Computing the *k*-binomial complexity of the Thue–Morse word

August 09, 2019

Marie Lejeune (FNRS grantee)

Joint work with Julien Leroy and Michel Rigo

Let's look at the Thue-Morse word

 $t = 01101001100101101001011001101001 \cdots$

Let's look at the Thue-Morse word

$$t = 01101001100101101001011001101001 \cdots$$

$$Fac_{\mathbf{t}}(1) = \{0, \}.$$

Let's look at the Thue-Morse word

$$t = 01101001100101101001011001101001 \cdots$$

$$\mathsf{Fac}_{\mathbf{t}}(1) = \{0, \frac{1}{2}\}.$$

Let's look at the Thue-Morse word

$$t = \frac{0110}{1001001100101101001011001101001\cdots}$$

$$Fac_{\mathbf{t}}(4) = \{0110,$$

Let's look at the Thue-Morse word

$$t = 01101001100101101001011001101001 \cdots$$

$$\mathsf{Fac}_{\mathbf{t}}(4) = \{0110, \frac{1101}{1000}\}$$

Let's look at the Thue-Morse word

$$t = 01101001100101101001011001101001 \cdots$$

Let's look at the Thue-Morse word

$$t = 01101001100101101001011001101001 \cdots$$

$$\mathsf{Fac}_{\mathbf{t}}(4) = \{0110, 1101, 1010, 0100\}$$

Let's look at the Thue-Morse word

$$t = 01101001100101101001011001101001 \cdots$$

$$\mathsf{Fac}_{\mathbf{t}}(4) = \{0110, 1101, 1010, 0100, \frac{1001}{1000}\}$$

Let's look at the Thue-Morse word

$$t = 01101001100101101001011001101001 \cdots$$

$$\mathsf{Fac}_{\mathbf{t}}(4) = \{0110, 1101, 1010, 0100, 1001, \ldots\}.$$

Let's look at the Thue-Morse word

$$t = 01101001100101101001011001101001 \cdots$$

and more precisely at its factors of a given length:

$$\mathsf{Fac}_{\mathbf{t}}(4) = \{0110, 1101, 1010, 0100, 1001, \ldots\}.$$

The factor complexity

$$p_{\mathbf{t}}: n \mapsto \#\mathsf{Fac}_{\mathbf{t}}(n)$$

is not bounded by a constant.

Let's look at the Thue-Morse word

$$t = 01101001100101101001011001101001 \cdots$$

and more precisely at its factors of a given length:

$$\mathsf{Fac}_{\mathbf{t}}(4) = \{0110, 1101, 1010, 0100, 1001, \ldots\}.$$

The factor complexity

$$p_{\mathbf{t}}: n \mapsto \#\mathsf{Fac}_{\mathbf{t}}(n)$$

is not bounded by a constant while k-binomial complexity

$$\mathbf{b_t^{(k)}}: n \mapsto \#(\mathsf{Fac_t}(n)/\!\!\!\sim_{\pmb{k}})$$

is bounded.

- Preliminary definitions
 - Words, factors and subwords
 - Complexity functions
 - k-binomial complexity
 - The Thue-Morse word
- - Factorizations
 - Types of order k

- Preliminary definitions
 - Words, factors and subwords
 - Complexity functions
 - k-binomial complexity
 - The Thue-Morse word
- 2 Why to compute $\mathbf{b}_t^{(k)}$?
- 3 Computing $\mathbf{b}_{t}^{(k)}$
 - Factorizations
 - Types of order k

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times \mathbf{x} appears as a subword in \mathbf{u} and $|\mathbf{u}|_{\mathbf{x}}$ the number of times it appears as a factor in \mathbf{u} .

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times \mathbf{x} appears as a subword in \mathbf{u} and $|\mathbf{u}|_{\mathbf{x}}$ the number of times it appears as a factor in \mathbf{u} .

$$|u|_{ab} = ?$$
 and $\binom{u}{ab} = ?$

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times \mathbf{x} appears as a subword in \mathbf{u} and $|\mathbf{u}|_{\mathbf{x}}$ the number of times it appears as a factor in \mathbf{u} .

$$|u|_{ab} = 1$$
 and $\begin{pmatrix} u \\ ab \end{pmatrix} = ?$

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times \mathbf{x} appears as a subword in \mathbf{u} and $|\mathbf{u}|_{\mathbf{x}}$ the number of times it appears as a factor in \mathbf{u} .

$$|u|_{ab} = 2$$
 and $\begin{pmatrix} u \\ ab \end{pmatrix} = ?$

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times \mathbf{x} appears as a subword in \mathbf{u} and $|\mathbf{u}|_{\mathbf{x}}$ the number of times it appears as a factor in \mathbf{u} .

$$|u|_{ab}=2$$
 and $\binom{u}{ab}=?$

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_x$ the number of times it appears as a factor in u.

If
$$u = aababa$$
,

$$|u|_{ab}=2$$
 and $\binom{u}{ab}=1$.

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_x$ the number of times it appears as a factor in u.

If
$$u = aababa$$
,

$$|u|_{ab}=2$$
 and $\binom{u}{ab}=2$.

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times \mathbf{x} appears as a subword in \mathbf{u} and $|\mathbf{u}|_{\mathbf{x}}$ the number of times it appears as a factor in \mathbf{u} .

$$|u|_{ab}=2$$
 and $\binom{u}{ab}=3$.

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times \mathbf{x} appears as a subword in \mathbf{u} and $|\mathbf{u}|_{\mathbf{x}}$ the number of times it appears as a factor in \mathbf{u} .

$$|u|_{ab}=2$$
 and $\binom{u}{ab}=4$.

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times \mathbf{x} appears as a subword in \mathbf{u} and $|\mathbf{u}|_{\mathbf{x}}$ the number of times it appears as a factor in \mathbf{u} .

If
$$u = aababa$$
,

$$|u|_{ab}=2$$
 and $\binom{u}{ab}=5$.

Let $u = u_1 u_2 \cdots u_m$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $(u_j)_{j=1}^m$. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times \mathbf{x} appears as a subword in \mathbf{u} and $|\mathbf{u}|_{\mathbf{x}}$ the number of times it appears as a factor in \mathbf{u} .

$$|u|_{ab}=2$$
 and $\binom{u}{ab}=5$.

- Preliminary definitions
 - Words, factors and subwords
 - Complexity functions
 - k-binomial complexity
 - The Thue-Morse word
- 2 Why to compute $\mathbf{b}_t^{(k)}$?
- 3 Computing $\mathbf{b}_{t}^{(k)}$
 - Factorizations
 - Types of order k

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length-n factors of \mathbf{w} .

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length-n factors of \mathbf{w} .

Definition

The factor complexity of the word \mathbf{w} is the function

$$p_{\mathbf{w}}: \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}: n \mapsto \#\mathsf{Fac}_{\mathbf{w}}(n).$$

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length-n factors of \mathbf{w} .

Definition

The factor complexity of the word \mathbf{w} is the function

$$p_{\mathbf{w}}: \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}: n \mapsto \#(\operatorname{Fac}_{\mathbf{w}}(n)/\sim_{=}),$$

where $u \sim_= v \Leftrightarrow u = v$.

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length-n factors of \mathbf{w} .

Definition

The factor complexity of the word \mathbf{w} is the function

$$p_{\mathbf{w}}: \mathbb{N} \cup \{0\} \rightarrow \mathbb{N} \cup \{0\}: n \mapsto \#(\mathsf{Fac}_{\mathbf{w}}(n)/\sim_{=}),$$

where $u \sim_= v \Leftrightarrow u = v$.

We can replace $\sim_{=}$ with other equivalence relations.

Other equivalence relations

Different equivalence relations from $\sim_{=}$ can be considered:

Other equivalence relations

Different equivalence relations from $\sim_{=}$ can be considered:

• abelian equivalence: $u \sim_{ab,1} v \Leftrightarrow |u|_a = |v|_a \ \forall a \in A$

Other equivalence relations

Different equivalence relations from $\sim_{=}$ can be considered:

• abelian equivalence: $u \sim_{ab,1} v \Leftrightarrow |u|_a = |v|_a \ \forall a \in A$

If $k \in \mathbb{N}$,

• k-abelian equivalence: $u \sim_{ab,k} v \Leftrightarrow |u|_x = |v|_x \ \forall x \in A^{\leq k}$

Other equivalence relations

Different equivalence relations from $\sim_{=}$ can be considered:

• abelian equivalence: $u \sim_{ab,1} v \Leftrightarrow |u|_a = |v|_a \ \forall a \in A$

If $k \in \mathbb{N}$,

- k-abelian equivalence: $u \sim_{ab,k} v \Leftrightarrow |u|_x = |v|_x \ \forall x \in A^{\leq k}$
- k-binomial equivalence: $u \sim_k v \Leftrightarrow \binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}$

Other equivalence relations

Different equivalence relations from $\sim_{=}$ can be considered:

• abelian equivalence: $u \sim_{ab,1} v \Leftrightarrow |u|_a = |v|_a \ \forall a \in A$

If $k \in \mathbb{N}$,

- k-abelian equivalence: $u \sim_{ab,k} v \Leftrightarrow |u|_x = |v|_x \ \forall x \in A^{\leq k}$
- k-binomial equivalence: $u \sim_k v \Leftrightarrow \binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}$

We will deal with the last one.

k-binomial complexity of Thue–Morse

- Preliminary definitions
 - Words, factors and subwords
 - Complexity functions
 - k-binomial complexity
 - The Thue-Morse word
- 2 Why to compute $\mathbf{b}_t^{(k)}$?
- 3 Computing $\mathbf{b}_{t}^{(k)}$
 - Factorizations
 - Types of order k

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

$$\binom{u}{a} = \mathbf{1} = \binom{v}{a}$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

$$\binom{u}{a} = \frac{2}{2} = \binom{v}{a}$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

$$\binom{u}{a} = 2 = \binom{v}{a}, \binom{u}{b} = 1 = \binom{v}{b}$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

$$\binom{u}{a} = 2 = \binom{v}{a}, \binom{u}{b} = 2 = \binom{v}{b}$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\begin{pmatrix} u \\ x \end{pmatrix} = \begin{pmatrix} v \\ x \end{pmatrix} \ \forall x \in A^{\leq k}.$$

$$\binom{u}{a} = 2 = \binom{v}{a}, \binom{u}{b} = 3 = \binom{v}{b}$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

$$\begin{pmatrix} u \\ a \end{pmatrix} = 2 = \begin{pmatrix} v \\ a \end{pmatrix}, \begin{pmatrix} u \\ b \end{pmatrix} = 4 = \begin{pmatrix} v \\ b \end{pmatrix}$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

$$\binom{u}{a} = 2 = \binom{v}{a}, \binom{u}{b} = 4 = \binom{v}{b}, \binom{u}{aa} = 1 = \binom{v}{aa}$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

$$\begin{pmatrix} u \\ a \end{pmatrix} = 2 = \begin{pmatrix} v \\ a \end{pmatrix}, \begin{pmatrix} u \\ b \end{pmatrix} = 4 = \begin{pmatrix} v \\ b \end{pmatrix}, \begin{pmatrix} u \\ aa \end{pmatrix} = 1 = \begin{pmatrix} v \\ aa \end{pmatrix},$$

$$\begin{pmatrix} u \\ bb \end{pmatrix} = 6 = \begin{pmatrix} v \\ bb \end{pmatrix}, \begin{pmatrix} u \\ ab \end{pmatrix} = 1 = \begin{pmatrix} v \\ ab \end{pmatrix}$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

$$\begin{pmatrix} u \\ a \end{pmatrix} = 2 = \begin{pmatrix} v \\ a \end{pmatrix}, \begin{pmatrix} u \\ b \end{pmatrix} = 4 = \begin{pmatrix} v \\ b \end{pmatrix}, \begin{pmatrix} u \\ aa \end{pmatrix} = 1 = \begin{pmatrix} v \\ aa \end{pmatrix},$$
$$\begin{pmatrix} u \\ bb \end{pmatrix} = 6 = \begin{pmatrix} v \\ bb \end{pmatrix}, \begin{pmatrix} u \\ ab \end{pmatrix} = 2 = \begin{pmatrix} v \\ ab \end{pmatrix}$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x} \ \forall x \in A^{\leq k}.$$

$$\begin{pmatrix} u \\ a \end{pmatrix} = 2 = \begin{pmatrix} v \\ a \end{pmatrix}, \begin{pmatrix} u \\ b \end{pmatrix} = 4 = \begin{pmatrix} v \\ b \end{pmatrix}, \begin{pmatrix} u \\ aa \end{pmatrix} = 1 = \begin{pmatrix} v \\ aa \end{pmatrix},$$
$$\begin{pmatrix} u \\ bb \end{pmatrix} = 6 = \begin{pmatrix} v \\ bb \end{pmatrix}, \begin{pmatrix} u \\ ab \end{pmatrix} = 4 = \begin{pmatrix} v \\ ab \end{pmatrix}$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\begin{pmatrix} u \\ x \end{pmatrix} = \begin{pmatrix} v \\ x \end{pmatrix} \ \forall x \in A^{\leq k}.$$

$$\begin{pmatrix} u \\ a \end{pmatrix} = 2 = \begin{pmatrix} v \\ a \end{pmatrix}, \begin{pmatrix} u \\ b \end{pmatrix} = 4 = \begin{pmatrix} v \\ b \end{pmatrix}, \begin{pmatrix} u \\ aa \end{pmatrix} = 1 = \begin{pmatrix} v \\ aa \end{pmatrix},$$

$$\begin{pmatrix} u \\ bb \end{pmatrix} = 6 = \begin{pmatrix} v \\ bb \end{pmatrix}, \begin{pmatrix} u \\ ab \end{pmatrix} = 4 = \begin{pmatrix} v \\ ab \end{pmatrix}, \begin{pmatrix} u \\ ba \end{pmatrix} = 1 = \begin{pmatrix} v \\ ba \end{pmatrix}.$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\begin{pmatrix} u \\ x \end{pmatrix} = \begin{pmatrix} v \\ x \end{pmatrix} \ \forall x \in A^{\leq k}.$$

$$\begin{pmatrix} u \\ a \end{pmatrix} = 2 = \begin{pmatrix} v \\ a \end{pmatrix}, \begin{pmatrix} u \\ b \end{pmatrix} = 4 = \begin{pmatrix} v \\ b \end{pmatrix}, \begin{pmatrix} u \\ aa \end{pmatrix} = 1 = \begin{pmatrix} v \\ aa \end{pmatrix},$$

$$\begin{pmatrix} u \\ bb \end{pmatrix} = 6 = \begin{pmatrix} v \\ bb \end{pmatrix}, \begin{pmatrix} u \\ ab \end{pmatrix} = 4 = \begin{pmatrix} v \\ ab \end{pmatrix}, \begin{pmatrix} u \\ ba \end{pmatrix} = 2 = \begin{pmatrix} v \\ ba \end{pmatrix}.$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\begin{pmatrix} u \\ x \end{pmatrix} = \begin{pmatrix} v \\ x \end{pmatrix} \ \forall x \in A^{\leq k}.$$

$$\begin{pmatrix} u \\ a \end{pmatrix} = 2 = \begin{pmatrix} v \\ a \end{pmatrix}, \begin{pmatrix} u \\ b \end{pmatrix} = 4 = \begin{pmatrix} v \\ b \end{pmatrix}, \begin{pmatrix} u \\ aa \end{pmatrix} = 1 = \begin{pmatrix} v \\ aa \end{pmatrix},$$

$$\begin{pmatrix} u \\ bb \end{pmatrix} = 6 = \begin{pmatrix} v \\ bb \end{pmatrix}, \begin{pmatrix} u \\ ab \end{pmatrix} = 4 = \begin{pmatrix} v \\ ab \end{pmatrix}, \begin{pmatrix} u \\ ba \end{pmatrix} = 3 = \begin{pmatrix} v \\ ba \end{pmatrix}.$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\begin{pmatrix} u \\ x \end{pmatrix} = \begin{pmatrix} v \\ x \end{pmatrix} \ \forall x \in A^{\leq k}.$$

$$\begin{pmatrix} u \\ a \end{pmatrix} = 2 = \begin{pmatrix} v \\ a \end{pmatrix}, \begin{pmatrix} u \\ b \end{pmatrix} = 4 = \begin{pmatrix} v \\ b \end{pmatrix}, \begin{pmatrix} u \\ aa \end{pmatrix} = 1 = \begin{pmatrix} v \\ aa \end{pmatrix},$$

$$\begin{pmatrix} u \\ bb \end{pmatrix} = 6 = \begin{pmatrix} v \\ bb \end{pmatrix}, \begin{pmatrix} u \\ ab \end{pmatrix} = 4 = \begin{pmatrix} v \\ ba \end{pmatrix}, \begin{pmatrix} u \\ ba \end{pmatrix} = 4 = \begin{pmatrix} v \\ ba \end{pmatrix}.$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$\begin{pmatrix} u \\ x \end{pmatrix} = \begin{pmatrix} v \\ x \end{pmatrix} \ \forall x \in A^{\leq k}.$$

$$\begin{pmatrix} u \\ a \end{pmatrix} = 2 = \begin{pmatrix} v \\ a \end{pmatrix}, \begin{pmatrix} u \\ b \end{pmatrix} = 4 = \begin{pmatrix} v \\ b \end{pmatrix}, \begin{pmatrix} u \\ aa \end{pmatrix} = 1 = \begin{pmatrix} v \\ aa \end{pmatrix},$$

$$\begin{pmatrix} u \\ bb \end{pmatrix} = 6 = \begin{pmatrix} v \\ bb \end{pmatrix}, \begin{pmatrix} u \\ ab \end{pmatrix} = 4 = \begin{pmatrix} v \\ ba \end{pmatrix}, \begin{pmatrix} u \\ ba \end{pmatrix} = 4 = \begin{pmatrix} v \\ ba \end{pmatrix}.$$

Some properties

1. For all words u, v and for every nonnegative integer k,

$$u \sim_{k+1} v \Rightarrow u \sim_k v$$
.

Some properties

1. For all words u, v and for every nonnegative integer k,

$$u \sim_{k+1} v \Rightarrow u \sim_k v$$
.

2. For all words u, v,

$$u \sim_1 v \Leftrightarrow u \sim_{ab,1} v$$
.

Some properties

1. For all words u, v and for every nonnegative integer k,

$$u \sim_{k+1} v \Rightarrow u \sim_k v$$
.

2. For all words u, v,

$$u \sim_1 v \Leftrightarrow u \sim_{ab,1} v$$
.

Indeed, the words u and v are 1-abelian equivalent if

$$\binom{u}{a} = |u|_a = |v|_a = \binom{v}{a} \ \forall a \in A.$$

k-binomial complexity

Definition

If w is an infinite word, we can define the function

$$\mathbf{b}_{\mathbf{w}}^{(k)}: \mathbb{N} \to \mathbb{N}: n \mapsto \#(\mathsf{Fac}_{\mathbf{w}}(n)/\sim_k),$$

which is called the k-binomial complexity of w.

k-binomial complexity

Definition

If w is an infinite word, we can define the function

$$\mathbf{b}_{\mathbf{w}}^{(k)}: \mathbb{N} \to \mathbb{N}: n \mapsto \#(\mathsf{Fac}_{\mathbf{w}}(n)/\sim_k),$$

which is called the k-binomial complexity of w.

We have an order relation between the different complexity functions:

$$\rho_{\mathbf{w}}^{ab}(n) \leq \mathbf{b}_{\mathbf{w}}^{(k)}(n) \leq \mathbf{b}_{\mathbf{w}}^{(k+1)}(n) \leq p_{\mathbf{w}}(n) \quad \forall n \in \mathbb{N}, k \in \mathbb{N}^{+}$$

where $\rho_{\mathbf{w}}^{ab}$ is the abelian complexity function of the word \mathbf{w} .

k-binomial complexity of Thue–Morse

- Preliminary definitions
 - Words, factors and subwords
 - Complexity functions
 - k-binomial complexity
 - The Thue-Morse word
- 2 Why to compute $\mathbf{b}_t^{(k)}$?
- 3 Computing $\mathbf{b}_{t}^{(k)}$
 - Factorizations
 - Types of order k

A famous word...

Let us define the Thue-Morse morphism

$$arphi:\{0,1\}^* o\{0,1\}^*:\left\{egin{array}{l}0\mapsto01;\1\mapsto10.\end{array}
ight.$$

A famous word...

Let us define the Thue-Morse morphism

$$\varphi: \{0,1\}^* \to \{0,1\}^*: \left\{ egin{array}{l} 0 \mapsto 01; \ 1 \mapsto 10. \end{array} \right.$$

We have

$$arphi(0) = 01, \ arphi^2(0) = 0110, \ arphi^3(0) = 01101001, \ \dots$$

A famous word...

Let us define the Thue-Morse morphism

$$\varphi: \{0,1\}^* \to \{0,1\}^*: \left\{ egin{array}{l} 0 \mapsto 01; \ 1 \mapsto 10. \end{array} \right.$$

We have

$$\varphi(0) = 01,$$
 $\varphi^{2}(0) = 0110,$
 $\varphi^{3}(0) = 01101001,$
...

We can thus define the Thue–Morse word as one of the fixed points of the morphism φ :

$$\mathbf{t} := \varphi^{\omega}(0) = 0110100110010110 \cdots$$

k-binomial complexity of Thue–Morse

- Preliminary definitions
 - Words, factors and subwords
 - Complexity functions
 - k-binomial complexity
 - The Thue-Morse word
- 2 Why to compute $\mathbf{b}_t^{(k)}$?
- 3 Computing $\mathbf{b}_{t}^{(k)}$
 - Factorizations
 - Types of order k

About Morse-Hedlund theorem

A lot of properties about factor complexity are known.

Theorem (Morse-Hedlund)

Let \mathbf{w} be an infinite word on an ℓ -letter alphabet. The three following assertions are equivalent.

- 1. The word \mathbf{w} is ultimately periodic: there exist finite words u and v such that $\mathbf{w} = u \cdot v^{\omega}$.
- 2. There exists $n \in \mathbb{N}$ such that $p_{\mathbf{w}}(n) < n + \ell 1$.
- 3. The function $p_{\mathbf{w}}$ is bounded by a constant.

About Morse-Hedlund theorem

A lot of properties about factor complexity are known.

Theorem (Morse-Hedlund)

Let ${\bf w}$ be an infinite word on an ℓ -letter alphabet. The three following assertions are equivalent.

- 1. The word \mathbf{w} is ultimately periodic: there exist finite words u and v such that $\mathbf{w} = u \cdot v^{\omega}$.
- 2. There exists $n \in \mathbb{N}$ such that $p_{\mathbf{w}}(n) < n + \ell 1$.
- 3. The function $p_{\mathbf{w}}$ is bounded by a constant.

Aperiodic words with minimal complexity

A **Sturmian word** is an infinite word having, as factor complexity, p(n) = n + 1 for all $n \in \mathbb{N}$.

Sturmian words vs. Thue-Morse word

Let **w** be a Sturmian word. We have, for every $n \ge 2$,

$$n < p_{\mathbf{w}}(n) < p_{\mathbf{t}}(n).$$

However, results are quite different when regarding the k-binomial complexity function.

Sturmian words vs. Thue-Morse word

Let **w** be a Sturmian word. We have, for every $n \ge 2$,

$$n < p_{\mathbf{w}}(n) < p_{\mathbf{t}}(n).$$

However, results are quite different when regarding the k-binomial complexity function.

Theorem (M. Rigo, P. Salimov, 2015) Let \mathbf{w} be a Sturmian word. We have $\mathbf{b}_{\mathbf{w}}^{(k)}(n) = p_{\mathbf{w}}(n) = n+1$ for all $k \geq 2$.

Sturmian words vs. Thue-Morse word

Let **w** be a Sturmian word. We have, for every $n \ge 2$,

$$n < p_{\mathbf{w}}(n) < p_{\mathbf{t}}(n).$$

However, results are quite different when regarding the k-binomial complexity function.

Theorem (M. Rigo, P. Salimov, 2015) Let \mathbf{w} be a Sturmian word. We have $\mathbf{b}_{\mathbf{w}}^{(k)}(n) = p_{\mathbf{w}}(n) = n+1$ for all $k \geq 2$.

Theorem (M. Rigo, P. Salimov, 2015)

For every $k \geq 1$, there exists a constant $C_k > 0$ such that, for every $n \in \mathbb{N}$,

$$\mathbf{b}_{\mathbf{t}}^{(k)}(n) \leq C_k.$$

The exact value of $\mathbf{b_t}^{(k)}$

Theorem (M. L., J. Leroy, M. Rigo, 2018) Let k be a positive integer. For every $n \le 2^k - 1$, we have

$$\mathbf{b}_{\mathbf{t}}^{(k)}(n) = p_{\mathbf{t}}(n),$$

while for every $n \geq 2^k$,

$$\mathbf{b_t^{(k)}}(n) = \left\{ \begin{array}{l} 3 \cdot 2^k - 3, & \text{if } n \equiv 0 \pmod{2^k}; \\ 3 \cdot 2^k - 4, & \text{otherwise.} \end{array} \right.$$

k-binomial complexity of Thue–Morse

- Preliminary definitions
 - Words, factors and subwords
 - Complexity functions
 - k-binomial complexity
 - The Thue-Morse word
- 2 Why to compute $\mathbf{b}_t^{(k)}$?
- 3 Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
 - Factorizations
 - Types of order k

k-binomial complexity of Thue–Morse

- Preliminary definitions
 - Words, factors and subwords
 - Complexity functions
 - k-binomial complexity
 - The Thue-Morse word
- 2 Why to compute $\mathbf{b}_t^{(k)}$?
- 3 Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
 - Factorizations
 - Types of order k

Since ${\bf t}$ is the fixed point of φ , we have

$$\mathbf{t} = \varphi(\mathbf{t}) = \varphi^2(\mathbf{t}) = \cdots = \varphi^k(\mathbf{t})$$

for all $k \in \mathbb{N}$.

Since **t** is the fixed point of φ , we have

$$\mathbf{t} = \varphi(\mathbf{t}) = \varphi^2(\mathbf{t}) = \cdots = \varphi^k(\mathbf{t})$$

for all $k \in \mathbb{N}$. Moreover,

$$\varphi^k(\mathbf{t}) = \varphi^k(\mathbf{t}_0)\varphi^k(\mathbf{t}_1)\varphi^k(\mathbf{t}_2)\cdots$$

Since t is the fixed point of φ , we have

$$\mathbf{t} = \varphi(\mathbf{t}) = \varphi^2(\mathbf{t}) = \cdots = \varphi^k(\mathbf{t})$$

for all $k \in \mathbb{N}$. Moreover,

$$\varphi^k(\mathbf{t}) = \varphi^k(\mathbf{t}_0)\varphi^k(\mathbf{t}_1)\varphi^k(\mathbf{t}_2)\cdots$$

Therefore, every factor u of t can be written in the form

$$p\varphi^k(z)s$$
,

where z is also a factor of t and where p (resp., s) is a proper suffix (resp., prefix) of $\varphi^k(0)$ or $\varphi^k(1)$.

Since **t** is the fixed point of φ , we have

$$\mathbf{t} = \varphi(\mathbf{t}) = \varphi^2(\mathbf{t}) = \cdots = \varphi^k(\mathbf{t})$$

for all $k \in \mathbb{N}$. Moreover,

$$\varphi^k(\mathbf{t}) = \varphi^k(\mathbf{t}_0)\varphi^k(\mathbf{t}_1)\varphi^k(\mathbf{t}_2)\cdots$$

Therefore, every factor u of t can be written in the form

$$p\varphi^k(z)s$$
,

where z is also a factor of t and where p (resp., s) is a proper suffix (resp., prefix) of $\varphi^k(0)$ or $\varphi^k(1)$.

The pair (p, s) is called a factorization of order k (or k-factorization) of u.

Factorizations: an example

Example We have

$$\mathbf{t} = \varphi^3(0) \cdot \varphi^3(1) \cdot \varphi^3(1) \cdot \varphi^3(0) \cdot \cdots$$

= 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \cdot \cdot

Factorizations: an example

Example We have

$$\mathbf{t} = \varphi^{3}(0) \qquad \cdot \varphi^{3}(1) \qquad \cdot \varphi^{3}(1) \qquad \cdot \varphi^{3}(0) \qquad \cdots$$

= 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \cdot \cdot

Let u = 010011001011010.

Factorizations: an example

Example

We have

$$\mathbf{t} = \varphi^{3}(0) \qquad \cdot \varphi^{3}(1) \qquad \cdot \varphi^{3}(1) \qquad \cdot \varphi^{3}(0) \qquad \cdot \cdot \cdot$$

= 01101001 \cdot \frac{10010110}{1001010} \cdot \cdot 10010110 \cdot 01101001 \cdot \cdot \cdot

Let u = 010011001011010.

A factorization of order 3 of u is

(01001, 10).

Application: computing $\mathbf{b_t^{(1)}}$

For
$$k = 1$$
, we have $\mathbf{b_t^{(1)}}(0) = 1$, $\mathbf{b_t^{(1)}}(1) = 2$ and, for $n \ge 2$,
$$\mathbf{b_t^{(1)}}(n) = \left\{ \begin{array}{l} 3, & \text{if } n \equiv 0 \pmod{2}; \\ 2, & \text{otherwise.} \end{array} \right.$$

Application: computing $\mathbf{b_t^{(1)}}$

For
$$k = 1$$
, we have $\mathbf{b_t^{(1)}}(0) = 1$, $\mathbf{b_t^{(1)}}(1) = 2$ and, for $n \ge 2$,

$$\mathbf{b_t^{(1)}}(n) = \left\{ egin{array}{ll} 3, & ext{if } n \equiv 0 \ 2, & ext{otherwise.} \end{array}
ight.$$

Let us fix n and let u be a factor of length n of t. There exists words p, z, s such that

$$u=p\varphi(z)s,$$

where $p,s\in\{\varepsilon,0,1\}$, $\varphi(z)\in\{01,10\}^*$ and |p|+2|z|+|s|=n.

Let $n=2\ell+1$ be an odd integer. Every factor of length n of t can be written

$$\varepsilon \varphi(z)0$$
, $\varepsilon \varphi(z)1$, $0\varphi(z)\varepsilon$ or $1\varphi(z)\varepsilon$,

where $|z| = \ell$ and $\varphi(z) \in \{01, 10\}^{\ell}$.

Let $n=2\ell+1$ be an odd integer. Every factor of length n of t can be written

$$\varepsilon \varphi(z)0$$
, $\varepsilon \varphi(z)1$, $0\varphi(z)\varepsilon$ or $1\varphi(z)\varepsilon$,

where $|z| = \ell$ and $\varphi(z) \in \{01, 10\}^{\ell}$.

We have

$$|\varepsilon\varphi(z)0|_0 = \ell + 1 = |0\varphi(z)\varepsilon|_0$$

and

$$|\varepsilon\varphi(z)1|_0=\ell=|1\varphi(z)\varepsilon|_0.$$

Let $n=2\ell+1$ be an odd integer. Every factor of length n of t can be written

$$\varepsilon \varphi(z)0$$
, $\varepsilon \varphi(z)1$, $0\varphi(z)\varepsilon$ or $1\varphi(z)\varepsilon$,

where $|z| = \ell$ and $\varphi(z) \in \{01, 10\}^{\ell}$.

We have

$$|\varepsilon\varphi(z)0|_0 = \ell + 1 = |0\varphi(z)\varepsilon|_0$$

and

$$|\varepsilon\varphi(z)1|_0=\ell=|1\varphi(z)\varepsilon|_0.$$

Since $u \sim_1 v$ iff |u| = |v| and $|u|_0 = |v|_0$, we have

$$\mathbf{b_t^{(1)}}(n) = 2$$

if n is odd.

Let now $n=2\ell$ be an even integer. Every factor of length n of ${\bf t}$ can be written

$$\varepsilon \varphi(z) \varepsilon$$
, $0 \varphi(z') 0$, $0 \varphi(z') 1 1 \varphi(z') 0$, or $1 \varphi(z') 1$,

where $|z|=\ell, |z'|=\ell-1$ and $\varphi(z)\in\{01,10\}^\ell, \varphi(z')\in\{01,10\}^{\ell-1}.$

Let now $n=2\ell$ be an even integer. Every factor of length n of t can be written

$$\varepsilon \varphi(z) \varepsilon$$
, $0 \varphi(z') 0$, $0 \varphi(z') 1 1 \varphi(z') 0$, or $1 \varphi(z') 1$,

where
$$|z|=\ell, |z'|=\ell-1$$
 and $\varphi(z)\in\{01,10\}^\ell, \varphi(z')\in\{01,10\}^{\ell-1}.$

We have

$$\begin{split} |\varepsilon\varphi(z)\varepsilon|_0 &= \ell = |0\varphi(z')1|_0 = |1\varphi(z')0|_0, \\ |0\varphi(z')0|_0 &= \ell + 2 \end{split}$$

and

$$|1\varphi(z')1|_0=\ell.$$

Let now $n=2\ell$ be an even integer. Every factor of length n of t can be written

$$\varepsilon \varphi(z) \varepsilon$$
, $0 \varphi(z') 0$, $0 \varphi(z') 1 1 \varphi(z') 0$, or $1 \varphi(z') 1$,

where
$$|z|=\ell, |z'|=\ell-1$$
 and $\varphi(z)\in\{01,10\}^\ell, \varphi(z')\in\{01,10\}^{\ell-1}.$

We have

$$\begin{split} |\varepsilon\varphi(z)\varepsilon|_0 &= \ell = |0\varphi(z')1|_0 = |1\varphi(z')0|_0, \\ |0\varphi(z')0|_0 &= \ell + 2 \end{split}$$

and

$$|1\varphi(z')1|_0=\ell.$$

Therefore, if *n* is even, $\mathbf{b_t^{(1)}}(n) = 3$.

Let now $n=2\ell$ be an even integer. Every factor of length n of t can be written

$$\varepsilon \varphi(z) \varepsilon$$
, $0 \varphi(z') 0$, $0 \varphi(z') 1 1 \varphi(z') 0$, or $1 \varphi(z') 1$,

where
$$|z|=\ell, |z'|=\ell-1$$
 and $\varphi(z)\in\{01,10\}^\ell, \varphi(z')\in\{01,10\}^{\ell-1}.$

We have

$$\begin{split} |\varepsilon\varphi(z)\varepsilon|_0 &= \ell = |0\varphi(z')1|_0 = |1\varphi(z')0|_0, \\ |0\varphi(z')0|_0 &= \ell + 2 \end{split}$$

and

$$|1\varphi(z')1|_0=\ell.$$

Therefore, if n is even, $\mathbf{b_t^{(1)}}(n) = 3$.

Case where k=2 can also be computed by hand. Let thus assume that k>3.

Is the factorization $p\varphi^k(z)s$ of a word in $\mathsf{Fac_t}$ unique?

Is the factorization $p\varphi^k(z)s$ of a word in Fac_t unique?

No: the word 010 appears as a factor of t several times; it can be factorized as $0\varphi(1)$ or as $\varphi(0)0$.

$$\mathbf{t} = 01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots$$

Is the factorization $p\varphi^k(z)s$ of a word in Fact unique?

No: the word 010 appears as a factor of t several times; it can be factorized as $0\varphi(1)$ or as $\varphi(0)0$.

$$\mathbf{t} = 01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots$$

Proposition

Let $k \ge 3$ and let u be a factor of t of length at least $2^k - 1$.

- If u is a factor of $\varphi^{k-1}(010)$ or $\varphi^{k-1}(101)$
 - it has exactly two factorizations (p, s) and (p', s');
 - we have $||p| |p'|| = ||s| |s'|| = 2^{k-1}$.

Is the factorization $p\varphi^k(z)s$ of a word in Fact unique?

No: the word 010 appears as a factor of t several times; it can be factorized as $0\varphi(1)$ or as $\varphi(0)0$.

$$\mathbf{t} = 01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots$$

Proposition

Let $k \ge 3$ and let u be a factor of t of length at least $2^k - 1$.

- If u is a factor of $\varphi^{k-1}(010)$ or $\varphi^{k-1}(101)$
 - it has exactly two factorizations (p, s) and (p', s');
 - we have $||p| |p'|| = ||s| |s'|| = 2^{k-1}$.
- If u is not a factor of $\varphi^{k-1}(010)$ or $\varphi^{k-1}(101)$
 - it has a unique factorization.

Example

Let us consider the factor u=01001011, which is a subword of $\varphi^2(010)$.

$$\mathbf{t} = \varphi^3(\mathbf{t}) = 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \cdot 10010110 \cdot 01101001 \cdot 01101001 \cdot \cdots$$

Example

Let us consider the factor u=01001011, which is a subword of $\varphi^2(010)$.

$$\mathbf{t} = \varphi^3(\mathbf{t}) = 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \cdot 10010110 \cdot 01101001 \cdot 01101001 \cdot \cdots$$

Hence, (0, 1001011) and (01001, 011) are the two 3-factorizations of u.

Example

Let us consider the factor u=01001011, which is a subword of $\varphi^2(010)$.

$$\mathbf{t} = \varphi^3(\mathbf{t}) = 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \cdot 10010110 \cdot 01101001 \cdot 01101001 \cdot \cdots$$

Hence, (0, 1001011) and (01001, 011) are the two 3-factorizations of u. Observe that

$$(0, \frac{1001011}{}) = (0, \frac{\varphi^2(1)011}{})$$

and

$$(01001,011) = (0\varphi^2(1),011).$$

Example

Let us consider the factor u=01001011, which is a subword of $\varphi^2(010)$.

$$\mathbf{t} = \varphi^3(\mathbf{t}) = 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \cdot 10010110 \cdot 01101001 \cdot 01101001 \cdot \cdots$$

Hence, (0, 1001011) and (01001, 011) are the two 3-factorizations of u. Observe that

$$(0, \frac{1001011}{}) = (0, \frac{\varphi^2(1)011}{})$$

and

$$(01001,011) = (0\varphi^2(1),011).$$

How can we deal with factors having two factorizations? Which one to choose?

k-binomial complexity of Thue–Morse

- Preliminary definitions
 - Words, factors and subwords
 - Complexity functions
 - k-binomial complexity
 - The Thue-Morse word
- 2 Why to compute $\mathbf{b}_t^{(k)}$?
- 3 Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
 - Factorizations
 - Types of order k

Dealing with two factorizations

Equivalence \equiv_k

Let (p_1, s_1) , $(p_2, s_2) \in A^{<2^k} \times A^{<2^k}$. These two are equivalent for \equiv_k if there exist $a \in A$, $x, y \in A^*$ such that one of these cases occurs:

- $|p_1| + |s_1| = |p_2| + |s_2|$ and
 - $(p_1, s_1) = (p_2, s_2);$
 - **2** $(p_1, s_1) = (x\varphi^{k-1}(a), y)$ and $(p_2, s_2) = (x, \varphi^{k-1}(a)y)$;
 - **3** $(p_1, s_1) = (x, \varphi^{k-1}(a)y)$ and $(p_2, s_2) = (x\varphi^{k-1}(a), y)$;
- $|(|p_1|+|s_1|)-(|p_2|+|s_2|)|=2^k \text{ and }$
 - **1** $(p_1, s_1) = (x, y)$ and $(p_2, s_2) = (x\varphi^{k-1}(a), \varphi^{k-1}(\bar{a})y);$
 - **2** $(p_1, s_1) = (x\varphi^{k-1}(a), \varphi^{k-1}(\bar{a})y)$ and $(p_2, s_2) = (x, y)$.

Dealing with two factorizations

Equivalence \equiv_k

Let (p_1, s_1) , $(p_2, s_2) \in A^{<2^k} \times A^{<2^k}$. These two are equivalent for \equiv_k if there exist $a \in A$, $x, y \in A^*$ such that one of these cases occurs:

- $|p_1| + |s_1| = |p_2| + |s_2|$ and
 - $(p_1, s_1) = (p_2, s_2);$
 - **2** $(p_1, s_1) = (x\varphi^{k-1}(a), y)$ and $(p_2, s_2) = (x, \varphi^{k-1}(a)y)$;
 - **3** $(p_1, s_1) = (x, \varphi^{k-1}(a)y)$ and $(p_2, s_2) = (x\varphi^{k-1}(a), y);$
- $|(|p_1|+|s_1|)-(|p_2|+|s_2|)|=2^k$ and
 - **1** $(p_1, s_1) = (x, y)$ and $(p_2, s_2) = (x\varphi^{k-1}(a), \varphi^{k-1}(\bar{a})y);$
 - **2** $(p_1, s_1) = (x\varphi^{k-1}(a), \varphi^{k-1}(\bar{a})y)$ and $(p_2, s_2) = (x, y)$.

Example (continuing)

The word u=01001011 has the two 3-factorizations $(0,\varphi^2(1)011)$ and $(0\varphi^2(1),011)$. This corresponds to case (1.3), where x=0, y=011.

Link between \sim_k and \equiv_k

Proposition

If a word $u \in A^{\geq 2^k-1}$ has two k-factorizations (p_1, s_1) and (p_2, s_2) , then these two are equivalent for \equiv_k .

The equivalence class of the k-factorizations of u is called its type of order k.

Link between \sim_k and \equiv_k

Proposition

If a word $u \in A^{\geq 2^k-1}$ has two k-factorizations (p_1, s_1) and (p_2, s_2) , then these two are equivalent for \equiv_k .

The equivalence class of the k-factorizations of u is called its type of order k.

Theorem

Let u and v be two factors of t of length $n \ge 2^k - 1$. We have

$$u \sim_k v \Leftrightarrow (p_u, s_u) \equiv_k (p_v, s_v).$$

Link between \sim_k and \equiv_k

Proposition

If a word $u \in A^{\geq 2^k-1}$ has two k-factorizations (p_1, s_1) and (p_2, s_2) , then these two are equivalent for \equiv_k .

The equivalence class of the k-factorizations of u is called its type of order k.

Theorem

Let u and v be two factors of t of length $n \ge 2^k - 1$. We have

$$u \sim_k v \Leftrightarrow (p_u, s_u) \equiv_k (p_v, s_v).$$

Therefore, if $k \ge 3$ and $n \ge 2^k$, we have

$$\mathbf{b}_{\mathbf{t}}^{(k)}(n) = \#(\mathsf{Fac}_n(\mathbf{t})/\!\sim_k) = \#(\{(p_u, s_u) \,:\, u \in \mathsf{Fac}_n(\mathbf{t})\}/\!\equiv_k).$$

Computing this quantity

Let $n \geq 2^k$ and for all $\ell \in \{0, \dots, 2^{k-1} - 1\}$, define

$$P_{\ell} = \{(p_u, s_u) : u \in \mathsf{Fac}_n(\mathbf{t}), |p_u| = \ell \text{ or } |p_u| = 2^{k-1} + \ell\}.$$

Computing this quantity

Let $n \geq 2^k$ and for all $\ell \in \{0, \dots, 2^{k-1} - 1\}$, define

$$P_{\ell} = \{(p_u, s_u) : u \in \mathsf{Fac}_n(\mathsf{t}), |p_u| = \ell \text{ or } |p_u| = 2^{k-1} + \ell\}.$$

Example

Let n=15, k=3 and $\ell=2$. We have

$$P_2 = \{(01, 10110), (01, 01001), (10, 10110), (10, 01001), (101001, 0), (101001, 1), (010110, 0), (010110, 1)\}.$$

Computing this quantity

Let $n \geq 2^k$ and for all $\ell \in \{0, \dots, 2^{k-1} - 1\}$, define

$$P_{\ell} = \{(p_u, s_u) : u \in \mathsf{Fac}_n(\mathsf{t}), |p_u| = \ell \text{ or } |p_u| = 2^{k-1} + \ell\}.$$

Example

Let n=15, k=3 and $\ell=2$. We have

$$P_2 = \{(01, 10110), (01, 01001), (10, 10110), (10, 01001), (101001, 0), (101001, 1), (010110, 0), (010110, 1)\}.$$

Hence,

$$\{(p_u,s_u): u\in \mathsf{Fac}_n(\mathsf{t})\} = \bigcup_{\ell=0}^{2^{k-1}-1} P_\ell.$$

If
$$(p_u,s_u)\in P_\ell$$
 and $(p_v,s_v)\in P_{\ell'}$ with $\ell\neq\ell'$, we know that $(p_u,s_u)\not\equiv_k (p_v,s_v).$

If
$$(p_u,s_u)\in P_\ell$$
 and $(p_v,s_v)\in P_{\ell'}$ with $\ell\neq\ell'$, we know that
$$(p_u,s_u)\not\equiv_k (p_v,s_v).$$

Therefore,

$$\mathbf{b_t^{(k)}}(n) = \# \left(\left(\bigcup_{\ell=0}^{2^{k-1}-1} P_\ell \right) \middle/ \equiv_k \right)$$

If
$$(p_u,s_u)\in P_\ell$$
 and $(p_v,s_v)\in P_{\ell'}$ with $\ell\neq\ell'$, we know that
$$(p_u,s_u)\not\equiv_k (p_v,s_v).$$

Therefore,

$$\mathbf{b_t^{(k)}}(n) = \# \left(\left(\bigcup_{\ell=0}^{2^{k-1}-1} P_\ell \right) \middle/ \equiv_k \right) = \sum_{\ell=0}^{2^{k-1}-1} \# (P_\ell / \equiv_k).$$

There exists ℓ_0 such that

$$P_{\ell_0} = \{(p_u, s_u) : u \in \mathsf{Fac}_n(\mathbf{t}), |s_u| = 0 \text{ or } |s_u| = 2^{k-1}\}.$$

There exists ℓ_0 such that

$$P_{\ell_0} = \{(p_u, s_u) : u \in \mathsf{Fac}_n(\mathbf{t}), |s_u| = 0 \text{ or } |s_u| = 2^{k-1}\}.$$

Example

Let n=10, k=3 and $\ell=2$. We have $\ell_0=2$ because

$$P_2 = \{(01, \varepsilon), (10, \varepsilon), \\ (101001, 0110), (101001, 1001), (010110, 0110), (010110, 1001)\}.$$

There exists ℓ_0 such that

$$P_{\ell_0} = \{(p_u, s_u) : u \in \mathsf{Fac}_n(\mathbf{t}), |s_u| = 0 \text{ or } |s_u| = 2^{k-1}\}.$$

Example

Let n=10, k=3 and $\ell=2$. We have $\ell_0=2$ because

$$P_2 = \{(01, \varepsilon), (10, \varepsilon), \\ (101001, 0110), (101001, 1001), (010110, 0110), (010110, 1001)\}.$$

Denote by λ the quantity $n \mod 2^k$. We have

$$0 = \ell_0 \Leftrightarrow \lambda = 0 \text{ or } \lambda = 2^{k-1}.$$

Moreover, we can show that

$$\#((P_0 \cup P_{\ell_0})/\equiv_k) = \begin{cases} 3, & \text{if } \lambda = 0; \\ 2, & \text{if } \lambda = 2^{k-1}; \\ 8, & \text{otherwise;} \end{cases}$$

Moreover, we can show that

$$\#((P_0 \cup P_{\ell_0})/\equiv_k) = \begin{cases} 3, & \text{if } \lambda = 0; \\ 2, & \text{if } \lambda = 2^{k-1}; \\ 8, & \text{otherwise;} \end{cases}$$

and that, for all $\ell \not\in \{0, \ell_0\}$,

$$\#\left(P_{\ell}/\!\equiv_k\right)=6.$$

Moreover, we can show that

$$\#((P_0 \cup P_{\ell_0})/\equiv_k) = \begin{cases} 3, & \text{if } \lambda = 0; \\ 2, & \text{if } \lambda = 2^{k-1}; \\ 8, & \text{otherwise;} \end{cases}$$

and that, for all $\ell \notin \{0, \ell_0\}$,

$$\#(P_{\ell}/\equiv_k)=6.$$

Hence, putting all the information together,

$$\begin{split} \#\left(\{(p_u,s_u): u \in \mathsf{Fac}_n(\mathsf{t})\}/\!\equiv_k\right) &= \sum_{\ell=0}^{2^{k-1}-1} \#\left(P_\ell/\!\equiv_k\right) \\ &= \left\{ \begin{array}{l} 3 \cdot 2^k - 3, & \text{if } \lambda = 0; \\ 3 \cdot 2^k - 4, & \text{otherwise.} \end{array} \right. \end{split}$$

Conclusion

It is also possible to show that, if u, v are two different factors of t of length less than 2^k , then $u \not\sim_k v$.

Therefore, $\mathbf{b_t^{(k)}}(n) = p_{\mathbf{t}}(n)$ for all $n \leq 2^k - 1$.

Conclusion

It is also possible to show that, if u, v are two different factors of t of length less than 2^k , then $u \not\sim_k v$.

Therefore, $\mathbf{b_t^{(k)}}(n) = p_{\mathbf{t}}(n)$ for all $n \leq 2^k - 1$.

Finally, we obtain $\mathbf{b_t^{(k)}}(n) = p_{\mathbf{t}}(n)$ for all $n \leq 2^k - 1$ and, for all $n \geq 2^k$,

$$\mathbf{b_t^{(k)}}(n) = \left\{ \begin{array}{l} 3 \cdot 2^k - 3, & \text{if } n \equiv 0 \pmod{2^k}; \\ 3 \cdot 2^k - 4, & \text{otherwise.} \end{array} \right.$$

To end with an open question...

Theorem (M. Rigo, P. Salimov, 2015)

For every $k \geq 1$ and for every fixed point of a Parikh-constant morphism \mathbf{w} , there exists a constant $C_{\mathbf{w},k} > 0$ such that, for every $n \in \mathbb{N}$,

$$\mathbf{b}_{\mathbf{w}}^{(k)}(n) \leq C_{\mathbf{w},k}.$$

To end with an open question...

Theorem (M. Rigo, P. Salimov, 2015)

For every $k\geq 1$ and for every fixed point of a Parikh-constant morphism \mathbf{w} , there exists a constant $C_{\mathbf{w},k}>0$ such that, for every $n\in\mathbb{N}$,

$$\mathbf{b}_{\mathbf{w}}^{(k)}(n) \leq C_{\mathbf{w},k}.$$

A Parikh-constant morphism is a morphism for which the images of all letters are equal up to a permutation.

Example

The morphism
$$\sigma:\{0,1,2\}^* \to \{0,1,2\}^*: \left\{ \begin{array}{ccc} 0 & \mapsto & 0112 \\ 1 & \mapsto & 1021 \end{array} \right.$$
 is

Parikh-constant.

To end with an open question...

Theorem (M. Rigo, P. Salimov, 2015)

For every $k\geq 1$ and for every fixed point of a Parikh-constant morphism \mathbf{w} , there exists a constant $C_{\mathbf{w},k}>0$ such that, for every $n\in\mathbb{N}$,

$$\mathbf{b}_{\mathbf{w}}^{(k)}(n) \leq C_{\mathbf{w},k}.$$

A Parikh-constant morphism is a morphism for which the images of all letters are equal up to a permutation.

Example

The morphism
$$\sigma:\{0,1,2\}^* \to \{0,1,2\}^*: \left\{ \begin{array}{ccc} 0 & \mapsto & 0112 \\ 1 & \mapsto & 1021 \end{array} \right.$$
 is $\left\{ \begin{array}{ccc} 0 & \mapsto & 0112 \\ 2 & \mapsto & 2011 \end{array} \right.$

Parikh-constant.

Does it exist such an aperiodic word \mathbf{w} such that $\mathbf{b}_{\mathbf{w}}^{(k)}(n) < \mathbf{b}_{\mathbf{t}}^{(k)}(n)$ for all large enough n?

Thank you!