Computing the k-binomial complexity of the Thue-Morse word

August 09, 2019
Marie Lejeune (FNRs grantee) Joint work with Julien Leroy and Michel Rigo

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

$$
\operatorname{Fac}_{\mathbf{t}}(1)=\{0, \quad\}
$$

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

$$
\operatorname{Fac}_{\mathbf{t}}(1)=\{0,1\} .
$$

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

$$
\operatorname{Fac}_{\mathbf{t}}(4)=\{0110,
$$

$$
\} .
$$

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

$$
\operatorname{Fac}_{\mathbf{t}}(4)=\{0110,1101
$$

$$
\}
$$

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

$$
\operatorname{Fac}_{\mathbf{t}}(4)=\{0110,1101,1010\}
$$

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

$$
\operatorname{Fac}_{\mathbf{t}}(4)=\{0110,1101,1010,0100\}
$$

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

$$
\operatorname{Fac}_{\mathbf{t}}(4)=\{0110,1101,1010,0100,1001\}
$$

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

$$
\operatorname{Fac}_{\mathbf{t}}(4)=\{0110,1101,1010,0100,1001, \ldots\}
$$

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

$$
\operatorname{Fac}_{\mathbf{t}}(4)=\{0110,1101,1010,0100,1001, \ldots\}
$$

The factor complexity

$$
p_{\mathbf{t}}: n \mapsto \# \mathrm{Fac}_{\mathbf{t}}(n)
$$

is not bounded by a constant.

k-binomial complexity of Thue-Morse

Let's look at the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and more precisely at its factors of a given length:

$$
\operatorname{Fac}_{\mathbf{t}}(4)=\{0110,1101,1010,0100,1001, \ldots\}
$$

The factor complexity

$$
p_{\mathbf{t}}: n \mapsto \# \mathrm{Fac}_{\mathbf{t}}(n)
$$

is not bounded by a constant while k-binomial complexity

$$
\mathbf{b}_{\mathbf{t}}^{(k)}: n \mapsto \#\left(\operatorname{Fac}_{\mathbf{t}}(n) / \sim_{k}\right)
$$

is bounded.

k-binomial complexity of Thue-Morse

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
- The Thue-Morse word
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Factorizations
- Types of order k

k-binomial complexity of Thue-Morse

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
- The Thue-Morse word
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Factorizations
- Types of order k

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=$ abacaba. The word $a c b$ is a subword of u, but not a factor of u.

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|\mathbf{u}|_{\mathrm{x}}$ the number of times it appears as a factor in u.

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

If $u=$ aababa,

$$
|u|_{a b}=? \text { and }\binom{u}{a b}=\text { ? }
$$

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

If $u=a a b a b a$,

$$
|u|_{a b}=1 \text { and }\binom{u}{a b}=?
$$

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

If $u=$ aababa,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=?
$$

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

If $u=$ aababa,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=?
$$

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

If $u=a a b a b a$,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=1 .
$$

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

If $u=a a b a b a$,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=2 .
$$

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

If $u=a a b a b a$,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=3 .
$$

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

If $u=$ aababa,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=4 .
$$

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

If $u=$ aababa,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=5 .
$$

Factors and subwords

Let $u=u_{1} u_{2} \cdots u_{m}$ be a finite or infinite word.

Definition

A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$. A factor of u is a contiguous subword.

Let $u=a b a c a b a$. The word $a c b$ is a subword of u, but not a factor of u. The word acab is a factor of u, thus also a subword of u.

Let $\binom{\mathbf{u}}{\mathbf{x}}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

If $u=$ aababa,

$$
|u|_{a b}=2 \text { and }\binom{u}{a b}=5 .
$$

k-binomial complexity of Thue-Morse

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
- The Thue-Morse word
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Factorizations
- Types of order k

Factor complexity

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length- n factors of \mathbf{w}.

Factor complexity

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length- n factors of \mathbf{w}.

Definition

The factor complexity of the word \mathbf{w} is the function

$$
p_{\mathbf{w}}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}: n \mapsto \# \operatorname{Fac}_{\mathbf{w}}(n)
$$

Factor complexity

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length- n factors of \mathbf{w}.

$$
\begin{aligned}
& \text { Definition } \\
& \text { The factor complexity of the word } \mathbf{w} \text { is the function } \\
& \qquad p_{\mathbf{w}}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}: n \mapsto \#\left(\operatorname{Fac}_{\mathbf{w}}(n) / \sim_{=}\right) \text {, } \\
& \text { where } u \sim_{=} v \Leftrightarrow u=v \text {. }
\end{aligned}
$$

Factor complexity

Let \mathbf{w} be an infinite word. A complexity function of \mathbf{w} is an application linking every nonnegative integer n with length- n factors of \mathbf{w}.

$$
\begin{aligned}
& \text { Definition } \\
& \text { The factor complexity of the word } \mathbf{w} \text { is the function } \\
& \qquad p_{\mathbf{w}}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}: n \mapsto \#\left(\operatorname{Fac}_{\mathbf{w}}(n) / \sim_{=}\right) \text {, } \\
& \text { where } u \sim_{=} v \Leftrightarrow u=v \text {. }
\end{aligned}
$$

We can replace $\sim=$ with other equivalence relations.

Other equivalence relations

Different equivalence relations from $\sim_{=}$can be considered:

Other equivalence relations

Different equivalence relations from $\sim=$ can be considered:

- abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$

Other equivalence relations

Different equivalence relations from $\sim=$ can be considered:

- abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$

If $k \in \mathbb{N}$,

- k-abelian equivalence: $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A^{\leq k}$

Other equivalence relations

Different equivalence relations from $\sim=$ can be considered:

- abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$

If $k \in \mathbb{N}$,

- k-abelian equivalence: $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A^{\leq k}$
- k-binomial equivalence: $u \sim_{k} v \Leftrightarrow\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k}$

Other equivalence relations

Different equivalence relations from $\sim=$ can be considered:

- abelian equivalence: $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$

If $k \in \mathbb{N}$,

- k-abelian equivalence: $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A^{\leq k}$
- k-binomial equivalence: $u \sim_{k} v \Leftrightarrow\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k}$

We will deal with the last one.

k-binomial complexity of Thue-Morse

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
- The Thue-Morse word
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Factorizations
- Types of order k

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=1=\binom{v}{a}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=1=\binom{v}{b}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=2=\binom{v}{b}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=3=\binom{v}{b}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a} & =2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6 & =\binom{v}{b b}
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a} & =2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6 & =\binom{v}{b b},\binom{u}{a b}=1=\binom{v}{a b}
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
&\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
&\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=2=\binom{v}{a b}
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a} & =2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6 & =\binom{v}{b b},\binom{u}{a b}=3=\binom{v}{a b}
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a} & =2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6 & =\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b}
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=1=\binom{v}{b a} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=2=\binom{v}{b a} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=3=\binom{v}{b a} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=4=\binom{v}{b a} .
\end{aligned}
$$

k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=4=\binom{v}{b a} .
\end{aligned}
$$

Some properties

1. For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} \quad V \Rightarrow u \sim_{k} v
$$

Some properties

1. For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v .
$$

2. For all words u, v,

$$
u \sim_{1} v \Leftrightarrow u \sim_{a b, 1} v .
$$

Some properties

1. For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v
$$

2. For all words u, v,

$$
u \sim_{1} v \Leftrightarrow u \sim_{a b, 1} v
$$

Indeed, the words u and v are 1-abelian equivalent if

$$
\binom{u}{a}=|u|_{a}=|v|_{a}=\binom{v}{a} \forall a \in A .
$$

k-binomial complexity

Definition

If \mathbf{w} is an infinite word, we can define the function

$$
\mathbf{b}_{w}^{(k)}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{\mathbf{w}}(n) / \sim_{k}\right)
$$

which is called the \mathbf{k}-binomial complexity of \mathbf{w}.

k-binomial complexity

Definition

If \mathbf{w} is an infinite word, we can define the function

$$
\mathbf{b}_{\mathbf{w}}^{(k)}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{\mathbf{w}}(n) / \sim_{k}\right)
$$

which is called the \mathbf{k}-binomial complexity of \mathbf{w}.

We have an order relation between the different complexity functions:

$$
\rho_{\mathbf{w}}^{a b}(n) \leq \mathbf{b}_{\mathbf{w}}^{(k)}(n) \leq \mathbf{b}_{\mathbf{w}}^{(k+1)}(n) \leq p_{\mathbf{w}}(n) \quad \forall n \in \mathbb{N}, k \in \mathbb{N}^{+}
$$

where $\rho_{\mathbf{w}}^{a b}$ is the abelian complexity function of the word \mathbf{w}.

k-binomial complexity of Thue-Morse

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
- The Thue-Morse word
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing $\mathbf{b}_{t}^{(k)}$
- Factorizations
- Types of order k

A famous word...

Let us define the Thue-Morse morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 10
\end{array}\right.
$$

A famous word...

Let us define the Thue-Morse morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 10
\end{array}\right.
$$

We have

$$
\begin{aligned}
\varphi(0) & =01 \\
\varphi^{2}(0) & =0110 \\
\varphi^{3}(0) & =01101001
\end{aligned}
$$

A famous word...

Let us define the Thue-Morse morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 10
\end{array}\right.
$$

We have

$$
\begin{aligned}
\varphi(0) & =01 \\
\varphi^{2}(0) & =0110 \\
\varphi^{3}(0) & =01101001
\end{aligned}
$$

We can thus define the Thue-Morse word as one of the fixed points of the morphism φ :

$$
\mathbf{t}:=\varphi^{\omega}(0)=0110100110010110 \cdots
$$

k-binomial complexity of Thue-Morse

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
- The Thue-Morse word
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Factorizations
- Types of order k

About Morse-Hedlund theorem

A lot of properties about factor complexity are known.
Theorem (Morse-Hedlund)
Let \mathbf{w} be an infinite word on an ℓ-letter alphabet. The three following assertions are equivalent.

1. The word \mathbf{w} is ultimately periodic: there exist finite words u and v such that $\mathbf{w}=u \cdot v^{\omega}$.
2. There exists $n \in \mathbb{N}$ such that $p_{\mathbf{w}}(n)<n+\ell-1$.
3. The function $p_{\mathbf{w}}$ is bounded by a constant.

About Morse-Hedlund theorem

A lot of properties about factor complexity are known.
Theorem (Morse-Hedlund)
Let \mathbf{w} be an infinite word on an ℓ-letter alphabet. The three following assertions are equivalent.

1. The word \mathbf{w} is ultimately periodic: there exist finite words u and v such that $\mathbf{w}=u \cdot v^{\omega}$.
2. There exists $n \in \mathbb{N}$ such that $p_{w}(n)<n+\ell-1$.
3. The function $p_{\mathbf{w}}$ is bounded by a constant.

Aperiodic words with minimal complexity
A Sturmian word is an infinite word having, as factor complexity, $p(n)=n+1$ for all $n \in \mathbb{N}$.

Sturmian words vs. Thue-Morse word

Let \mathbf{w} be a Sturmian word. We have, for every $n \geq 2$,

$$
n<p_{\mathrm{w}}(n)<p_{\mathrm{t}}(n)
$$

However, results are quite different when regarding the k-binomial complexity function.

Sturmian words vs. Thue-Morse word

Let \mathbf{w} be a Sturmian word. We have, for every $n \geq 2$,

$$
n<p_{\mathbf{w}}(n)<p_{\mathrm{t}}(n)
$$

However, results are quite different when regarding the k-binomial complexity function.

Theorem (M. Rigo, P. Salimov, 2015)
Let \mathbf{w} be a Sturmian word. We have $\mathbf{b}_{\mathbf{w}}^{(k)}(n)=p_{\mathbf{w}}(n)=n+1$ for all $k \geq 2$.

Sturmian words vs. Thue-Morse word

Let \mathbf{w} be a Sturmian word. We have, for every $n \geq 2$,

$$
n<p_{\mathbf{w}}(n)<p_{\mathbf{t}}(n)
$$

However, results are quite different when regarding the k-binomial complexity function.

Theorem (M. Rigo, P. Salimov, 2015)
Let \mathbf{w} be a Sturmian word. We have $\mathbf{b}_{\mathbf{w}}^{(k)}(n)=p_{\mathbf{w}}(n)=n+1$ for all $k \geq 2$.

Theorem (M. Rigo, P. Salimov, 2015)
For every $k \geq 1$, there exists a constant $C_{k}>0$ such that, for every $n \in \mathbb{N}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n) \leq C_{k} .
$$

The exact value of $\mathbf{b}_{\mathbf{t}}^{(k)}$

Theorem (M. L., J. Leroy, M. Rigo, 2018)
Let k be a positive integer. For every $n \leq 2^{k}-1$, we have

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n),
$$

while for every $n \geq 2^{k}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)= \begin{cases}3 \cdot 2^{k}-3, & \text { if } n \equiv 0 \quad\left(\bmod 2^{k}\right) \\ 3 \cdot 2^{k}-4, & \text { otherwise }\end{cases}
$$

k-binomial complexity of Thue-Morse

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
- The Thue-Morse word
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Factorizations
- Types of order k

k-binomial complexity of Thue-Morse

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
- The Thue-Morse word
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Factorizations
- Types of order k

Factorizations

Since \mathbf{t} is the fixed point of φ, we have

$$
\mathbf{t}=\varphi(\mathbf{t})=\varphi^{2}(\mathbf{t})=\cdots=\varphi^{k}(\mathbf{t})
$$

for all $k \in \mathbb{N}$.

Factorizations

Since \mathbf{t} is the fixed point of φ, we have

$$
\mathbf{t}=\varphi(\mathbf{t})=\varphi^{2}(\mathbf{t})=\cdots=\varphi^{k}(\mathbf{t})
$$

for all $k \in \mathbb{N}$. Moreover,

$$
\varphi^{k}(\mathbf{t})=\varphi^{k}\left(\mathbf{t}_{0}\right) \varphi^{k}\left(\mathbf{t}_{1}\right) \varphi^{k}\left(\mathbf{t}_{2}\right) \cdots
$$

Factorizations

Since \mathbf{t} is the fixed point of φ, we have

$$
\mathbf{t}=\varphi(\mathbf{t})=\varphi^{2}(\mathbf{t})=\cdots=\varphi^{k}(\mathbf{t})
$$

for all $k \in \mathbb{N}$. Moreover,

$$
\varphi^{k}(\mathbf{t})=\varphi^{k}\left(\mathbf{t}_{0}\right) \varphi^{k}\left(\mathbf{t}_{1}\right) \varphi^{k}\left(\mathbf{t}_{2}\right) \cdots
$$

Therefore, every factor u of \mathbf{t} can be written in the form

$$
p \varphi^{k}(z) s
$$

where z is also a factor of t and where p (resp., s) is a proper suffix (resp., prefix) of $\varphi^{k}(0)$ or $\varphi^{k}(1)$.

Factorizations

Since \mathbf{t} is the fixed point of φ, we have

$$
\mathbf{t}=\varphi(\mathbf{t})=\varphi^{2}(\mathbf{t})=\cdots=\varphi^{k}(\mathbf{t})
$$

for all $k \in \mathbb{N}$. Moreover,

$$
\varphi^{k}(\mathbf{t})=\varphi^{k}\left(\mathbf{t}_{0}\right) \varphi^{k}\left(\mathbf{t}_{1}\right) \varphi^{k}\left(\mathbf{t}_{2}\right) \cdots
$$

Therefore, every factor u of \mathbf{t} can be written in the form

$$
p \varphi^{k}(z) s
$$

where z is also a factor of t and where p (resp., s) is a proper suffix (resp., prefix) of $\varphi^{k}(0)$ or $\varphi^{k}(1)$.

The pair (p, s) is called a factorization of order k (or k-factorization) of u.

Factorizations: an example

Example

We have

$$
\begin{aligned}
\mathbf{t} & =\varphi^{3}(0) \cdot \varphi^{3}(1) \cdot \varphi^{3}(1) \quad \cdot \varphi^{3}(0) \quad \ldots \\
& =01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \cdots
\end{aligned}
$$

Factorizations: an example

Example

We have

$$
\begin{aligned}
\mathbf{t} & =\varphi^{3}(0) \cdot \varphi^{3}(1) \cdot \varphi^{3}(1) \quad \cdot \varphi^{3}(0) \quad \ldots \\
& =01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \cdots
\end{aligned}
$$

Let $u=010011001011010$.

Factorizations: an example

Example

We have

$$
\begin{aligned}
\mathbf{t} & =\varphi^{3}(0) \cdot \varphi^{3}(1) \cdot \varphi^{3}(1) \quad \cdot \varphi^{3}(0) \quad \cdots \\
& =01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \cdots
\end{aligned}
$$

Let $u=010011001011010$.
A factorization of order 3 of u is

$$
(01001,10)
$$

Application: computing $\mathbf{b}_{\mathbf{t}}^{(1)}$

For $k=1$, we have $\mathbf{b}_{\mathbf{t}}^{(1)}(0)=1, \mathbf{b}_{\mathbf{t}}^{(1)}(1)=2$ and, for $n \geq 2$,

$$
\mathbf{b}_{\mathbf{t}}^{(1)}(n)= \begin{cases}3, & \text { if } n \equiv 0 \quad(\bmod 2) ; \\ 2, & \text { otherwise }\end{cases}
$$

Application: computing $\mathbf{b}_{\mathbf{t}}^{(1)}$

For $k=1$, we have $\mathbf{b}_{\mathbf{t}}^{(1)}(0)=1, \mathbf{b}_{\mathbf{t}}^{(1)}(1)=2$ and, for $n \geq 2$,

$$
\mathbf{b}_{\mathbf{t}}^{(1)}(n)= \begin{cases}3, & \text { if } n \equiv 0 \quad(\bmod 2) ; \\ 2, & \text { otherwise }\end{cases}
$$

Let us fix n and let u be a factor of length n of \mathbf{t}. There exists words p, z, s such that

$$
u=p \varphi(z) s
$$

where $p, s \in\{\varepsilon, 0,1\}, \varphi(z) \in\{01,10\}^{*}$ and $|p|+2|z|+|s|=n$.

Application: computing $\mathbf{b}_{\mathbf{t}}^{(1)}$ (continued)

Let $n=2 \ell+1$ be an odd integer. Every factor of length n of \mathbf{t} can be written

$$
\varepsilon \varphi(z) 0, \quad \varepsilon \varphi(z) 1, \quad 0 \varphi(z) \varepsilon \text { or } 1 \varphi(z) \varepsilon
$$

where $|z|=\ell$ and $\varphi(z) \in\{01,10\}^{\ell}$.

Application: computing $\mathbf{b}_{\mathbf{t}}^{(1)}$ (continued)

Let $n=2 \ell+1$ be an odd integer. Every factor of length n of \mathbf{t} can be written

$$
\varepsilon \varphi(z) 0, \quad \varepsilon \varphi(z) 1, \quad 0 \varphi(z) \varepsilon \text { or } 1 \varphi(z) \varepsilon
$$

where $|z|=\ell$ and $\varphi(z) \in\{01,10\}^{\ell}$.
We have

$$
|\varepsilon \varphi(z) 0|_{0}=\ell+1=|0 \varphi(z) \varepsilon|_{0}
$$

and

$$
|\varepsilon \varphi(z) 1|_{0}=\ell=|1 \varphi(z) \varepsilon|_{0}
$$

Application: computing $\mathbf{b}_{\mathbf{t}}^{(1)}$ (continued)

Let $n=2 \ell+1$ be an odd integer. Every factor of length n of \mathbf{t} can be written

$$
\varepsilon \varphi(z) 0, \quad \varepsilon \varphi(z) 1, \quad 0 \varphi(z) \varepsilon \text { or } 1 \varphi(z) \varepsilon
$$

where $|z|=\ell$ and $\varphi(z) \in\{01,10\}^{\ell}$.
We have

$$
|\varepsilon \varphi(z) 0|_{0}=\ell+1=|0 \varphi(z) \varepsilon|_{0}
$$

and

$$
|\varepsilon \varphi(z) 1|_{0}=\ell=|1 \varphi(z) \varepsilon|_{0}
$$

Since $u \sim_{1} v$ iff $|u|=|v|$ and $|u|_{0}=|v|_{0}$, we have

$$
\mathbf{b}_{\mathbf{t}}^{(1)}(n)=2
$$

if n is odd.

Application: computing $\mathbf{b}_{\mathbf{t}}^{(1)}$ (continued)

Let now $n=2 \ell$ be an even integer. Every factor of length n of \mathbf{t} can be written

$$
\varepsilon \varphi(z) \varepsilon, \quad 0 \varphi\left(z^{\prime}\right) 0, \quad 0 \varphi\left(z^{\prime}\right) 11 \varphi\left(z^{\prime}\right) 0, \text { or } 1 \varphi\left(z^{\prime}\right) 1
$$

where $|z|=\ell,\left|z^{\prime}\right|=\ell-1$ and $\varphi(z) \in\{01,10\}^{\ell}, \varphi\left(z^{\prime}\right) \in\{01,10\}^{\ell-1}$.

Application: computing $\mathbf{b}_{\mathbf{t}}^{(1)}$ (continued)

Let now $n=2 \ell$ be an even integer. Every factor of length n of \mathbf{t} can be written

$$
\varepsilon \varphi(z) \varepsilon, \quad 0 \varphi\left(z^{\prime}\right) 0, \quad 0 \varphi\left(z^{\prime}\right) 11 \varphi\left(z^{\prime}\right) 0, \text { or } 1 \varphi\left(z^{\prime}\right) 1
$$

where $|z|=\ell,\left|z^{\prime}\right|=\ell-1$ and $\varphi(z) \in\{01,10\}^{\ell}, \varphi\left(z^{\prime}\right) \in\{01,10\}^{\ell-1}$.
We have

$$
\begin{gathered}
|\varepsilon \varphi(z) \varepsilon|_{0}=\ell=\left|0 \varphi\left(z^{\prime}\right) 1\right|_{0}=\left|1 \varphi\left(z^{\prime}\right) 0\right|_{0} \\
\left|0 \varphi\left(z^{\prime}\right) 0\right|_{0}=\ell+2
\end{gathered}
$$

and

$$
\left|1 \varphi\left(z^{\prime}\right) 1\right|_{0}=\ell
$$

Application: computing $\mathbf{b}_{\mathbf{t}}^{(1)}$ (continued)

Let now $n=2 \ell$ be an even integer. Every factor of length n of \mathbf{t} can be written

$$
\varepsilon \varphi(z) \varepsilon, \quad 0 \varphi\left(z^{\prime}\right) 0, \quad 0 \varphi\left(z^{\prime}\right) 11 \varphi\left(z^{\prime}\right) 0, \text { or } 1 \varphi\left(z^{\prime}\right) 1
$$

where $|z|=\ell,\left|z^{\prime}\right|=\ell-1$ and $\varphi(z) \in\{01,10\}^{\ell}, \varphi\left(z^{\prime}\right) \in\{01,10\}^{\ell-1}$.
We have

$$
\begin{gathered}
|\varepsilon \varphi(z) \varepsilon|_{0}=\ell=\left|0 \varphi\left(z^{\prime}\right) 1\right|_{0}=\left|1 \varphi\left(z^{\prime}\right) 0\right|_{0} \\
\left|0 \varphi\left(z^{\prime}\right) 0\right|_{0}=\ell+2
\end{gathered}
$$

and

$$
\left|1 \varphi\left(z^{\prime}\right) 1\right|_{0}=\ell
$$

Therefore, if n is even, $\mathbf{b}_{\mathbf{t}}^{(1)}(n)=3$.

Application: computing $\mathbf{b}_{\mathbf{t}}^{(1)}$ (continued)

Let now $n=2 \ell$ be an even integer. Every factor of length n of \mathbf{t} can be written

$$
\varepsilon \varphi(z) \varepsilon, \quad 0 \varphi\left(z^{\prime}\right) 0, \quad 0 \varphi\left(z^{\prime}\right) 11 \varphi\left(z^{\prime}\right) 0, \text { or } 1 \varphi\left(z^{\prime}\right) 1
$$

where $|z|=\ell,\left|z^{\prime}\right|=\ell-1$ and $\varphi(z) \in\{01,10\}^{\ell}, \varphi\left(z^{\prime}\right) \in\{01,10\}^{\ell-1}$.
We have

$$
\begin{gathered}
|\varepsilon \varphi(z) \varepsilon|_{0}=\ell=\left|0 \varphi\left(z^{\prime}\right) 1\right|_{0}=\left|1 \varphi\left(z^{\prime}\right) 0\right|_{0} \\
\left|0 \varphi\left(z^{\prime}\right) 0\right|_{0}=\ell+2
\end{gathered}
$$

and

$$
\left|1 \varphi\left(z^{\prime}\right) 1\right|_{0}=\ell
$$

Therefore, if n is even, $\mathbf{b}_{\mathbf{t}}^{(1)}(n)=3$.
Case where $k=2$ can also be computed by hand. Let thus assume that $k \geq 3$.

Unicity of the factorization?

Is the factorization $p \varphi^{k}(z) s$ of a word in $\mathrm{Fac}_{\mathbf{t}}$ unique?

Unicity of the factorization?

Is the factorization $p \varphi^{k}(z) s$ of a word in $\mathrm{Fac}_{\mathbf{t}}$ unique?
No: the word 010 appears as a factor of \mathbf{t} several times; it can be factorized as $0 \varphi(1)$ or as $\varphi(0) 0$.

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

Unicity of the factorization?

Is the factorization $p \varphi^{k}(z) s$ of a word in $\mathrm{Fac}_{\mathbf{t}}$ unique?
No: the word 010 appears as a factor of \mathbf{t} several times; it can be factorized as $0 \varphi(1)$ or as $\varphi(0) 0$.

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

Proposition

Let $k \geq 3$ and let u be a factor of \mathbf{t} of length at least $2^{k}-1$.

- If u is a factor of $\varphi^{k-1}(010)$ or $\varphi^{k-1}(101)$
- it has exactly two factorizations (p, s) and $\left(p^{\prime}, s^{\prime}\right)$;
- we have $\left\|p\left|-\left|p^{\prime}\right|\right|=\right\| s\left|-\left|s^{\prime}\right|\right|=2^{k-1}$.

Unicity of the factorization?

Is the factorization $p \varphi^{k}(z) s$ of a word in $\mathrm{Fac}_{\mathbf{t}}$ unique?
No: the word 010 appears as a factor of \mathbf{t} several times; it can be factorized as $0 \varphi(1)$ or as $\varphi(0) 0$.

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

Proposition

Let $k \geq 3$ and let u be a factor of \mathbf{t} of length at least $2^{k}-1$.

- If u is a factor of $\varphi^{k-1}(010)$ or $\varphi^{k-1}(101)$
- it has exactly two factorizations (p, s) and $\left(p^{\prime}, s^{\prime}\right)$;
- we have $\left||p|-\left|p^{\prime}\right|\right|=\| s\left|-\left|s^{\prime}\right|\right|=2^{k-1}$.
- If u is not a factor of $\varphi^{k-1}(010)$ or $\varphi^{k-1}(101)$
- it has a unique factorization.

Relation between factorizations of a word: an example

Example

Let us consider the factor $u=01001011$, which is a subword of $\varphi^{2}(010)$.

$$
\begin{aligned}
\mathbf{t}=\varphi^{3}(\mathbf{t})= & 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \\
& 10010110 \cdot 01101001 \cdot 01101001 \cdots
\end{aligned}
$$

Relation between factorizations of a word: an example

Example

Let us consider the factor $u=01001011$, which is a subword of $\varphi^{2}(010)$.

$$
\begin{aligned}
\mathbf{t}=\varphi^{3}(\mathbf{t})= & 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \\
& 10010110 \cdot 01101001 \cdot 01101001 \cdots
\end{aligned}
$$

Hence, $(0,1001011)$ and $(01001,011)$ are the two 3-factorizations of u.

Relation between factorizations of a word: an example

Example

Let us consider the factor $u=01001011$, which is a subword of $\varphi^{2}(010)$.

$$
\begin{aligned}
\mathbf{t}=\varphi^{3}(\mathbf{t})= & 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \\
& 10010110 \cdot 01101001 \cdot 01101001 \cdots
\end{aligned}
$$

Hence, $(0,1001011)$ and $(01001,011)$ are the two 3-factorizations of u. Observe that

$$
(0,1001011)=\left(0, \varphi^{2}(1) 011\right)
$$

and

$$
(01001,011)=\left(0 \varphi^{2}(1), 011\right)
$$

Relation between factorizations of a word: an example

Example

Let us consider the factor $u=01001011$, which is a subword of $\varphi^{2}(010)$.

$$
\begin{aligned}
\mathbf{t}=\varphi^{3}(\mathbf{t})= & 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \\
& 10010110 \cdot 01101001 \cdot 01101001 \cdots
\end{aligned}
$$

Hence, $(0,1001011)$ and $(01001,011)$ are the two 3-factorizations of u. Observe that

$$
(0,1001011)=\left(0, \varphi^{2}(1) 011\right)
$$

and

$$
(01001,011)=\left(0 \varphi^{2}(1), 011\right)
$$

How can we deal with factors having two factorizations? Which one to choose?

k-binomial complexity of Thue-Morse

(1) Preliminary definitions

- Words, factors and subwords
- Complexity functions
- k-binomial complexity
- The Thue-Morse word
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Factorizations
- Types of order k

Dealing with two factorizations

Equivalence \equiv_{k}

Let $\left(p_{1}, s_{1}\right),\left(p_{2}, s_{2}\right) \in A^{<2^{k}} \times A^{<2^{k}}$. These two are equivalent for \equiv_{k} if there exist $a \in A, x, y \in A^{*}$ such that one of these cases occurs:
(1) $\left|p_{1}\right|+\left|s_{1}\right|=\left|p_{2}\right|+\left|s_{2}\right|$ and
(1) $\left(p_{1}, s_{1}\right)=\left(p_{2}, s_{2}\right)$;
(2) $\left(p_{1}, s_{1}\right)=\left(x \varphi^{k-1}(a), y\right)$ and $\left(p_{2}, s_{2}\right)=\left(x, \varphi^{k-1}(a) y\right)$;
(3) $\left(p_{1}, s_{1}\right)=\left(x, \varphi^{k-1}(a) y\right)$ and $\left(p_{2}, s_{2}\right)=\left(x \varphi^{k-1}(a), y\right)$;
(1) $\left(p_{1}, s_{1}\right)=\left(\varphi^{k-1}(a), \varphi^{k-1}(\bar{a})\right)$ and $\left(p_{2}, s_{2}\right)=\left(\varphi^{k-1}(\bar{a}), \varphi^{k-1}(a)\right)$;
(2) $\left|\left(\left|p_{1}\right|+\left|s_{1}\right|\right)-\left(\left|p_{2}\right|+\left|s_{2}\right|\right)\right|=2^{k}$ and
(1) $\left(p_{1}, s_{1}\right)=(x, y)$ and $\left(p_{2}, s_{2}\right)=\left(x \varphi^{k-1}(a), \varphi^{k-1}(\bar{a}) y\right)$;
(2) $\left(p_{1}, s_{1}\right)=\left(x \varphi^{k-1}(a), \varphi^{k-1}(\bar{a}) y\right)$ and $\left(p_{2}, s_{2}\right)=(x, y)$.

Dealing with two factorizations

Equivalence \equiv_{k}

Let $\left(p_{1}, s_{1}\right),\left(p_{2}, s_{2}\right) \in A^{<2^{k}} \times A^{<2^{k}}$. These two are equivalent for \equiv_{k} if there exist $a \in A, x, y \in A^{*}$ such that one of these cases occurs:
(1) $\left|p_{1}\right|+\left|s_{1}\right|=\left|p_{2}\right|+\left|s_{2}\right|$ and
(1) $\left(p_{1}, s_{1}\right)=\left(p_{2}, s_{2}\right)$;
(2) $\left(p_{1}, s_{1}\right)=\left(x \varphi^{k-1}(a), y\right)$ and $\left(p_{2}, s_{2}\right)=\left(x, \varphi^{k-1}(a) y\right)$;
(3) $\left(p_{1}, s_{1}\right)=\left(x, \varphi^{k-1}(a) y\right)$ and $\left(p_{2}, s_{2}\right)=\left(x \varphi^{k-1}(a), y\right)$;
(1) $\left(p_{1}, s_{1}\right)=\left(\varphi^{k-1}(a), \varphi^{k-1}(\bar{a})\right)$ and $\left(p_{2}, s_{2}\right)=\left(\varphi^{k-1}(\bar{a}), \varphi^{k-1}(a)\right)$;
(2) $\left|\left(\left|p_{1}\right|+\left|s_{1}\right|\right)-\left(\left|p_{2}\right|+\left|s_{2}\right|\right)\right|=2^{k}$ and
(1) $\left(p_{1}, s_{1}\right)=(x, y)$ and $\left(p_{2}, s_{2}\right)=\left(x \varphi^{k-1}(a), \varphi^{k-1}(\bar{a}) y\right)$;
(2) $\left(p_{1}, s_{1}\right)=\left(x \varphi^{k-1}(a), \varphi^{k-1}(\bar{a}) y\right)$ and $\left(p_{2}, s_{2}\right)=(x, y)$.

Example (continuing)

The word $u=01001011$ has the two 3-factorizations ($\left.0, \varphi^{2}(1) 011\right)$ and $\left(0 \varphi^{2}(1), 011\right)$. This corresponds to case (1.3), where $x=0, y=011$.

Link between \sim_{k} and \equiv_{k}

Proposition

If a word $u \in A^{\geq 2^{k}-1}$ has two k-factorizations $\left(p_{1}, s_{1}\right)$ and (p_{2}, s_{2}), then these two are equivalent for \equiv_{k}.

The equivalence class of the k-factorizations of u is called its type of order k.

Link between \sim_{k} and \equiv_{k}

Proposition

If a word $u \in A^{\geq 2^{k}-1}$ has two k-factorizations $\left(p_{1}, s_{1}\right)$ and (p_{2}, s_{2}), then these two are equivalent for \equiv_{k}.

The equivalence class of the k-factorizations of u is called its type of order k.

Theorem

Let u and v be two factors of t of length $n \geq 2^{k}-1$. We have

$$
u \sim_{k} v \Leftrightarrow\left(p_{u}, s_{u}\right) \equiv k\left(p_{v}, s_{v}\right)
$$

Link between \sim_{k} and \equiv_{k}

Proposition

If a word $u \in A^{\geq 2^{k}-1}$ has two k-factorizations $\left(p_{1}, s_{1}\right)$ and $\left(p_{2}, s_{2}\right)$, then these two are equivalent for \equiv_{k}.

The equivalence class of the k-factorizations of u is called its type of order k.

Theorem

Let u and v be two factors of t of length $n \geq 2^{k}-1$. We have

$$
u \sim_{k} v \Leftrightarrow\left(p_{u}, s_{u}\right) \equiv_{k}\left(p_{v}, s_{v}\right) .
$$

Therefore, if $k \geq 3$ and $n \geq 2^{k}$, we have

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=\#\left(\operatorname{Fac}_{n}(\mathbf{t}) / \sim_{k}\right)=\#\left(\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t})\right\} / \equiv_{k}\right)
$$

Computing this quantity

Let $n \geq 2^{k}$ and for all $\ell \in\left\{0, \ldots, 2^{k-1}-1\right\}$, define

$$
P_{\ell}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|p_{u}\right|=\ell \text { or }\left|p_{u}\right|=2^{k-1}+\ell\right\} .
$$

Computing this quantity

Let $n \geq 2^{k}$ and for all $\ell \in\left\{0, \ldots, 2^{k-1}-1\right\}$, define

$$
P_{\ell}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|p_{u}\right|=\ell \text { or }\left|p_{u}\right|=2^{k-1}+\ell\right\} .
$$

Example

Let $n=15, k=3$ and $\ell=2$. We have

$$
\begin{aligned}
P_{2}=\{ & (01,10110),(01,01001),(10,10110),(10,01001) \\
& (101001,0),(101001,1),(010110,0),(010110,1)\}
\end{aligned}
$$

Computing this quantity

Let $n \geq 2^{k}$ and for all $\ell \in\left\{0, \ldots, 2^{k-1}-1\right\}$, define

$$
P_{\ell}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|p_{u}\right|=\ell \text { or }\left|p_{u}\right|=2^{k-1}+\ell\right\} .
$$

Example

Let $n=15, k=3$ and $\ell=2$. We have

$$
\begin{aligned}
P_{2}=\{ & (01,10110),(01,01001),(10,10110),(10,01001) \\
& (101001,0),(101001,1),(010110,0),(010110,1)\}
\end{aligned}
$$

Hence,

$$
\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t})\right\}=\bigcup_{\ell=0}^{2^{k-1}-1} P_{\ell}
$$

Computing this quantity (continued)

If $\left(p_{u}, s_{u}\right) \in P_{\ell}$ and $\left(p_{v}, s_{V}\right) \in P_{\ell^{\prime}}$ with $\ell \neq \ell^{\prime}$, we know that

$$
\left(p_{u}, s_{u}\right) \not \equiv \equiv_{k}\left(p_{v}, s_{v}\right)
$$

Computing this quantity (continued)

If $\left(p_{u}, s_{u}\right) \in P_{\ell}$ and $\left(p_{v}, s_{v}\right) \in P_{\ell^{\prime}}$ with $\ell \neq \ell^{\prime}$, we know that

$$
\left(p_{u}, s_{u}\right) \not \equiv \equiv_{k}\left(p_{v}, s_{v}\right)
$$

Therefore,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=\#\left(\left(\bigcup_{\ell=0}^{2^{k-1}-1} P_{\ell}\right) / \equiv_{k}\right)
$$

Computing this quantity (continued)

If $\left(p_{u}, s_{u}\right) \in P_{\ell}$ and $\left(p_{v}, s_{v}\right) \in P_{\ell^{\prime}}$ with $\ell \neq \ell^{\prime}$, we know that

$$
\left(p_{u}, s_{u}\right) \not \equiv \equiv_{k}\left(p_{v}, s_{v}\right)
$$

Therefore,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=\#\left(\left(\bigcup_{\ell=0}^{2^{k-1}-1} P_{\ell}\right) / \equiv_{k}\right)=\sum_{\ell=0}^{2^{k-1}-1} \#\left(P_{\ell} / \equiv_{k}\right)
$$

Computing this quantity (continued)

There exists ℓ_{0} such that

$$
P_{\ell_{0}}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|s_{u}\right|=0 \text { or }\left|s_{u}\right|=2^{k-1}\right\} .
$$

Computing this quantity (continued)

There exists ℓ_{0} such that

$$
P_{\ell_{0}}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|s_{u}\right|=0 \text { or }\left|s_{u}\right|=2^{k-1}\right\}
$$

Example

Let $n=10, k=3$ and $\ell=2$. We have $\ell_{0}=2$ because

$$
\begin{aligned}
P_{2}=\{ & (01, \varepsilon),(10, \varepsilon) \\
& (101001,0110),(101001,1001),(010110,0110),(010110,1001)\}
\end{aligned}
$$

Computing this quantity (continued)

There exists ℓ_{0} such that

$$
P_{\ell_{0}}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|s_{u}\right|=0 \text { or }\left|s_{u}\right|=2^{k-1}\right\}
$$

Example

Let $n=10, k=3$ and $\ell=2$. We have $\ell_{0}=2$ because

$$
\begin{aligned}
P_{2}=\{ & (01, \varepsilon),(10, \varepsilon) \\
& (101001,0110),(101001,1001),(010110,0110),(010110,1001)\}
\end{aligned}
$$

Denote by λ the quantity $n \bmod 2^{k}$. We have

$$
0=\ell_{0} \Leftrightarrow \lambda=0 \text { or } \lambda=2^{k-1}
$$

Computing this quantity (continued)

Moreover, we can show that

$$
\#\left(\left(P_{0} \cup P_{\ell_{0}}\right) / \equiv_{k}\right)= \begin{cases}3, & \text { if } \lambda=0 ; \\ 2, & \text { if } \lambda=2^{k-1} \\ 8, & \text { otherwise }\end{cases}
$$

Computing this quantity (continued)

Moreover, we can show that

$$
\#\left(\left(P_{0} \cup P_{\ell_{0}}\right) / \equiv_{k}\right)= \begin{cases}3, & \text { if } \lambda=0 ; \\ 2, & \text { if } \lambda=2^{k-1} \\ 8, & \text { otherwise }\end{cases}
$$

and that, for all $\ell \notin\left\{0, \ell_{0}\right\}$,

$$
\#\left(P_{\ell} / \equiv_{k}\right)=6 .
$$

Computing this quantity (continued)

Moreover, we can show that

$$
\#\left(\left(P_{0} \cup P_{\ell_{0}}\right) / \equiv_{k}\right)= \begin{cases}3, & \text { if } \lambda=0 \\ 2, & \text { if } \lambda=2^{k-1} \\ 8, & \text { otherwise }\end{cases}
$$

and that, for all $\ell \notin\left\{0, \ell_{0}\right\}$,

$$
\#\left(P_{\ell} / \equiv_{k}\right)=6
$$

Hence, putting all the information together,

$$
\begin{aligned}
\#\left(\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t})\right\} / \equiv_{k}\right) & =\sum_{\ell=0}^{2^{k-1}-1} \#\left(P_{\ell} / \equiv_{k}\right) \\
& = \begin{cases}3 \cdot 2^{k}-3, & \text { if } \lambda=0 ; \\
3 \cdot 2^{k}-4, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Conclusion

It is also possible to show that, if u, v are two different factors of \mathbf{t} of length less than 2^{k}, then $u \not \chi_{k} v$. Therefore, $\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)$ for all $n \leq 2^{k}-1$.

Conclusion

It is also possible to show that, if u, v are two different factors of \mathbf{t} of length less than 2^{k}, then $u \not \chi_{k} v$.
Therefore, $\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)$ for all $n \leq 2^{k}-1$.
Finally, we obtain $\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)$ for all $n \leq 2^{k}-1$ and, for all $n \geq 2^{k}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)= \begin{cases}3 \cdot 2^{k}-3, & \text { if } n \equiv 0 \quad\left(\bmod 2^{k}\right) \\ 3 \cdot 2^{k}-4, & \text { otherwise }\end{cases}
$$

To end with an open question...

Theorem (M. Rigo, P. Salimov, 2015)
For every $k \geq 1$ and for every fixed point of a Parikh-constant morphism \mathbf{w}, there exists a constant $C_{\mathbf{w}, k}>0$ such that, for every $n \in \mathbb{N}$,

$$
\mathbf{b}_{\mathbf{w}}^{(k)}(n) \leq C_{\mathbf{w}, k} .
$$

To end with an open question...

Theorem (M. Rigo, P. Salimov, 2015)

For every $k \geq 1$ and for every fixed point of a Parikh-constant morphism \mathbf{w}, there exists a constant $C_{\mathbf{w}, k}>0$ such that, for every $n \in \mathbb{N}$,

$$
\mathbf{b}_{\mathbf{w}}^{(k)}(n) \leq C_{\mathbf{w}, k} .
$$

A Parikh-constant morphism is a morphism for which the images of all letters are equal up to a permutation.

Example

The morphism $\sigma:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{lll}0 & \mapsto & 0112 \\ 1 & \mapsto & 1021 \\ 2 & \mapsto & 2011\end{array}\right.$ is Parikh-constant.

To end with an open question...

Theorem (M. Rigo, P. Salimov, 2015)

For every $k \geq 1$ and for every fixed point of a Parikh-constant morphism \mathbf{w}, there exists a constant $C_{\mathbf{w}, k}>0$ such that, for every $n \in \mathbb{N}$,

$$
\mathbf{b}_{\mathbf{w}}^{(k)}(n) \leq C_{\mathbf{w}, k} .
$$

A Parikh-constant morphism is a morphism for which the images of all letters are equal up to a permutation.

Example

The morphism $\sigma:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{lll}0 & \mapsto & 0112 \\ 1 & \mapsto & 1021 \\ 2 & \mapsto & 2011\end{array}\right.$ is
Parikh-constant.
Does it exist such an aperiodic word \mathbf{w} such that $\mathbf{b}_{\mathbf{w}}^{(k)}(n)<\mathbf{b}_{\mathbf{t}}^{(k)}(n)$ for all large enough n ?

Thank you!

