the way an environment is

1Available at https://github.com/bcornelusse/microgridRLsimulator.

implemented, which allows applying existing algorithm imple-
mentations to a problem. The environment is essentially made
of two methods: one method encodes the system dynamics, i.e.
how the state evolves as a function of time, actions and random
variables; the other method computes the reward associated
to each state transition. The simulator is responsible for the
detailed modeling and control of the microgrid components. It
receives as input the microgrid configuration (components size
and parameters, time series representing exogenous informa-
tion, and simulation parameters) and simulates the operation
for a predefined simulation horizon T .

A. Dynamics

The simulated system is composed of several consumption,
storage and generation devices. For simplicity, we omit the
device index in this section.

1) Consumption: The consumption of the isolated micro-
grid Cnon flexible is considered to be non-flexible, meaning that
there is a high cost associated to the energy non-served. The
consumption Cnon flexible

t at each time-step t of the simulation
is assumed to be a stochastic variable sampled from some
distribution PC according to:

Cnon flexible
t ∼ PC(·). (1)

In this paper, it is represented by real data gathered from an
off-grid microgrid.

2) Storage model: The modeling of the storage system can
become quite complex and highly-nonlinear depending of the
degree of accuracy required by each specific application. In
this paper, we use a linear ”tank” model for the simulation of
the battery since we assume that the simulation time-step size
∆t is large enough (1 hour). The dynamics of a battery are
given by

SoCt+1 = SoCt + ∆t · (ηchargeP charge
t − P discharge

t

ηdischarge ), (2)

where SoCt denotes the state of charge at each time step
t, P charge and P discharge correspond to the charging and dis-
charging power respectively and ηcharge, ηdischarge represent the
charging and discharging efficiencies of the storage system.
The charging (P charge) and discharging (P discharge) power of
the battery are assumed to be limited by a maximum charging
P and discharging P rate respectively. Accounting for the
storage system degradation, we consider that the maximum
capacity S of the storage system as well as the charging and
discharging efficiencies (ηcharge, ηdischarge) are decreasing as a
linear function of the number of cycles nt that are performed
at each time-step t. We have, ∀t ∈ T ,

SoCt, P
charge
t , P discharge

t ≥ 0 (3)

P charge
t ≤ P (4)

P discharge
t ≤ P , (5)

SoCt ≤ S (6)
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3) Steerable generator model: Steerable generation is con-
sidered any type of conventional fossil-fuel based generation
that can be dispatched at any time-step t. When a generator
is activated, it is assumed to operate at the output level P steer

t

that is ranging between the minimum stable generation P steer

and the maximum capacity P steer such that

P steer ≤ P steer
t ≤ P steer. (7)

The fuel consumption Ft related to the operation of the
generator at time t is a linear function of the power output
P steer
t curve with parameters F1, F2 given by the manufacturer.

Ft = F1 + F2 · P steer
t . (8)

The fuel cost cfuel
t accounting for the fuel price πsteer is then

given by:

cfuel
t = Ft · πfuel. (9)

4) Non-steerable generators model: The level of non-
steerable generation from renewable resources such as wind or
solar is denoted by P non steer. Similar to the non-flexible load
case it is assumed that P non steer

t at time-step t is sampled from
a probability distribution PP non steer according to:

P non steer
t ∼ PP non steer(·). (10)

In this paper, this is represented by real data gathered from an
off-grid microgrid.

5) Power balance: At each time-step t in the simulation
horizon we can compute the power balance between the in-
jections and the off-takes. The residual power PRESt resulting
from the mismatch between production and consumption is
curtailed P curt

t if its positive and shed Cshed
t if it is negative.

We can formally define the power balance as:

P non steer
t + P steer

t + P discharge
t − P charge

t − Cnon flexible
t (11)

= P curt
t − Cshed

t ,

with P curt
t , Cshed

t ≥ 0. The costs arising from the curtailment
of generation or the shedding of non-flexible loads are given
by:

ccurt
t = P curt

t · πcurt (12)

cshed
t = Cshed

t · πshed (13)

B. Rule-based controller

The Rule-based controller is a simple myopic controller that
implements a set of decision rules to determine the control
actions that need to be taken at each time-step t. It requires
only data regarding the present condition of the microgrid.
It serves as a baseline for comparison purposes, and as a
post-processing for our proposed methods as described in
Section IV. The logic that is implemented is the following:

1) First, the difference between the current total RES
production and non-flexible demand is computed:

PRESt = P non steer
t − Cnon flexible

t

Algorithm 1 Power dispatch.

1: Inputs: PRESt , yt = (b.Status, ∀b ∈ B)
2: if PRESt ≥ 0 then
3: for all b ∈ B do
4: if b.Status = ”C” then
5: P charge

t = min(PRES , P )
6: end if
7: PRESt ← PRESt − P charge

t

8: end for
9: else

10: for all b ∈ B do
11: if b.Status = ”D” then
12: P discharge

t = min(−PRES , P )
13: end if
14: PRESt ← PRESt + P discharge

t

15: if PRESt ≤ 0 then
16: P steer

t = PRESt

17: end if
18: end for
19: end if

2) If PRESt is positive, the status of every battery b ∈ B is
set to charge (“C”) and the vector yt is formed as:

yt = (“C”,∀b ∈ B)

3) If PRESt is negative, the status of every battery b ∈ B is
set to discharge (“D”) and the vector yt is formed as:

yt = (“D”,∀b ∈ B)

4) When the vector yt is fixed, the residual generation
is dispatched over devices as presented in Algorithm
1, and the decision variables related to the storage
devices (P discharge

b,t , P charge
b,t ,∀b ∈ B) and the generators

(P steer
g,t ,∀g ∈ G) are determined.

C. Optimization-based controller
The optimization-based controller serves as a baseline for

comparison to our proposed methods. This controller receives
as input all the parameters available such as the renewable pro-
duction and the electrical demand forecasts, state of charge of
the storage systems, components parameters, etc., and solves
an optimization problem in receding horizon. The objective
function to minimize aggregates curtailment, shedding and fuel
costs (the π parameters denote unit costs):

min ∆t

∑
t

( ∑
g∈Pnon steer

πcurt
g P curt

g,t +
∑

d∈Pnon flexible

πshed
d Cshed

d,t

+
∑
g∈G

πfuel
g

(
Fg,1 + Fg,2P

steer
g,t

))
. (14)

The energy balance constraint is, ∀t ∈ T :∑
g∈G

P steer
g,t +

∑
g∈Pnon steer

(P non steer
g,t − P curt

g,t ) +
∑
b∈B

P discharge
b,t

=
∑
b∈B

P charge
b,t +

∑
d∈Pnon flexible

(Csheddable
d,t − Cshed

d,t ) (15)
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The non-negative variables P charge
b,t and P discharge

b,t are bounded
above by the maximum charging P b and discharging P b
power of battery b, respectively. For each generator g, the
fraction of the non-steerable power generation P non steer

g,t that
is curtailed and the fraction of steerable generation P steer

g,t that
is activated are represented by P curt

g,t and P steer
g,t , respectively.

Binary variables kg,t are added to the model for the minimum
operating point of the steerable generators, ∀t ∈ T :

kg,tP
steer
g ≤ P steer

g,t ≤ kg,tP steer
g (16)

The transition law of the state of charge s of each battery b
is modelled as in (9). This problem is thus a mixed-integer
linear program.

III. PROBLEM STATEMENT

This section reformulates the discrete-time dynamic sys-
tem described in the previous section as a Markov Deci-
sion process. At each time-step t, the state variable st =(
(SoCb,t,∀b ∈ B), P curt

t , Cshed
t

)
∈ S contains all the relevant

information for the optimization of the system. The control
at =

(
(P discharge
b,t , P charge

b,t ,∀b ∈ B), (P steer
g,t ,∀g ∈ G)

)
∈ A ap-

plied at each time-step t contains the charging/discharging
decisions for the storage systems and the generation level
of the steerable generators. The exogenous variable ωt =(

ˆPt,g
res
, L̂t,l

)
∈ Ω corresponds to a random disturbance that

is sampled from a probability distribution ωt ∼ Pω(·). At
each time-step t the system performs transitions based on the
dynamics described in Section II-A according to:

st+1 = f (st, at, ωt) , t = 0, ..., T. (17)

Each transition generates a cost ct according to the cost
function c(st, at) ∈ R. In our problem, the cost function is:

ct = c(st, at) = cf + ccurt + csh. (18)

Given an initial state s0 and a sequence of actions
(a0, ...aT−1), the total discounted cost at the end of the control
horizon is computed as:

J (a0,...aT−1)(s0) =

T−1∑
t=0

γtc(st, at), (19)

where 0 < γ < 1 is a discount factor. A closed-loop control
policy π = {π0, ..., πT−1} ∈ Π, from the set of admissible
policies Π is a rule for selecting a control action at each time-
step t according to:

at = πt(st) ∈ A, t = 0, ..., T. (20)

The total discounted cost associated to a policy π ∈ Π is given
by:

Jπ(s0) =

T−1∑
t=0

γtc(st, π(st)). (21)

An optimal policy π∗ ∈ Π is a policy that, for any initial state
(s0), yields the actions that minimize the total discounted cost
J∗, such that:

J∗ = min
π
Jπ(s0), (22)

π∗ = argmin
π
Jπ(s0). (23)

Additionally the state-action value function Qt(st, at) associ-
ated to an optimal policy π∗ is used to characterize the quality
of taking action at at state st and then acting optimally and
is defined as:

Qt(st, at) = c(st, at) + γmin
at+1

Qt+1(st+1, at+1). (24)

The optimal action at each time-step t can be obtained using
the optimal Q-value as:

π∗t (st) = argmin
at

Qt(st, at), t = 0, ..., T. (25)

IV. METHODOLOGY

To solve the problem described in Section III, we first
assume that the control horizon T is large enough so that
a stationary policy π = {π(st), ..., π(st)} is optimal. This
assumption is necessary in order to use the two main classes
of methods for solving infinite-horizon problems namely Value
Iteration and Policy Iteration. The former provides a method-
ology for the computation of the optimal Q values so that
equation (25) can be used to infer an optimal policy. The
latter starts with an initial policy function that is updated
sequentially using estimates of the cost to go Jπ .

Due to the continuous and high dimensional nature of the
state and the action spaces of the problem, these methods
cannot be applied in their exact form. However, recent de-
velopments in the field of reinforcement learning have made
possible the design of approximate optimal policies using
function approximation techniques. In this paper, we use the
state of the art methodology from each of the two classes
of algorithms namely the Double Deep-Q networks with
prioritized experience replay (value-based) and the Proximal
Policy Optimization (policy-based).

A. Meta-actions

In this section, we elaborate on the design of a small and
discrete set of actions A′ that maps to the original action space
A. This step is necessary for the use of value-based algorithms,
as the minimization problem defined in equation (25) is hard to
solve. Each of the storage devices can be in a status yb,t ∈ Y of
charging, discharging or idling where Y = {“C”, “D”, “I”}.
We define a discrete action a′t ∈ A′ that can take values from
all the possible combinations of yb,t as:

a′t = (yb,t,∀b ∈ B) ∈ Y |B| (26)

Defining the action space in this way allows the use of
the dispatch rule defined in algorithm 1 to obtain the control
actions at.
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B. Double Deep Q Networks with prioritized experience re-
play

This algorithm combines the Q-learning algorithm [11] with
the use of deep neural networks for the representation of the
optimal Q-function, referred to as deep q networks (DQN).
Let Q(st, a

′
t; θ) denote a parametric approximation of the

state-action value function Q with parameters θ. After each
transition a quadruple (st, a

′
t, ct, st+1) is collected and the

parameters θ are updated according to:

θt+1 = θt − α · (Y Q −Q(st, a
′
t; θ)) · ∇Q(st, a

′
t; θ), (27)

where 0 < α < 1 is a step size and Y Q is the update target
defined as:

Y Q ≡ ct + γmin
a′t+1

Q(st+1, a
′
t+1; θ). (28)

The DQN algorithm as proposed in [12] additionally makes
use of a target network with parameters and experience replay.
The target network, with parameters θ−, is used for the
generation of the targets Y DQN as shown in equation (29).
These targets are then used in equation (27) for the update
of parameters θ of the main network. The parameters θ− are
only updated every n time-steps. With experience replay a
batch of transitions is sampled from a buffer for updating the
parameters θ. Both methods are shown to improve dramatically
stability issues during the training process.

Y DQN ≡ ct + γmin
a′t+1

Q(st+1, a
′
t+1; θ−). (29)

The double Q-learning algorithm is an extension of DQN
proposed in [13] to address issues of under-overestimation of
the Q function. The target Y DDQN used for the update in
equation (27) is computed as:

Y DDQN ≡ ct + γQ(st+1,min
a′t+1

Q(st+1, a
′
t+1; θ); θ−). (30)

In this approach the action is selected according to the main
weights θ, while the second set of weights θ− is used to fairly
evaluate the value of the policy. Finally, prioritized experience
replay is used instead of sampling the transitions uniformly as
proposed in [14]. The motivation originates from the fact that
important transitions should be visited more frequently.

C. Proximal policy optimization

Proximal policy optimization (PPO) [15] belongs to the
family of policy gradient methods and can be used with both
discrete and continuous action spaces. In the vanilla actor-
critic method [16] a parametrized stochastic policy function
π(at|st; θ) with parameters θ is directly optimized towards the
objective defined in equation (23). After the collection of N
full trajectories τ = (s0,i, a0,i, c0,i, st+1,i, ..., sT,i) a gradient
step is performed for the update of the parameters θ as:

θt+1 = θt − α∇Jπ, (31)

with

∇Jπ = Eτ1,...,τN

{
T∑
t=0

∇ log π(at,k|st,k; θ)Âπ(st,k, at,k)

}
,

(32)

where Â(st, at) is an estimator of the advantage function. The
advantage function represents how much better than average
an action at is and is commonly represented as:

Âπ(st,k, at,k) = c(st,k, at,k) + γĴπφ (st+1,k)− Ĵπφ (st+1,k),
(33)

It is empirically shown that the vanilla actor-critic method
often leads to destructively large policy updates. To this
end, PPO uses importance sampling and a clipping of the
optimization objective in order to constrain the new policy
in case the update is too large. Let r(θ) denote the probability
ratio,

r(θ) =
π(at,k|st,k; θnew)

π(at|st; θold)
.

The clipped objective proposed in [15] can be written as:

JClip = E
{

max(r(θ)Âπ, clip(r(θ), 1− ε, 1 + ε))
}

(34)

The optimal policy is derived by performing multiple steps of
stochastic gradient descent on this objective. While standard
policy gradient methods perform one gradient update per data
sample, the PPO algorithm enables multiple epochs of mini-
batch updates resulting in better sample efficiency.

V. CASE STUDY

The evaluation of the developed methodology is performed
using empirical data measured by the off-grid micro-grid sys-
tem of the village “El Espino” (-19.188, -63.560), in Bolivia,
installed in September 2015 and composed of 60kW of PV
panels, 464kWh of battery storage and a 58 kW generator. The
system serves a community of 128 households, a hospital and a
school, as well as the public lighting service. A comprehensive
description of the system and of the data is available in [17].
Aggregate electric load data is available as an indirect measure,
i.e. as the sum of direct measurements retrieved from PV
arrays, Gen-Set and batteries by means of smart meters. The
parameters used for this specific microgrid configuration are
given in Table I. It is important to note that the minimum stable
generation level is rather high due to local regulations: the very
low diesel price is due to state subsidy, but the state restricts
the operation of all the conventional generators below 80% of
their nominal capacity in order to operate close to the optimal
efficiency. This restriction imposes a large discontinuity in
the microgrid operation and is further discussed in the results
section.

The following protocol was carried out for the training and
the evaluation of the proposed algorithms. For the training
process we adopted a rolling strategy as it would happen in
practice. More specifically, the two policies were trained in
the the first two months of 2016 and were tested in the third
month. Then the third month became part of the training set
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TABLE I: Input parameters.
S 464 kWh
P , P 60 kW
ηcharge, ηdischarge 95 %
πfuel 1 C/kWh
πcurt 10.5 C/kWh
πlost load 100 C/kWh
∆t 1 h
P non steer 60 kW
P steer 58 kW
P steer 46.4 kW

and after a second round of training the new policy was tested
on the fourth month. This process was carried out until the
dataset was exhausted. Finally we ran a separate experiment
for which the training set considered was the full year of 2016
and we selected as a test set the first 7 months of 2017.

The performance of the algorithms is compared against the
two benchmarks described in Section II. Three variances of
the optimization controller were considered for comparison
purposes. First, an optimization controller with perfect knowl-
edge and 12 periods of look-ahead is considered in order to
obtain a good approximation for the lower bound of the control
problem. Second, an optimization controller with 12 periods of
look-ahead and additional noise around the exact value of the
stochastic variables. Third, a myopic optimization controller
with no period of look-ahead was considered.

The results of the described protocol are presented in Figure
1. The total cost of each strategy for each testing period
is shown, so that a comparison can be drawn. The PPO
algorithm was significantly under-performing at the time of
the experiment and therefore was omitted. Initially, we observe
that in many cases the DQN policy is performing very close to
the optimization controllers. Especially in the case of the April
2017 the DQN policy manages to obtain lower costs than the
noisy forecast and the no look-ahead optimization controllers.
The DQN policy is also found to perform better than the rule
based controller in most cases. This is due to the fact that the
DQN algorithm manages to anticipate periods of high energy
curtailment or load shedding and manages to utilize the storage
device accordingly.

Finally, in the last case where the performance of the
strategies is evaluated in a longer period the results show
that the DQN policy does not manage to outperform the
optimization-based benchmarks. This is mainly due to the
limitation introduced by the design of the meta-actions. In that
respect a set of more elaborate meta-actions could be used to
reduce further the cost.

VI. CONCLUSION

In this paper, we investigate whether data driven approaches
can be used effectively for the control of a microgrid. First,
an open-source reinforcement framework for the modeling of
an off-grid microgrid for rural electrification is presented. The
control problem of an isolated microgrid is casted as a Markov
Decision Process (MDP). We deploy state of the art techniques
for optimizing the operation of the system. We investigate how

data coming from simulation can be used to learn an operation
policy that minimizes the total system cost.

An experimental protocol was designed in order to train and
test the proposed algorithms. Two benchmarks are selected
for the performance evaluation of the obtained policy. A
rule-based control that takes decisions in a myopic manner
based only on current information and an optimization-based
controller with look-ahead is applied are considered for com-
parison purposes.

The results indicate that the DQN policy was able to
outperform in most test cases the myopic rule-based controller.
Moreover, the DQN policy demonstrated results similar to the
optimization controller with forecast. Further research should
be directed towards the design of more elaborate meta-actions
that manage to map better into the original action space.
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NOTATION

Set and indices
• b battery index
• g conventional generator index
• t time period index
• B set of all batteries
• G set of all conventional generators
• Pnon steer set of all non steerable generators
• Pnon flexible set of all non flexible loads
• A action space
• S state space
• T set of periods in the control horizon

Parameters

• P , P maximum charge and discharge rate (kW)
• P non steer non steerable generation (kW)
• P steer steerable generator capacity (kW)
• P steer minimum steerable generation (kW)
• Sinit initial state of charge (kWh)
• S, S maximum and minimum battery capacity (kWh)
• ∆t simulation and control period duration (h)
• ηcharge, ηdischarge charge and discharge efficiency (%)
• πcurt curtailment cost (C/kWh)
• πfuel fuel cost (C/kWh)
• πlost load lost load cost (C/kWh)

Variables

• a control actions vector
• P charge, P discharge fraction of the maximum charging and

discharging power [0,1]
• Cshed, load shed
• P curt generation curtailed
• P steer generation activated
• P non steer non-steerable generation
• Cnon flexible non-flexible load
• k binary variable
• cfuel fuel cost (C)
• ccurt curtailment cost (C)
• cshed lost load cost (C)
• SoC state of charge of battery (kWh)
• P charge charged energy of battery (kWh)
• P discharge discharged energy of battery (kWh)
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