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Abstract. Consider k-binomial equivalence: two finite words are equiv-
alent if they share the same subwords of length at most k with the same
multiplicities. With this relation, the k-binomial complexity of an infi-
nite word x maps the integer n to the number of pairwise non-equivalent
factors of length n occurring in x. In this paper based on the notion of
template introduced by Currie et al., we show that, for all k ≥ 2, the
k-binomial complexity of the Tribonacci word coincides with its usual
factor complexity p(n) = 2n+ 1. A similar result was already known for
Sturmian words, but the proof relies on completely different techniques
that seemingly could not be applied for Tribonacci.

1 Introduction

Abelian equivalence of words has been investigated for quite a long time; e.g., in
the sixties Erdös raised the question whether abelian squares can be avoided by
an infinite word over an alphabet of size 4 [6,7,17]. Let Σ be a finite alphabet.
We let Σ∗ denote the set of all finite words over Σ. Two words u and v in Σ∗ are
abelian equivalent if one word is obtained by permuting the letters of the other
word. More formally, u and v are abelian equivalent if |u|a = |v|a, for all a ∈ Σ,
where we let |u|a denote the number of occurrences of the letter a in u.

Definition 1. Let u be a word over an ordered alphabet {0, . . . , s − 1}. The
abelianization or Parikh vector of u, denoted by Ψ(u), is the column vector in Ns

(|u|0, . . . , |u|s−1)
ᵀ
.

With this notation, two words are abelian equivalent if and only if Ψ(u) =
Ψ(v). A possible generalization of abelian equivalence is the k-binomial equiva-
lence based on binomial coefficient of words. An independent generalization is
k-abelian equivalence where one counts factors of length at most k [10,11]. For
a survey, see, for instance, [20]. We let the binomial coefficient

(
u
v

)
denote the

number of times v appears as a (not necessarily contiguous) subsequence of u.
Let k ≥ 1 be an integer. Two words u and v are k-binomially equivalent, denoted
u ∼k v, if

(
u
x

)
=
(
v
x

)
for all words x of length at most k.
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Definition 2. Let x be an infinite word. The k-binomial complexity function of
x is defined as

bx,k : N→ N, n 7→ # (Facn(x)/∼k)

where Facn(x) is the set of factors of length n occurring in x. For k = 1, this
measure of complexity is exactly the abelian complexity.

The celebrated theorem of Morse–Hedlund [3,4] characterizes ultimately pe-
riodic words in terms of a bounded factor complexity function. Hence, aperiodic
words with the lowest factor complexity are exactly the Sturmian words char-
acterized by px(n) = n + 1. It is also a well-known result of Cobham that the
factor complexity of any k-automatic sequence is in O(n). The Tribonacci word
has a factor complexity 2n+ 1.

We collect the known facts about the k-binomial complexity. For all k ≥ 2,
Sturmian words have a k-binomial complexity which is the same as their factor
complexity, i.e., bx,k(n) = n + 1 for all n. Since bx,k(n) ≤ bx,k+1(n), the proof
consists in showing that any two distinct factors of length n occurring in a given
Sturmian word are never 2-binomially equivalent [18, Thm. 7]. However, the
Thue–Morse word has a bounded k-binomial complexity [18, Thm. 13]. So we
have a striking difference with the most usual complexity measures. Naturally,
the bound on the k-binomial complexity of the Thue–Morse word depends on the
parameter k because when k tends to infinity, the k-binomial equivalence gets
closer to equality of factors, i.e. bx,k(n) = px,k(n) for all n ≤ k, and the Thue–
Morse word has a factor complexity in Θ(n). The precise results are recalled
below.

Theorem 3. [18] Let k ≥ 1. There exists Ck > 0 such that the k-binomial
complexity of the Thue–Morse word t satisfies bt,k(n) ≤ Ck for all n ≥ 0.

Theorem 4. [12] We let t denote the Thue–Morse word over a 2-letter alphabet.
Let k be a positive integer. For all n ≤ 2k − 1, we have bt,k(n) = pt(n). For all
n ≥ 2k, we have

bt,k(n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

When investigating this new k-binomial complexity measure, it is naturally
interesting to consider various well-known words or families of words. A natural
choice is therefore to try computing the k-binomial complexity of the Tribonacci
word T = 010201001020101 · · · , fixed point of the morphism τ : 0 7→ 01, 1 7→ 02,
2 7→ 0. From computer experiments, the second author made the conjecture in
2014 that, for all k ≥ 2, its k-binomial complexity is the same as the usual
factor complexity 2n+ 1 [19]. As in the Sturmian case, it is enough to show that
given any two distinct factors of length n occurring in the Tribonacci word, these
two factors are not 2-binomially equivalent. Surprisingly, classical combinatorial
techniques seemed to be unsuccessful. We make an extensive use of the concepts
of templates and their ancestors similar to what can be found in [1,2,8] where
avoidance of abelian repetitions is considered. Closely related, let us also mention
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[5] where a morphic word avoiding three consecutive factors of the same size and
same sum is given. Recently F. Liétard proposed algorithmic proofs for morphic
words avoiding additive powers [14].

This paper is organized as follows. In Section 2, we recall the notion of Parikh
matrix and extend it to our k-binomial context. In particular, this extended
matrix is built from the classical one using the Kronecker product: binomial
coefficients can be nicely represented in terms of this product. In Section 3 we
define and adapt the notions of templates and ancestors to our purpose. To solve
our problem, we need to show the finiteness of some set of realizable ancestors.
To that end, in Section 4, we first get several bounds related to Parikh vectors of
factors of the Tribonacci word. Consequently, we deduce bounds on the realizable
ancestors. We put together the results of these last two sections to establish the
main theorem in Section 5. Similarly to [1,2,8,14,16], our proof is a computer-
assisted one.

2 Basics

Let Σ = {0, . . . , s − 1} be an ordered alphabet of size s. As mentioned in the
introduction, it is enough to consider 2-binomial equivalence but everything in
this section generalizes well to k-binomial equivalence.

Definition 5. Let w be a finite word over Σ. We will make an extensive use of
its extended Parikh vector denoted by Φ(w) and defined as follows. We set

Φ(w) :=

(
|w|0, . . . , |w|s−1,

(
w

00

)
,

(
w

01

)
, . . . ,

(
w

(s− 1)(s− 1)

))ᵀ

.

It is a column vector of size s(s + 1) and we assume that the s2 subwords of
length 2 are lexicographically ordered.

Take the word u = 10010201010 which is a factor of length 11 occurring in
the Tribonacci word. Its extended Parikh vector is given by

Φ(u) =
(
6, 4, 1, 15, 11, 3, 13, 6, 2, 3, 2, 0

)ᵀ
.

With this notation, Φ(u) = Φ(v) if and only if u ∼2 v.
For a vector d ∈ Zn, n ≥ s, we let d|0,...,s−1 denote the vector in Zs

made of the first s coordinates of d. In particular over an alphabet of size s,
Φ(w)|0,...,s−1 = Ψ(w).

We let A⊗B denote the usual Kronecker product of two matrices A ∈ Zm×n
and B ∈ Zp×q. It is a block-matrix in Zmp×nq defined by

A⊗B :=

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
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Let m be an integer. We let Pm ∈ Z(m(m+1))×m2

denote the matrix such that
for all, i, j,

[Pm]i,j =

{
1, if i = j +m;
0, otherwise.

This matrix addsm zeros at the beginning of a column vector of sizem2. We start
with two straightforward lemmas and the introduction of an extended Parikh
matrix.

Lemma 6. Let u and v be two words over an alphabet of size s. We have

Φ(uv) = Φ(u) + Φ(v) + Ps
(
Ψ(u)⊗ Ψ(v)

)
.

Proof. The first two terms in the statement take into account the separate contri-
butions of u and v to the different coefficients. Nevertheless, subwords of length
2 can also be obtained by taking their first letter in u and their second one in
v. This is exactly the contribution of the third term. Observe that Ψ(u)⊗ Ψ(v)
is a column vector of size s2. Applying Ps will add s zeros on top because the
contribution of individual letters has already been taken into account in the first
two terms. ut

The classical Parikh matrix M ′h associated with a morphism h is a useful
tool in combinatorics on words (not to be confused with the notion of Parikh
matrix of a word introduced in 2000 by Mateescu et al.). Over an ordered s-letter
alphabet, it is defined from its columns as a s× s matrix

M ′h =
(
Ψ(h(0)) · · · Ψ(h(s− 1))

)
and it readily satisfies

Ψ(h(u)) = M ′hΨ(u), ∀u ∈ Σ∗ .

For the Tribonacci morphism, it is given by

M ′τ =

1 1 1
1 0 0
0 1 0

 . (1)

Definition 7. Mimicking the Parikh matrix and its use, one can define an ex-
tended Parikh matrix Mh associated with a morphism h defined over an ordered
s-letter alphabet. It is a s(s+ 1)× s(s+ 1) matrix satisfying

Φ(h(u)) = MhΦ(u), ∀u ∈ Σ∗ . (2)

The existence of the extended Parikh matrix satisfying (2) is ensured by the
next result.
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Lemma 8. Let M ′h be the Parikh matrix associated with some morphism h. The
extended Parikh matrix of h has the following form:

Mh =


M ′h 0 · · · 0
?
? M ′h ⊗M ′h
?

 .

In particular, det(Mh) = det(M ′h)2s+1. Moreover, if the alphabet is of size s,
then MhPs = Ps(M

′
h ⊗M ′h). If M ′h is non-singular, then Mh is non-singular

and M−1
h is a block-triangular matrix of the same form as Mh with diagonal

blocks M ′−1
h and M ′−1

h ⊗M ′−1
h .

Proof. Since the first s components of Φ(u) give the usual Parikh vector, M ′h is
the upper-left corner of Mh. For the last s2 components of Φ(u) dealing with
binomial coefficients of subwords of length 2, it is shown in [12] that, for all
a, b ∈ Σ,(

h(u)

ab

)
=
∑
c∈Σ

(
h(c)

ab

)
|u|c +

∑
x1x2∈Σ2

(
h(x1)

a

)(
h(x2)

b

)(
u

x1x2

)
.

In this expression, the first sum corresponds to the s× s submatrices marked as
? and the second sum exactly corresponds to the Kronecker product M ′h ⊗M ′h.
Indeed, if we index M ′h on Σ and M ′h ⊗M ′h on Σ2, we have(

h(x1)

a

)(
h(x2)

b

)
= [M ′h]a,x1

[M ′h]b,x2
= [M ′h ⊗M ′h]ab,x1x2

. ut

This extended Parikh matrix was also used in [15] (for avoidance problems).

3 Templates and ancestors

For this section, let h : Σ∗ → Σ∗ be any primitive (prolongable) morphism. Let
M ′h be its Parikh matrix andMh be its extended Parikh matrix. We let s := #Σ.
Recall that a prefix (resp., a suffix) of a word w is proper if it is different from
w (and thus, possibly empty).

Definition 9. The language of h, denoted by L(h), is the set of factors of any
of its non-empty fixed points (if h is primitive, they all have the same language).
The set Pref(h) (resp., Suff(h)) is the set of proper prefixes (resp., proper suf-
fixes) of the words in {h(a) | a ∈ Σ}, e.g., for the Tribonacci morphism,
Pref(τ) = {ε, 0} and Suff(τ) = {ε, 1, 2}. Such a notation can be extended to
hn. If u ∈ L(h), there exist a shortest pu ∈ Pref(h), a shortest su ∈ Suff(h) and
u′ ∈ L(h) such that h(u′) = puusu.

In the following definition, the index b (resp., e) stands for beginning (resp.,
end).
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Definition 10. A template is a 5-tuple of the form t = [d,Db,De, a1, a2] where
a1, a2 ∈ Σ, d ∈ Zs(s+1) and Db,De ∈ Zs. A pair of words (u, v) is a realization
of (or realizes) the template t if:

• Φ(u)− Φ(v) = d + Ps
(
Db ⊗ Ψ(u) + Ψ(u)⊗De

)
,

• there exist u′ and v′ such that u = u′a1 and v = v′a2.

A template t is realizable by h if there is a pair of words in L(h) that realize t.

Given two factors u and v, the template of the form [Φ(u)−Φ(v),0,0, a1, a2]
is obviously realizable by h, where a1 (resp., a2) is the last letter of u (resp., v).

Due to the presence of Ps in the above definition, note that if a template
is realizable by a pair (u, v), then the corresponding vector d is such that
d|0,...,s−1 = Ψ(u)− Ψ(v).

Remark 11. There exist an infinite number of realizable templates. Actually, for
any choice of words u, v and vectors Db,De in Zs, there exists a convenient
d ∈ Zs(s+1).

Lemma 12. Let h be a primitive morphism. Let T := {[0,0,0, a1, a2] : a1 6=
a2}. The factorial complexity and the 2-binomial complexity of any fixed point
of h are equal if and only if all templates from T are non-realizable by h.

Proof. The factorial complexity is not the same as the 2-binomial complexity if
and only if there exists a pair of factors (u, v) such that u 6= v and Φ(u) = Φ(v).

The two words of any realization of an element in T are 2-binomially equiva-
lent and are different since they do not have the same last letter. Thus, if there is
a realization of an element of T then the factorial complexity and the 2-binomial
complexity are not equal.

Now, for the other direction, suppose that the two complexity functions are
not equal: we have a pair of words (u, v) such that u 6= v and Φ(u) = Φ(v). Since
u 6= v and |u| = |v|, there exist u′, v′, s ∈ Σ∗ and a, b ∈ Σ with a 6= b such that
u = u′as and v = v′bs (observe that s is the longest common suffix of u and v).
Then Φ(u′a) = Φ(v′b) so the pair (u′a, v′b) realizes [0,0,0, a, b], which belongs
to T . ut

The idea in the next definition is that any long factor of a fixed point of a
morphism must be the image of a shorter factor, up to (short) prefix and suffix.
So the relation corresponds to the various relationships among the binomial
coefficients that must hold if this is to be the case. For more details, the reader
is invited to read the proof of [13, Lemma 15].

Definition 13. Let t′ = [d′,D′b,D
′
e, a
′
1, a
′
2] and t = [d,Db,De, a1, a2] be two

templates and h be a morphism. We say that t′ is a parent by h of t if there exist
pu, pv ∈ Pref(h) and su, sv ∈ Suff(h) such that:

• d′ is given by

Mhd
′ = d+Φ(pusu)−Φ(pvsv)+Ps

(
Ψ(pv)⊗d|0,...,s−1 +d|0,...,s−1⊗Ψ(sv)

)
−Ps

(
(Db +Ψ(pu)−Ψ(pv))⊗Ψ(pusu) +Ψ(pusu)⊗ (De +Ψ(su)−Ψ(sv)

)
;
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• the value of D′b is given by M ′hD
′
b = Db + Ψ(pu)− Ψ(pv);

• the value of D′e is given by M ′hD
′
e = De + Ψ(su)− Ψ(sv);

• a1su is a suffix of h(a′1);
• a2su is a suffix of h(a′2).

We let Parh(t) denote the set of parents by h of t.

Remark 14. Observe that for any given template t, Parh(t) is finite and easy to
compute as long as Mh and M ′h are non-singular. Indeed, the sets Pref(h) and
Suff(h) are finite. For the Tribonacci word, # Pref(τ) = 2, # Suff(τ) = 3 and
thus # Parτ (t) ≤ 36. At this stage, it is not required for a parent to be realizable.

More interestingly there is a link between preimages of the realization by h
of a template and realization by h of the parents of the template. We make that
link explicit in the following Lemma.

Lemma 15. Let h be a morphism. Assume that det(M ′h) = ±1. Let t be a
template, u, v, v′, u′ ∈ L(h), pu, pv ∈ Pref(h) and su, sv ∈ Suff(h) such that:

• h(u′) = puusu and h(v′) = pvvsv;
• su is a proper suffix of the image of the last letter of u′;
• sv is a proper suffix of the image of the last letter of v′;
• (u, v) realizes t.

Then there exists a parent t′ of t such that (u′, v′) realizes t′.

This motivates the following definitions.

Definition 16. A template t′ is an ancestor by h (resp., realizable ancestor)
of a template t if there exists a sequence of n ≥ 1 templates (resp., realizable
templates) t = t1, t2, . . . , tn = t′ such that for all i ∈ {1, . . . , n − 1}, ti+1 is a
parent by h of ti. For a template t, we denote by RAnch(t) the set of all the
realizable ancestors by h of t. We may omit “by h” when the morphism is clear
from the context.

Let |h| = maxa∈Σ |h(a)|, usually called the width of h. To prove that two
different factors of Tribonacci are never 2-binomially equivalent, we will make
use of Lemma 12. The next result will help us to show that no template of the
set T defined in Lemma 12 is realizable by τ .

Proposition 17. Let L be a positive integer. Let h be a primitive morphism
and t0 be a template. If there exists a pair of words in L(h) that is a realization
of t0, then

• either t0 has a realization (u, v) ∈ L(h) × L(h) such that min(|u|, |v|) ≤ L
or,

• there exists a realization (u, v) ∈ L(h) × L(h) of a template t of RAnch(t0)
with L ≤ min(|u|, |v|) ≤ |h|L .
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Proof. Let (u, v) be a pair of factors of L(h) realizing t0. If min(|u|, |v|) ≤ L,
there is nothing left to prove. Assume therefore that min(|u|, |v|) > L.

Since v is a factor of L(h), there are sequences of words v = v1, v2, . . . , vn ∈ Σ∗,
p1, . . . , pn−1 ∈ Pref(h) and s1, . . . , sn−1 ∈ Suff(h) such that, for all i < n,
h(vi+1) = pivisi and L ≤ |vn| ≤ |h|L. Moreover we may force that, for all i < n,
si is a proper suffix of the image of the last letter of vi+1.

Similarly, since u is a factor of L(h), there are sequences of words u = u1,
u2, . . . , u` ∈ Σ∗ and p′1, . . . , p′`−1 ∈ Pref(h) and s′1, . . . , s′`−1 ∈ Suff(h) such that,
for all i < `, h(ui+1) = p′iuis

′
i and L ≤ |u`| ≤ L|h|.

Let m = min(n, `). We can simply apply Lemma 15 inductively m times. We
obtain a template t′ which is an ancestor of t0 and is realized by (um, vm). Since
m = min(n, `), L ≤ min(|um|, |vm|) ≤ |h|L. This concludes the proof. ut

4 Bounding realizable templates for the Tribonacci word

Recall that τ denote the Tribonacci morphism and that T is the Tribonacci
word. The matrixM ′τ was given in (1). Since it is primitive, we may use Perron’s
theorem. Densities of letters 0, 1, 2 exist and are denoted respectively by α0, α1

and α2. Let θ ≈ 1.839 be the Perron eigenvalue of τ . Recall that α =
(
α0 α1 α2

)ᵀ
is an eigenvector of τ associated with θ. Let

∆ = {(δ0, δ1) : −1.5 ≤ δ0, δ1, δ0 + δ1 ≤ 1.5}.

4.1 Bounds on extended Parikh vectors

We can obtain two different kinds of bounds on extended Parikh vectors of factors
of the Tribonacci word. First we essentially take care of the large eigenvalues.

Proposition 18. Let r be a left eigenvector of Mτ having λ as associated eigen-
value. If |λ| < θ, then there exists a constant C(r) such that, for all factors w of
T ,

|r · Φ(w)|
|w|

≤ C(r).

One can see [13] for the details. If we fix n, ` ∈ N, the bound given in the
proof is the following one:

max
u∈L(τ)
|u|≤`

 |r · Φ(u)|
|u|

,
|λ|n

ι(`, n)θn
max
u∈L(τ)
|u|≤`

|r · Φ(u)|
|u|

+ c3(r)
ι(`, n)θn

ι(`, n)θn − |λ|n

 ,

where

ι(`, n) =
`

`+ θn
(

2 + 1.5
θ−1

)
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and

c3(r) = max
p∈Pref(τn)
s∈Suff(τn)

{
|r · P3 (Ψ(p)⊗α+α⊗ Ψ(s))|

+
1

`
max

δ∈[−1.5,1.5]3
|r · (Φ(ps) + P3 (Ψ(p)⊗ δ + δ ⊗ Ψ(s)))|

}
.

Moreover, integers n and ` have to verify

|λ|n

ι(`, n)θn
< 1 .

The bound given by Proposition 18 will only be useful for the eigenvalues λ
such that |λ| ≥ 1. When |λ| < 1, the following result is stronger.

Proposition 19. Let r be an eigenvector of Mτ and λ be the associated eigen-
value. If |λ| < 1, then there exists a constant C(r) such that for all factors w of
T ,

|r · Φ(w)| ≤ C(r).

For every n ∈ N, the constant

C(r) =
1

1− |λ|n
max

p∈Pref(τn)
s∈Suff(τn)

max
δ∈[−1.5,1.5]3

|r · (Φ(ps) + P3 (Ψ(p)⊗ δ + δ ⊗ Ψ(s)))|

is convenient. See [13] for details.

4.2 Bounds on templates

This subsection contains several lemmas giving necessary conditions on tem-
plates to be realizable by τ .

Lemma 20. Let λ be an eigenvalue ofMτ such that |λ| < 1. For every left eigen-
vector r of Mτ associated with λ and for every realizable template
t = [d,Db,De, a1, a2],

min
(δ0,δ1)∈∆

∣∣∣∣∣∣r ·
d + P3

Db ⊗

 δ0
δ1

−δ0 − δ1

+

 δ0
δ1

−δ0 − δ1

⊗De

∣∣∣∣∣∣ ≤ 2C(r)

where C(r) is the constant from Proposition 19.

This bound is not so easy to use because of the complicated minimum. It
can be computed using tools from optimization. However, we can simply use this
bound as follows.

For the sake of notation, let

f(δ0, δ1) = r ·

d + P3

Db ⊗

 δ0
δ1

−δ0 − δ1

+

 δ0
δ1

−δ0 − δ1

⊗De

 .
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Then

min
(δ0,δ1)∈∆

|f(δ0, δ1)| ≥
√

min
(δ0,δ1)∈∆

Re (f(δ0, δ1))
2

+ min
(δ0,δ1)∈∆

Im (f(δ0, δ1))
2
.

Let IRe and IIm be intervals such that

IRe =

[
min

(δ0,δ1)∈∆
Re (f(δ0, δ1)) , max

(δ0,δ1)∈∆
Re (f(δ0, δ1))

]
and

IIm =

[
min

(δ0,δ1)∈∆
Im (f(δ0, δ1)) , max

(δ0,δ1)∈∆
Im (f(δ0, δ1))

]
.

Then

min
(δ0,δ1)∈∆

|f(δ0, δ1)| ≥
√

min
y∈IRe

y2 + min
y∈IIm

y2.

Thus any template for which this last quantity is greater than 2C(r) is not
realizable.

Observe that each of the four interval bounds is reached for a vertex of the
polytope, that is

(
δ0
δ1

)
∈
{(

1.5
−1.5

)
,

(
1.5
0

)
,

(
0

1.5

)
,

(
−1.5
1.5

)
,

(
−1.5

0

)
,

(
0
−1.5

)}
. This

is due to the fact that f is linear (and thus convex) over the convex set ∆.
This allows us to remove many templates from the set of templates, but this

is not enough to obtain a finite set, so we need to somehow use the bounds on
the other eigenvectors as well.

Lemma 21. Let L be a positive integer. Let λ be an eigenvalue of Mτ such
that |λ| < θ. Then, for all eigenvectors r of Mτ associated with λ, there exists
a constant C(r) such that for any template t = [d,Db,De, a1, a2] realized by a
pair of factors of the Tribonacci word (u, v) with |u| ≥ L, we have

|r · P3 (Db ⊗α+α⊗De)| ≤

2L−
∑3
i=1 di

L
C(r) + max

(δ0,δ1)∈∆

|r · (d + P3 (Db ⊗ δ + δ ⊗De))|
L

.

The quantity of the l.h.s. and the first term on the r.h.s. are straightforward
to compute. For the last term, it is not difficult to show that the maximum is in
fact necessarily reached on a vertex of the polytope, that is

max
(δ0,δ1)∈∆

|r · (d + P3 (Db ⊗ δ + δ ⊗De))|
L

≤

max(
δ0
δ1

)
∈
{(

1.5
0

)
,

(
1.5
−1.5

)
,

(
0

1.5

)
,

(
−1.5

0

)
,

(
−1.5
1.5

)
,

(
0
−1.5

)} |r · (d + P3 (Db ⊗ δ + δ ⊗De))|
L

.
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5 Proof of the main result

With all these lemmas, we are ready to show our main result.

Theorem 22. Two factors of the Tribonacci word are 2-binomially equivalent
if and only if they are equal.

Proof. Let T = {[0,0,0, a1, a2] : a1 6= a2}. Let us show that no template from
T is realizable. Let L = 15. We can easily check with a computer that no pair of
factors of T with min(|u|, |v|) ≤ L realizes a template t from the set T . Indeed,
since for all t ∈ T , d = 0, Db = 0 and De = 0, we know that a pair of words
(u, v) realizes t if and only if Φ(u) − Φ(v) = 0. It just suffices to check that for
all n ≤ L, bT ,2(n) = pT (n).

Now, from Proposition 17, if t ∈ T is realized then one of its ancestors is
realized by a pair (u, v) with L ≤ min(|u|, |v|) ≤ 2L.

Lemmas 20 and 21 give us two sets of inequalities that any template realized
by a pair (u, v) of factors of Tribonacci with |u| ≥ L must respect. Let X be
the set of templates that respect the bounds. Let A0 = T and, for all i, let
Ai+1 = {Parτ (t) ∩ X : t ∈ Ai}. Then clearly RAncτ (t) ⊆

⋃
i∈N

Ai. Each Ai can

be easily computed and it can be checked by a computer program that the set⋃
i∈N

Ai is finite.

We can finally check with a computer that there is no pair (u, v) of factors
of T with L ≤ min(|u|, |v|) ≤ 2L that realizes any element of

⋃
i∈N

Ai. Thus no

template of T is realizable. By Lemma 12, we can conclude that the 2-binomial
complexity of the Tribonacci word is equal to its factorial complexity. ut

Accompanying this paper is an implementation in Mathematica of all the compu-
tations described in this theorem and in the previous lemmas and propositions.
We also have a C++ implementation that is much faster, but uses machine float-
ing point arithmetic whose accuracy cannot be guaranteed (in this case, however,
we obtain exactly the same set of templates). Diagonalizing the matrix of Tri-
bonacci gives 4 eigenvectors to which Lemma 20 can be applied. Since there are
two pairs of conjugate complex vectors, it is useless to keep more than one of
each pair. However, by taking a linear combination of these two, we get another
eigenvector to which we can apply Lemma 20 (in practice we only do that once,
but we could take as many vectors as we want from this 2-dimensional space).
For this conjugation reason, we also only keep 4 of the 6 eigenvectors that corre-
spond to an eigenvalue of norm less than 1. For each of these 7 eigenvectors, we
choose3 ` = 600 and the best 1 ≤ n ≤ 6 when applying Lemma 20 or Lemma 21.
The rest is done as described in the article. We obtain a set of 241544 templates.

3 Remember that we work on τn and that increasing n and ` tend to give us better
bounds but increases the computation time.
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6 Conclusion

We used an algorithm to show that the 2-binomial complexity of the Tribonacci
word is equal to its factorial complexity. It seems that our method can be turned
into an algorithm that can decide under some mild conditions whether the fac-
torial complexity of a given morphic word is equal to its k-binomial complexity.
In fact, by keeping track of the first letter of each word in templates, the “if” in
Proposition 17 can be replaced by an “if and only if” (some technicalities could
allow us to apply it even if the matrix is singular). Moreover, with arguments
similar to the ideas from [16], one could show that we also have bounds on the
eigenvectors that correspond to larger eigenvalues and that the number of tem-
plates that respect these bounds is always finite (one might need no eigenvalue
has norm 1).

Observe that the notion of template was first introduced in the context of
avoidability of abelian powers [8] and, as one could expect, it seems that our
technique also gives a decision algorithm for the avoidability of k-binomial powers
in morphic words (and even avoidability of patterns in the k-binomial sense).
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