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Abstract—Hierarchical microgrid control levels range from
distributed device level controllers that run at a high frequency
to centralized controllers optimizing market integration that run
much less frequently. Centralized controllers are often subdivided
into operational planning controllers that optimize decisions over
a time horizon of one or several days, and real-time optimization
controllers that deal with actions in the current market period.
The coordination of these levels is of paramount importance.
In this paper, we propose a value function-based approach as
a way to propagate information from operational planning to
real-time optimization. We apply this method to an environment
where operational planning, using day-ahead forecasts, optimizes
at a market period resolution the decisions to minimize the total
energy cost and revenues, the peak consumption and injection-
related costs, and plans for reserve requirements. While real-
time optimization copes with the forecast errors and yields
implementable actions based on real-time measurements. The
approach is compared to a rule-based controller on three use
cases, and its sensitivity to forecast error is assessed.

Index Terms—Hierarchical control, microgrid, optimization

I. INTRODUCTION

The hierarchical microgrid control levels divide a global
microgrid control problem in time and space [1]. Control levels
range from distributed device level controllers that run at a
high frequency to centralized controllers optimizing market
integration that run much less frequently. For computation
time reasons, centralized controllers are often subdivided into
operational planning controllers that optimize decisions over
a time horizon of one or several days but with a market
period resolution, e.g., 15 minutes, and real-time optimization
controllers that deal with actions within the current market
period. The coordination of these two levels is of paramount
importance to achieve the safest and most profitable opera-
tional management of microgrids. Microgrid control and man-
agement can be achieved in several ways. Control techniques
and the principles of energy-storage systems are summarized
in [1]. A classification of microgrid control strategies into
primary, secondary, and tertiary levels is done in [2]. The two-
level approach has been intensively studied. A double-layer
coordinated control approach, consisting of the schedule layer
and the dispatch layer is adopted in [3]. The schedule layer
provides an economical operation scheme including state and
power of controllable units based on the look-ahead multi-step
optimization, while the dispatch layer follows the schedule

layer by considering power flow and voltage limits. A two-
stage dispatch strategy for grid-connected systems is discussed
in [4], where the first stage deals with the day-ahead schedule,
optimizing capital and operational cost, while the lower level
handles the rescheduling of the units for few hours ahead with
a time resolution of 15 min. A two-stage control strategy for
a PV BESS-ICE (Internal Combustion Engine) microgrid is
implemented in [5]. Discrete Dynamic Programming is used
in the first layer, while the second layer problem is posed as
a Boundary Value Problem. An approach with a high-level
deterministic optimizer running at a slow timescale, 15 min,
coupled to a low-level stochastic controller running at higher
frequency, 1 min, is studied in [6]. A two-layer predictive
energy management system for microgrids with hybrid energy
storage systems consisting of batteries and supercapacitors is
considered in [7]. This approach incorporates the degrada-
tion costs of the hybrid energy storage systems. A practical
Energy Management System for isolated microgrid which
considers the operational constraints of Distributed Energy
Resources, active-reactive power balance, unbalanced system
configuration and loading, and voltage-dependent loads is
studied in [8]. A two-layer mixed-integer linear programming
predictive control strategy was implemented and tested in
simulation and experimentally in [9], and [10] implemented
a two-layer predictive management strategy for an off-grid
hybrid microgrid featuring controllable and non-controllable
generation units and a storage system.

In this paper, we propose a two-layer approach with a value
function to propagate information from operational planning
to real-time optimization. The value function-based approach
shares some similarities with the coordination scheme pro-
posed in [11], which is based on stochastic dual dynamic
programming. This paper brings new contributions:

• The approach is tested by accounting for forecasting
errors and high-resolution data monitored on-site corre-
sponding to a "real-life" case.

• The value function approach allows to deal with indeter-
minacy issues. When there are several optimal solutions
to the upper-level problem, this is accounted for in the
lower level part, and a bias term can be added to favor
one type of behavior over another, e.g., charge early.

• This methodology is fully compatible with the energy
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markets as it can deal with imbalance, reserve, and
dynamic selling/purchasing prices.

This paper reports results on an industrial microgrid capable
of on/off grid operation. Generation and consumption fore-
casts are based on weather forecasts obtained with the MAR
model [12]. It is organized as follows. Section II formulates
the problem in an abstract manner. Section III introduces
the novel two-level value function-based approach and the
assumptions made. Section IV describes the numerical tests.
Section V reports the results. Conclusions are drawn in Section
VI. Section VIII summarizes the notation. The methodology
used for forecasting is reported as an annex.

II. PROBLEM STATEMENT

A global microgrid control problem can be defined, for
a given microgrid design and configuration, as operating a
microgrid safely and in an economically efficient manner, by
harvesting as much renewable energy as possible, operating
the grid efficiently, optimizing the service to the demand side,
and optimizing other side goals. We refine this definition below
and start by making a few assumptions.

A. Assumptions

In this paper, the control optimizes economical criteria,
which are only related to active power. All devices are
supposed to be connected to the same electrical bus, which can
be connected or disconnected from a public grid permanently
or dynamically. Device-level controllers offer an interface
to communicate their operating point and constraints, e.g.,
maximum charge power as a function of the current state,
and implement control decisions to reach power set-points.
Fast load-frequency control, islanding management, as well
as reactive power control, are not in scope. The microgrid is
a price taker in energy and reserve markets.

B. Formulation

Abstractly, a microgrid optimization problem can be formu-
lated as follows

min
a

∑
t∈Tl

c(at, st, ωt) (1a)

s.t. ∀t ∈ Tl, st+∆t = f(at, st, ωt,∆t), (1b)
st ∈ St. (1c)

A controller has to return a set of actions at = (amt , a
d
t ) at

any time t over the life of the microgrid (Tl). Actions should
be taken as frequently as possible to cope with the economic
impact of the variability of the demand and generation sides,
but not too often to let transients vanish, e.g., every few
seconds. The time delta between action at and the next action
taken is denoted by ∆t, and is not necessarily constant. Some
of these actions are purely market-related amt , while other
actions are communicated as set-points to the devices of the
microgrid adt . The state st = (smt , s

d
t ) of the microgrid at time

t is thus also made of two parts: sdt represents the state of the
devices, such as the state of charge of a storage system or the
state of a flexible load, while smt gathers information related to

the current market position, such as the nominated net position
of the microgrid over the next market periods. The cost
function c gathers all the economical criteria considered. The
transition function f describes the physical and net position
evolution of the system. At time instants t ∈ {∆τ , 2∆τ , . . .},
with ∆τ the market period, some costs are incurred based on
the value of some state variables, which are then reset for
the next market period. This problem is very difficult to solve
since the evolution of the system is uncertain, actions have
long-term consequences, and are both discrete and continuous.
Furthermore, although functions f and c are assumed time-
invariant, they are generally non-convex and parameterized
with stochastic variables ωt.

III. PROPOSED METHOD

In practice, solving the microgrid optimization problem
above amounts, at every time t, to forecasting the stochastic
variables ωTl(t), then solving the problem1

a?Tl(t) = arg min
∑

t′∈Tl(t)

c(at′ , st′ , ω̂t′) (2a)

s.t. ∀t′ ∈ Tl(t), st′+∆t′ = f(at′ , st′ , ω̂t′ ,∆t
′), (2b)

st′ ∈ S′t, (2c)

and applying a?t (potentially changing am,?t at some specific
moments only). As forecasts are valid only for a relatively
near future and optimizing over a long time horizon would
anyway be incompatible with real-time operation, this prob-
lem is approximated by cropping the lookahead horizon to
Ta(t) ⊂ Tl(t). However, market decisions must be refreshed
much less frequently than set-points. We thus propose to
further decompose the problem in an operational planning
problem (OPP) for T ma (t) that computes market decisions

am,?Tma (t) = arg min
∑

t′∈T ma (t)

cm(amt′ , st′ , ω̂t′) (3a)

s.t. ∀t′ ∈ T ma (t), st′+∆τ = fm(amt′ , st′ , ω̂t′ ,∆τ) (3b)
st′ ∈ St′ , (3c)

and a real-time problem (RTP) that computes set-points for
time t

ad,?t = arg min cd(adt , st, ω̂t) + vτ(t)(sτ(t)) (4a)

s.t. sτ(t) = fd(adt , st, ω̂t, τ(t)− t) (4b)
sτ(t) ∈ Sτ(t), (4c)

with c(at, st, wt) = cm(amt , st, wt) + cd(adt , st, ωt). The
function vt is the cost-to-go as a function of the state of the
system at the end of the ongoing market period, it regularizes
decisions of RTP to account for the longer-term evolution
of the system. We detail hereunder how we obtain vt. An
overview of the approach is depicted in Figure 1.

1Which is here expressed as a deterministic problem for simplicity, but
should be treated as a stochastic problem in practice.
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Fig. 1: Hierarchical control procedure illustration.

A. Computing the cost-to-go function vτ(t)

The function vt represents the optimal value of (3) as a
function of the initial state sτ(t) of this problem. If we make
the assumption that (3) is modeled as a linear program, the
function vτ(t) is thus convex and piecewise linear. Every
evaluation of (3) with the additional constraint2

sτ(t) = s′ ⊥ µ (5)

yields the value vτ(t)(s
′) and a supporting inequality (a cut)

vτ(t)(s) ≥ vτ(t)(s
′) + µT s. (6)

The algorithm to approximate vτ(t)(s
′) works as follows:

1) estimate the domain of vτ(t), i.e., the range of states
reachable at time τ(t) and the most probable state that
will be reached s?τ(t);

2) evaluate vτ(t)(s
?
τ(t)) and the associated µ?;

3) repeat step 2 for other state values until all regions of
vτ(t) are explored.

Note that if the state is of dimension one and (3) is a linear
program, simplex basis validity information can be used to
determine for which part of the domain of vτ(t) the current
cut is tight, else a methodology such as proposed in [13] can
be used.

B. OPP formulation

The OPP objective function implemented for the case study
is

JOPTma (t) =
∑

t′∈Tma (t)

(
COPt′ +DOP

t′

)
(7)

with Operational Planner (OP) the name of this planer. T ma (t)
is composed of 96 values with ∆τ = 15 minutes and Ta = 24
hours. COPt′ models the immediate costs and DOP

t′ the delayed
costs at t′. COPt′ takes into account different revenues and costs
related to energy flows: the costs of shed demand, steered and
non steered generation, the revenues from selling energy to

2The ⊥ µ notation means that µ is the dual variable of the constraint.

the grid, the costs of purchasing energy from the grid and the
costs for using storage

COPt′ =
∑

t′∈Tma (t)

( ∑
d∈Dshe

∆τπ
she
d,t′C

she
d,t′a

she
d,t′

+
∑
d∈Dste

∆τπ
ste
d,t′P

ste
d,t′a

ste
d,t′

+
∑
d∈Dnst

∆τπ
nst
d,t′P

nst
d,t′a

nst
d,t′

+
∑

d∈Dsto
∆τγ

sto
d

(
P dη

cha
d acha

d,t′ +
P d
ηdis
d

adis
d,t′

)
− πe

t′e
gri
t′ + πi

t′i
gri
t′

)
. (8)

DOP
t′ is composed of the peak cost and symmetric reserve

revenue

DOP
t′ = πpδpt′ − πs

OP r
sym
t′ , (9)

δpt′ is the peak difference between the previous maximum
historic peak ph and the current peak within the market period
t′. rsym

t′ is the symmetric reserve provided to the grid within
the current market period t′.

C. OP constraints

The first set of constraints defines bounds on state and action
variables, ∀t′ ∈ T ma (t)

akd,t′ ≤ 1 ∀d ∈ Dk,∀k ∈ {ste, she, nst} (10a)

acha
d,t′ ≤ 1 ∀d ∈ Dsto (10b)

adis
d,t′ ≤ 1 ∀d ∈ Dsto (10c)

Sd ≤ sd,t′ ≤ Sd ∀d ∈ Dsto. (10d)

The energy flows are constrained, ∀t′ ∈ T ma (t), by

(egri
t′ − i

gri
t′ )/∆τ −

∑
d∈Dnst

(1− anst)P nst
d,t′ +

∑
d∈Dste

aste
d,t′P

ste
d,t′

+
∑
d∈Dnfl

Cnfl
d,t′ +

∑
d∈Dshe

(1− ashe
d,t′)C

she
d,t′

+
∑

d∈Dsto

(
P da

cha
d,t′ − P dadis

d,t′
)

= 0 (11a)

(egri
t′ − i

gri
t′ )/∆τ ≤ Ecap

t′ (11b)

(igri
t′ − e

gri
t′ )/∆τ ≤ Icap

t′ . (11c)

The dynamics of the state of charge are, ∀d ∈ Dsto

sd,1 −∆τ

(
P dη

cha
d acha

d,1 −
P d
ηdis
d

adis
d,1

)
= Sinit

d (12a)

sd,t′ − sd,t′−∆τ −∆τ

(
P dη

cha
d acha

d,t′ −
P d
ηdis
d

adis
d,t′

)
= 0

,∀t′ ∈ T ma (t) (12b)

sd,τ(t+Ta) = Send
d . (12c)
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The set of constraints related to the peak power ∀t′ ∈ T ma (t)

(igri
t′ − e

gri
t′ )/∆τ ≤ pt′ (13a)
−δpt′ ≤ 0 (13b)
−δpt′ ≤ −(pt′ − ph). (13c)

The last constraints define symmetric reserve ∀t′ ∈ T ma (t)

rs+d,t′ ≤
(sd,t′ − Sd) ηdis

d

∆τ
∀d ∈ Dsto (14a)

rs+d,t′ ≤ P d(1− a
dis
d,t′) ∀d ∈ Dsto (14b)

rs−d,t′ ≤
(
Sd − sd,t′

)
ηcha
d ∆τ

∀d ∈ Dsto (14c)

rs−d,t′ ≤ P d(1− a
cha
d,t′) ∀d ∈ Dsto (14d)

rsym, OP ≤
∑

d∈Dsto
rs+d,t′ +

∑
d∈Dste

P ste
d,t′(1− aste

d,t′)

+
∑
d∈Dnst

P nst
d,t′(1− anst) (14e)

+
∑
d∈Dshe

Cshe
d,t′(1− ashe

d,t′)

rsym, OP ≤
∑

d∈Dsto
rs−d,t′ +

∑
d∈Dste

P ste
d,t′a

ste
d,t′

+
∑
d∈Dnst

P nst
d,t′a

nst +
∑
d∈Dshe

Cshe
d,t′a

she
d,t′ . (14f)

D. RTP formulation

The RTP objective function implemented for the case study
is

JRTOt = CRTOt +DRTO
t + vτ(t)(sτ(t)) (15)

with Real-Time Optimizer (RTO) the name of this controller.
CRTOt models the immediate costs, DRTO

t the delayed costs
and vτ(t)(sτ(t)) the cost-to-go function of the state of the
system at time t within a current market period. CRTOt is the
same as COPt′ by replacing t′ by t, ∆τ by ∆t and considering
only one period of time t. DRTO

t is composed of the peak
cost and symmetric reserve penalty costs

DRTO
t = πpδpτ(t−∆τ ),τ(t) + sTSOt πs

RTO∆rsym, (16)

δpτ(t−∆τ ),τ(t) is the peak difference between the previous
maximum historic peak ph and the current peak within the
market period computed by RTO. The difference with OP
relies on its computation as at t the market period is not
finished. Thus the peak within this market period is computed
by adding the peak from the beginning of the market period
to t and the one resulting from the actions taken from t to the
end of the market period. ∆rsym is the difference between the
symmetric reserve computed by OP and the current reserve
within the market period computed by RTO. sTSOt is the
reserve activation signal to activate the tertiary symmetric
reserve. It is set by the TSO, 0 if activated, else 1. The
activation occurs at the beginning of the next market period.

E. RTO constraints

The set of constraints that defines the bounds on state and
action variables and the energy flows are the same as the OP
(10) and (11) by replacing t′ by t, ∆τ by ∆t and considering
only one period of time t. The next constraint describes the
dynamics of the state of charge ∀d ∈ Dsto and ∀t ∈ Ti(t)

sd,τ(t) −∆t

(
P dη

cha
d acha

d,t −
P d
ηdis
d

adis
d,t

)
= Sinit

d,t . (17)

The set of constraints related to the peak power ∀t ∈ Ti(t)

(igri
t − e

gri
t )/∆t ≤ pt,τ(t) (18a)
−δpτ(t) ≤ 0 (18b)
−δpτ(t) ≤ −(pτ(t−∆τ ),τ(t) − ph) (18c)

pτ(t−∆τ ),τ(t) = βpτ(t−∆τ ),t + (1− β)pt,τ(t) (18d)

with β = 1−∆t/∆τ . The last set of constraints defining the
symmetric reserve are the same as the OP (14) by replacing
t′ by t, rsym, OP by rsym, RTO and adding ∀t ∈ Ti(t)

−∆rsym ≤ 0 (19a)

−∆rsym ≤ −(rsym, OP − rsym, RTO). (19b)

IV. TEST DESCRIPTION

Our case study is based on the MiRIS microgrid located
at the John Cockerill Group’s international headquarters in
Seraing, Belgium3. It is composed of PV, several energy
storage devices, and a non-sheddable load. The load and
PV data we use come from on-site monitoring. All data,
including the weather forecasts, are available on the Kaggle
platform4. The case study consists of comparing RTO-OP to
a Rule-Based Controller (RBC) for three configurations of the
installed PV capacity, cf. Table I. The RBC prioritizes the use
of PV production for the supply of the electrical demand. If
the microgrid is facing a long position, it charges the battery.
And if this one is fully charged it exports to the main grid.
If the microgrid is facing a short position it prioritizes the
use of the battery to supply the demand. And if this one is
fully discharged it imports from the main grid. This controller
does not take into account any future information, e.g., PV,
consumption forecasts, energy prices, or market information
such as the peak of the symmetric reserve. Case 3 is the result
of a sizing study that defined the optimal device sizes given
the PV and consumption data. The sizing methodology used
is described in [14].

Figure 2 shows the PV & consumption data over the
simulation period: from May 20, 2019 to June 16, 2019. The
selling price πe is constant, the purchasing price is composed
of a day πi

d and night prices πi
n. Day prices apply from 5

a.m. to 8 p.m. (UTC) during the weekdays and night prices
apply from 8 p.m. to 5 a.m. during weekdays and the entire
weekend. The peak mechanism is taken into account with a
constant peak price πp and an initial maximum historic peak

3https://johncockerill.com/fr/energy/stockage-denergie/
4https://www.kaggle.com/jonathandumas/liege-microgrid-open-data
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TABLE I: Case studies parameters and data statistics.

Case PVp PV PVmax PVmin PVstd

1 400 61 256 0 72

2 875 133 561 0 157

3 1750 267 1122 0 314

Case Cp C Cmax Cmin Cstd

1 - 3 1000 153 390 68 72

Case Sp S, S P , P ηcha, ηdis Sinit

1 - 3 1350 1350, 0 1350, 1350 0.95, 0.95 100

Case ph, πp Icap Ecap πi
d, πi

n πe

1 - 3 150, 40 1500 1500 0.2, 0.12 0.035

ph. Storage systems are initially fully charged. The PV and
consumption data have a 1-second resolution, meaning the
RTO could compute its optimization problem each five to ten
seconds in operational mode. CPLEX 12.9 is used to solve
all the optimization problems, on an Intel Core i7-8700 3.20
GHz based computer with 12 threads and 32 GB of RAM. The
average computation time per optimization problem composed
of the OP and RTO is a few seconds. However, to maintain a
reasonable simulation time RTO is called every minute. The
dataset is composed of 28 days with an average computation
time of two hours to solve 1440 optimization problems per
day, with one-minute resolution, leading to a total of two days
for the entire dataset. The OP computes a planning quarterly
corresponding to the Belgian market period. The computation
time of the RTO on a regular computer is around a few seconds
and the OP around twenty seconds. In total, the simulation
computation time is up to a few hours. The OP computes
quarterly planning based on PV and consumption twenty-four
ahead forecasts. The weather-based forecast methodology is
described in detail in Annex IX. Two "classic" deterministic
techniques are implemented, a Recurrent Neural Network
(RNN) with the Keras Python library [15] and a Gradient
Boosting Regression (GBR) with the Scikit-learn Python li-
brary [16]. These models use as input the weather forecasts
provided by the Laboratory of Climatology of the Liège
University, based on the MAR regional climate model [12].
It is an atmosphere model designed for meteorological and
climatic research, used for a wide range of applications, from
km-scale process studies to continental-scale multi-decade
simulations. To estimate the impact of the PV and consumption
forecast errors on the controllers, the simulation is performed
with the OP having access to the PV and consumption future
values (RTO-OP?). Then, the simulation is performed with
the symmetric reserve mechanisms to cope with the forecast
errors. A constant symmetric reserve price πs

OP for the OP
and a penalty reserve πs

RTO for the RTO are set to 20 (e/
kW).
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Fig. 2: Top: PV & consumption simulation data. Bottom:
zoom on June 12, 2019.

TABLE II: Results without symmetric reserve.

Case 1 cE cp ct ∆p Itot Etot

RBC 10.13 6.68 16.81 167 61 0

RTO-OPRNN 10.37 3.62 13.99 91 64 1

RTO-OPGBR 10.25 5.27 15.53 132 63 1

RTO-OP? 10.24 0.99 11.23 25 64 1

Case 2 cE cp ct ∆p Itot Etot

RBC 3.19 4.85 8.04 121 22 7

RTO-OPRNN 4.78 2.87 7.65 72 31 15

RTO-OPGBR 4.30 4.90 9.2 123 28 13

RTO-OP? 4.06 0 4.06 0 26 10

Case 3 cE cp ct ∆p Itot Etot

RBC -2.13 4.12 1.99 105 3 77

RTO-OPRNN -1.66 4.12 2.46 105 7 80

RTO-OPGBR -1.67 4.23 2.56 106 7 81

RTO-OP? -1.90 0 0 0 5 79

V. NUMERICAL RESULTS

A. No symmetric reserve

Table II provides the simulation results without taking into
account the symmetric reserve. The smaller the PV installed
capacity the higher the peak and energy costs. The RTO-OP?

provides the minimal peak cost whereas the RBC provides the
minimal energy cost on all cases. However, RTO-OP? achieves
the minimal total cost, composed of the energy and peak
costs. This simulation illustrates the impact of the forecasts on
the RTO-OP behavior. The RNN forecaster provides the best
results but the RTO-OPRNN is still a long way to manage
the peak as RTO-OP? due to the forecasting errors. The peak
cost strongly penalizes the benefits as it applies on all the year
ahead once it has been reached.

In case 3, all the controllers except RTO-OP? reached
the maximum peak on June 12, 2019 around 10:30 a.m. as
shown on Figure 4. Figure 2 shows a sudden drop in the PV
production around 10 a.m. that is not accurately forecasted
by the RNN and GBR forecasters as shown in Figure 3. This
prediction leads to a non accurate planning of OP. Thus, the
RTO cannot anticipate this drop and has to import at the
last minute energy to balance the microgrid. Figure 5 shows
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Fig. 3: Case 3 PV forecast on June 12, 2019, 06h00 UTC.
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Fig. 4: Case 1 (top), 2 (middle), 3 (bottom) cumulative peak
costs.

the controllers behavior on June 12, 2019 where the peak is
reached. In case 2 all controllers reached the same peak as
in case 3 except RTO-OPRNN that reached a smaller one on
June 5, 2019. The forecasts accuracy explains this behavior as
in case 3. Finally in case 1, each controller reached a different
peak. The smallest one is achieved by the RTO-OP?, followed
by the RTO-OPRNN . These cases show that the RTO-OP
controller optimizes PV-storage usage, and thus requires less
installed PV capacity for a given demand level. This result
was expected as the peak management is not achieved by the
RBC and becomes critical when the PV production is smaller
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Fig. 5: Case 3 SOC (top) and net export power (bottom) on
June 12, 2019.

TABLE III: Results with symmetric reserve.

Case 1 cE cp ct ∆p Itot Etot

RTO-OPRNN 10.50 2.12 12.62 53 65 3

RTO-OP? 10.47 2.75 13.22 69 65 2

Case 2 cE cp ct ∆p Itot Etot

RTO-OPRNN 5.33 0.04 5.37 1 41 27

RTO-OP? 4.78 0.99 5.77 25 35 20

Case 3 cE cp ct ∆p Itot Etot

RTO-OPRNN -0.04 0 -0.04 0 24 99

RTO-OP? -0.15 0 -0.15 0 23.2 98
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Fig. 6: Case 3 SOC comparison for RTO-OPRNN with and
without symmetric reserve.

than the consumption. This simulation also demonstrates the
forecast accuracy impact on the RTO-OP behavior.

B. Results with symmetric reserve

Table III provides the simulation results by taking into
account the symmetric reserve. Figure 6 depicts on case 3 the
behavior differences between RTO-OPRNN without and with
symmetric reserve. Figures 7 and 8 show the SOC and peaks
costs evolution of case 2 & 1. The controller tends to maintain
a storage level that allows RTO-OPRNN to better cope with
forecast error. Indeed for case 3, there is no more peak reached
by RTO-OPRNN , only 1 kW for case 2 and it has been almost
divided by two for case 1. However, this behavior tends to
increase the energy cost if the PV production is important in
comparison with the consumption, such as in case 3. Indeed,
the controller will tend to store more energy in the battery
instead of exporting it. RTO-OP? did not perform better with
the symmetric reserve. The symmetric reserve competes with
the peak management and the RTO-OP? tends to not discharge
completely the battery even if it is required to avoid a peak. In
case 2, the peak is reached on June 12, 2019 around 08:00.
The controller could have avoided it by totally discharging the
battery but did not maintain the reserve level. This is the same
behavior in case 1 where the peak could have been limited if
all the battery was discharged. There is an economic trade-off
to reach to manage the peak and the reserve simultaneously
depending on the valorization or not on the market of the
symmetric reserve. The reserve can also be valorized internally
to cope with non or difficult forecastable events such as a
sudden drop of the export or import limits due to loss of
equipment or grid congestion.
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Fig. 7: Case 1 (top) and 2 (bottom) cumulative peak costs.
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Fig. 8: Case 1 (top) and 2 (bottom) SOC.

VI. CONCLUSION

A two-level value function-based approach was introduced
as a solution method for a multi-resolution microgrid optimiza-
tion problem. The value function computed by the operational
planner based on PV and consumption forecasts allows coping
with the forecasting uncertainties. The real-time controller
solves an entire optimization problem including the future in-
formation propagated by the value function. This approach has
been tested on the MiRIS microgrid case study with PV and
consumption data monitored on-site. The results demonstrate
the efficiency of this method to manage the peak in comparison
with a Rule-Based Controller. This test case is completely
reproducible as all the data used are open, PV, consumption
monitored and forecasted including the weather forecasts. The
proposed approach can be extended in several ways. The
deterministic formulation of the operational planning problem
could be extended to a stochastic formulation, to cope with
probabilistic forecasts. Balancing market mechanisms could
be introduced. Finally, the approach could be extended to a
community by considering several entities inside the micro-
grid.
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VIII. NOTATION

Set and indices
• d index of a device
• t, t′ indexes of a RTO and OP time periods
• τ(t) beginning of the next market period at time t
• Ti(t) = {t, t+ ∆t, ..., t+ Ti} set of RTO time periods
• T ma (t) = {τ(t), τ(t) + ∆τ, ..., τ(t+Ta)} set of OP time

periods
• Ta, Tl time durations, with Ta � Tl
• Dk set of non-flexible loads (k = nfl), sheddable loads

(k = she), steerable generators (k = ste), non-steerable
generators (k = nst), storage devices (k = sto)

Parameters
• ∆t time delta between t and the market period (minutes)
• ∆τ market period (minutes)
• HT forecasting horizon (hours)
• ω̂ forecast of a random vector ω
• ηcha, ηdis charge and discharge efficiencies (%)
• P , P maximum charging and discharging powers (kW)
• Cnfl

d,t non-flexible power consumption (kW)
• Cshe

d,t flexible power consumption (kW)
• Sinit

d,t initial state of charge of battery d (kWh)
• ph maximum peak over the last twelve months (kW)
• πp yearly peak power cost (e/kW)
• πs

OP unitary revenue for providing reserve (e/kW)
• πs

RTO unitary RTO symmetric reserve penalty (e/kW)
• πkd,t cost of load shedding (k = she), generating energy

(k = ste), curtailing generation (k = nst) (e/kWh)
• γsto

d,t fee to use the battery d (e/kWh)
• πe

t , π
i
t energy prices of export and import (e/kWh)

• πi
d, πi

n energy prices of day and night imports (e/kWh)
• Icap, Ecap maximum import and export limits (kW)
• PVp, Cp PV and consumption capacities (kW)
• Sp storage capacity (kWh)
• S, S maximum and minimum battery capacities (kWh)

Forecasted or computed variables
• at action at t
• amt purely market related actions
• adt set-points to the devices of the microgrid
• akd,t fraction of load shed (k = she), generation activated

(k = ste), generation curtailed (k = nst) ([0, 1])
• acha

d,t, a
dis
d,t fraction of the maximum charging and discharg-

ing powers used for battery d ([0, 1])
• egri

t , igri
t energy export and import (kWh)

• δpt′ OP peak difference between peak at t′ and ph (kW)
• δpτ(t−∆τ ),τ(t) RTO peak difference between peak at τ(t)

and ph (kW)
• sTSOt TSO symmetric reserve signal (0; 1)
• rsym symmetric reserve (kW)
• ∆rsym reserve difference between OP and RTO (kW)
• rs+d,t′ , r

s−
d,t′ upward and downward reserves of power

available and provided by storage device d (kW)
• sd,t state of charge of battery d (kWh)

• st microgrid state at time t
• smt information related to the current market position
• sdt state of the devices
• vt the cost-to-go function
• ω̂ forecast of a random vector ω
• X average of a variable X (kW)
• Xmax, Xmin maximum and minimum of X (kW)
• Xstd standard deviation of X (kW)
• cE , cp, ct energy, peak and total costs (ke)
• ∆p peak increment (kW)
• Itot, Etot total import and export (MWh)

IX. ANNEX: FORECASTING METHODOLOGY

The inputs of the forecasting method are historical and
external data, a forecasting horizon HT , a resolution, and a
forecast frequency. The outputs are the PV production and
the consumption. In this study, the input data are weather
forecasts and past PV production and consumption series.
The horizon is the time range of the forecasts from a few
hours to several hours or days. The resolution is the time
discretization of the forecast from a few minutes to several
hours. The forecast frequency indicates the periodicity at
which the forecasts are computed. For instance, a forecasting
module with HT = 24 hours, a resolution and periodicity of
15 minutes, computes each quarter, a quarterly forecast for
the twenty-four hours ahead. This paper focuses on the real-
time control of microgrids based on planning that requires a
forecast horizon of a few hours up to a few days.

Two "classic" deterministic techniques are implemented,
a Recurrent Neural Network (RNN) with the Keras Python
library [15] and a Gradient Boosting Regression (GBR) with
the Scikit-learn Python library [16]. The RNN is a Long Short
Term Memory (LSTM) with one hidden layer composed of
2 × n + 1 neurons with n the number of input features.
Both techniques are implemented with a Multi-Input Multi-
Output (MIMO) approach [17]. The MIMO strategy consists
of learning only one model, m̂, as follows

[ŵτ1 , ..., ŵτHT ] = m̂

[
wτ0 , ..., wτ−4 , ŵτ1i , ..., ŵ

τHT
i

]
. (20)

With ŵ the variable to forecast (PV, consumption, etc), ŵi
the forecast of the ith weather variable such as direct solar
irradiance, wind speed, air ambient temperature, etc. The
forecast is computed each quarter and composed of HT /∆τ
values [ŷτ1 , ..., ŷτHT ]. In our case study, HT /∆τ = 96 with
HT = 24 h and ∆τ = 15 minutes. The forecasting process is
implemented as a rolling forecast methodology. The Learning
Set (LS) is refreshed every six hours. The LS is limited to
the week preceding the forecasts, to maintain a reasonable
computation time.

The forecasts are evaluated using three deterministic met-
rics: the Normalized Mean Absolute Error (NMAE), the
Normalized Root Mean Squared Error (NRMSE), and the
Normalized Energy Measurement Error (NEME). The NEME
is an NMAE of the energy summed over the entire forecasting
horizon. The mean scores NMAEHT , NRMSEHT and
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Fig. 9: PV forecast scores for GBR (top) and RNN (bottom).

05-20
05-21

05-22
05-23

05-24
05-25

05-26
05-27

05-28
05-29

05-30
05-31

06-01
06-02

06-03
06-04

06-05
06-06

06-07
06-08

06-09
06-10

06-11
06-12

06-13
06-14

06-15
06-160

20

40

60

80

%

NMAE
NRMSE
NEME

NMAE mean
NRMSE mean
NEME mean

05-20
05-21

05-22
05-23

05-24
05-25

05-26
05-27

05-28
05-29

05-30
05-31

06-01
06-02

06-03
06-04

06-05
06-06

06-07
06-08

06-09
06-10

06-11
06-12

06-13
06-14

06-15
06-160

20

40

60

80

%

NMAE
NRMSE
NEME

NMAE mean
NRMSE mean
NEME mean

Fig. 10: Consumption forecast scores for GBR (top) and
RNN (bottom).

NEMEHT for a forecasting horizon HT are computed over
the entire simulation data set. The normalizing coefficient
for computing the NMAE and the NRMSE is the mean of
the absolute value of the PV and consumption over all the
simulation data set. Figures 9 and 10 provide the scores for
both GBR and RNN techniques computed for each quarter of
the simulation data set.

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020


	Introduction
	Problem statement
	Assumptions
	Formulation

	Proposed method
	Computing the cost-to-go function v(t)
	OPP formulation
	OP constraints
	RTP formulation
	RTO constraints

	Test description
	Numerical results
	No symmetric reserve
	Results with symmetric reserve

	Conclusion
	Acknowledgment
	References
	Notation
	Annex: forecasting methodology

