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k-binomial complexity of Thue—Morse

Let's look at the Thue—Morse word
t=01101001100101101001011001101001 - - -

and more precisely at its factors of a given length:
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k-binomial complexity of Thue—Morse

Let's look at the Thue—Morse word
t=01101001100101101001011001101001 - - -
and more precisely at its factors of a given length:

Face(4) = {0110, }.
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k-binomial complexity of Thue—Morse

Let's look at the Thue—Morse word
t=01101001100101101001011001101001 - - -
and more precisely at its factors of a given length:

Facy(4) = {0110, 1101,1010, 0100, 1001 }.
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k-binomial complexity of Thue—Morse

Let's look at the Thue—Morse word
t=01101001100101101001011001101001 - - -
and more precisely at its factors of a given length:

Face(4) = {0110, 1101, 1010, 0100, 1001, ...}
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k-binomial complexity of Thue—Morse

Let's look at the Thue—Morse word
t=01101001100101101001011001101001 - - -
and more precisely at its factors of a given length:
Face(4) = {0110, 1101, 1010, 0100, 1001, . . .}.
The factor complexity

pt : n — #Face(n)

is not bounded by a constant.
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k-binomial complexity of Thue—Morse

Let's look at the Thue—Morse word
t=01101001100101101001011001101001 - - -
and more precisely at its factors of a given length:

Face(4) = {0110, 1101, 1010, 0100, 1001, ...}

The factor complexity
pt : n — #Face(n)
is not bounded by a constant while k-binomial complexity
b{) : n— #(Face(n)/~x)
is bounded.

Marie Lejeune (Liége University) July 08, 2019

2/23
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k-binomial complexity of Thue—Morse

e Preliminary definitions
@ Words, factors and subwords



Factors and subwords

Let u = ujus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of v is a finite subsequence of the sequence
(uj)/Z1. A factor of u is a contiguous subword.
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Factors and subwords

Let u = ujus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of v is a finite subsequence of the sequence
(uj)/Z1. A factor of u is a contiguous subword.

Let u = abacaba. The word acbh is a subword of u, but not a factor of u.
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Factors and subwords

Let u = ujus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of v is a finite subsequence of the sequence
(uj)/Z1. A factor of u is a contiguous subword.

Let u = abacaba. The word acbh is a subword of u, but not a factor of w.
The word acab is a factor of u, thus also a subword of u.
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Factors and subwords

Let u = ujus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of v is a finite subsequence of the sequence
(uj)/Z1. A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in v.
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Factors and subwords

Let u = uyus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)/Z; A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of w.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in w.

u
‘U‘ab =7 and (ab) =7
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Factors and subwords

Let u = uyus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)/Z; A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of w.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in w.

u
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Factors and subwords

Let u = uyus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)/Z; A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of w.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in w.

u
\u\ab =2 and (ab) =7
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Factors and subwords

Let u = uyus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)/Z; A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of w.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in w.

u
\u\ab =2 and (ab) =7
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Factors and subwords

Let u = uyus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)/Z; A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of w.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in w.

u
‘U‘ab =2 and (ab> = 1.
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Factors and subwords

Let u = uyus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)/Z; A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of w.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in w.

u
‘U‘ab =2 and (ab> = 2.
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If u = aababa,



Factors and subwords

Let u = uyus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)/Z; A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of w.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in w.

u
|ulsp = 2 and (ab> =3.
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Factors and subwords

Let u = uyus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)/Z; A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of w.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in w.

u
‘U‘ab =2 and (ab> = 4.
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Factors and subwords

Let u = uyus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)/Z; A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of w.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in w.

u
|ulsp = 2 and (ab> =5.
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Factors and subwords

Let u = uyus - - - u, be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)/Z; A factor of u is a contiguous subword.

Let u = abacaba. The word ach is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of w.

Let (%) denote the number of times x appears as a subword in u and |uly
the number of times it appears as a factor in w.

u
|ulsp = 2 and (ab> =5.
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If u = aababa,



k-binomial complexity of Thue—Morse

e Preliminary definitions

@ Complexity functions



Factor complexity

Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.
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Factor complexity

Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

Definition
The factor complexity of the word w is the function

pw : NU{0} — NU{0} : n— #Facy(n).
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Factor complexity

Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

Definition
The factor complexity of the word w is the function

pw : NU{0} — NU{0} : n— #(Facw(n)/ ~=),

where u~— v & u=v.
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Factor complexity

Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

Definition
The factor complexity of the word w is the function

pw : NU{0} — NU{0} : n— #(Facw(n)/ ~=),

where u~— v & u=v.

We can replace ~_ with other equivalence relations.
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Other equivalence relations

Different equivalence relations from ~_ can be considered:
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Other equivalence relations

Different equivalence relations from ~_ can be considered:

e abelian equivalence: v ~,p1 v & |ul; =|v], Va€ A
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Other equivalence relations

Different equivalence relations from ~_ can be considered:

e abelian equivalence: v ~,p1 v & |ul; =|v], Va€ A

If keN,

e k-abelian equivalence: u ~,p 4 v & |ulx = |v|x Vx € ASK
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Other equivalence relations

Different equivalence relations from ~_ can be considered:

e abelian equivalence: v ~,p1 v & |ul; =|v], Va€ A

If keN,
e k-abelian equivalence: u ~,p 4 v & |ulx = |v|x Vx € ASK

e k-binomial equivalence: u ~y v & (Y) = (V) Vx € ASK

u v
X X
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Other equivalence relations

Different equivalence relations from ~_ can be considered:

e abelian equivalence: v ~,p1 v & |ul; =|v], Va€ A

If ke N,
e k-abelian equivalence: u ~,p 4 v & |ulx = |v|x Vx € ASK
e k-binomial equivalence: u ~y v & (Y) = (V) Vx € ASK

u v
X X

We will deal with the last one.

Marie Lejeune (Liége University) July 08, 2019 5/23



k-binomial complexity of Thue—Morse

e Preliminary definitions

@ k-binomial complexity



k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Marie Lejeune (Liége University) July 08, 2019 6/23



k-binomial equivalence

Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
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Definition (Reminder)
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k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

9000
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k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.
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k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

(00
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k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

9000
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k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

(2)=2=()(5) =+= () () == ()
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k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

0O
0% )
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k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

0O
0@ -

Marie Lejeune (Liége University) July 08, 2019

L

6/23



k-binomial equivalence

Definition (Reminder)
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k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e
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k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.
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k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

(0O
(5) == (55)- (ob) =4= (25)- () =2= ()
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k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

0O
(5) == (55)- (o) =4= (20)- () =2= ()
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k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

(0O
(5) == (55)- (o) =4= (05)+ () =2= ()
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k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

(0O
(5) == (65)- (o) =4= (20)+ () = 4= ()
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k-binomial equivalence

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

The words u = bbaabb and v = babbab are 2-binomially equivalent.

0O
(5) == (55)- () =4= (20)- () = 4= ()

Marie Lejeune (Liége University) July 08, 2019
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Some properties

1. For all words u, v and for every nonnegative integer k,

U1 V= U~gV.
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Some properties

1. For all words u, v and for every nonnegative integer k,

U1 V= U~gV.

2. For all words u, v,
U~ Ve Umrgpl V.
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Some properties

1. For all words u, v and for every nonnegative integer k,

U1 V= U~gV.

2. For all words u, v,
U~ Ve Umrgpl V.

Indeed, the words u and v are 1-abelian equivalent if

<”> “uls = |v]s— <V> Va € A.
a a
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k-binomial complexity

Definition
If w is an infinite word, we can define the function

b{k) . N — N: n— #(Facw(n)/~x),

which is called the k-binomial complexity of w.
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k-binomial complexity

Definition
If w is an infinite word, we can define the function

b\(,f) :N = N: n— #(Facw(n)/~«),

which is called the k-binomial complexity of w.

We have an order relation between the different complexity functions:

P (n) < b{I(n) <byTD(n) < pu(n) VneN keN*

where p2b is the abelian complexity function of the word w.
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k-binomial complexity of Thue—Morse

e Preliminary definitions

@ The Thue—Morse word



A famous word...

Let us define the Thue—Morse morphism

" " 0~ 01;
eroay sy { {0
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A famous word...

Let us define the Thue—Morse morphism

p:{0,1}" = {0,1}": { 0:(1)(1)‘
We have
¢(0) =01,
©?(0) = 0110,

£3(0) = 01101001,
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A famous word...

Let us define the Thue—Morse morphism

00,1} > {0,1}* : {OHcl)(l)f

We have

¢(0) =01,
©2(0) = 0110,
©3(0) = 01101001,

We can thus define the Thue—Morse word as one of the fixed points of
the morphism ¢ :

t := ¢¥(0) = 0110100110010110 - - -
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k-binomial complexity of Thue—Morse

9 Why to compute b(tk)?



About Morse—Hedlund theorem

A lot of properties about factor complexity are known.

Theorem (Morse—Hedlund)
Let w be an infinite word on an /-letter alphabet. The three following
assertions are equivalent.

1. The word w is ultimately periodic: there exist finite words v and v
such that w = u - v¥.

2. There exists n € N such that py(n) < n+¢— 1.
3. The function py is bounded by a constant.
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About Morse—Hedlund theorem

A lot of properties about factor complexity are known.

Theorem (Morse—Hedlund)
Let w be an infinite word on an /-letter alphabet. The three following
assertions are equivalent.

1. The word w is ultimately periodic: there exist finite words v and v
such that w = u - v¥.

2. There exists n € N such that py(n) < n+¢— 1.

3. The function py is bounded by a constant.

Aperiodic words with minimal complexity
A Sturmian word is an infinite word having, as factor complexity,
p(n) =n+1forall neN.
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Sturmian words vs. Thue—Morse word

Let w be a Sturmian word. We have, for every n > 2,

n < pw(n) < pe(n).

However, results are quite different when regarding the k-binomial
complexity function.
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Sturmian words vs. Thue—Morse word

Let w be a Sturmian word. We have, for every n > 2,

n < pw(n) < pe(n).

However, results are quite different when regarding the k-binomial
complexity function.

Theorem (M. Rigo, P. Salimov, 2015)
Let w be a Sturmian word. We have b{)(n) = py(n) = n+1 for all k > 2.

Marie Lejeune (Liége University) July 08, 2019 11/23



Sturmian words vs. Thue—Morse word

Let w be a Sturmian word. We have, for every n > 2,

n < pw(n) < pe(n).

However, results are quite different when regarding the k-binomial
complexity function.

Theorem (M. Rigo, P. Salimov, 2015)
Let w be a Sturmian word. We have b{)(n) = py(n) = n+1 for all k > 2.

Theorem (M. Rigo, P. Salimov, 2015)
For every k > 1, there exists a constant C, > 0 such that, for every

n €N,
b (n) < Cy.
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The exact value of bEk)

Theorem (M. L., J. Leroy, M. Rigo, 2018)
Let k be a positive integer. For every n < 2K — 1, we have

b{)(n) = pe(n),
while for every n > 2k

) B 32k _3, ifn=0 (mod 2k),
be™(n) = { 3.2k — 4, otherwise.
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The exact value of bEk)

Theorem (M. L., J. Leroy, M. Rigo, 2018)
Let k be a positive integer. For every n < 2K — 1, we have

b{*)(n) = pe(n),

while for every n > 2k

) B 32k _3’ ifn=0 (mod 2k),
be™(n) = { 3.2k — 4, otherwise.

Cases where k =1 or k = 2 can be computed by hand. We will thus
assume that k > 3.
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e Computing bik)



k-binomial complexity of Thue—Morse

e Computing bik)

@ Factorizations



Factorizations

Since t is the fixed point of ¢, we have

for all k € N.
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Factorizations

Since t is the fixed point of ¢, we have

for all k € N. Moreover,

" (t) = " (to)*(t1) " (t2) - - -
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Factorizations

Since t is the fixed point of ¢, we have

for all k € N. Moreover,
Pk (1) = " (to)e" (t1)" (t2) - -
Therefore, every factor u of t can be written in the form
pe"(2)s,

where z is also a factor of t and where p (resp., s) is a proper suffix (resp.,
prefix) of ©*(0) or ©*(1).
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Factorizations

Since t is the fixed point of ¢, we have

for all k € N. Moreover,
Pk (1) = " (to)e" (t1)" (t2) - -
Therefore, every factor u of t can be written in the form
pe"(2)s,

where z is also a factor of t and where p (resp., s) is a proper suffix (resp.,
prefix) of ©*(0) or ©*(1).

The pair (p, s) is called a factorization of order k (or k-factorization)
of u.
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Factorizations: an example

Example
We have

t=¢0 (1) (1) - $(0)
— 01101001 - 10010110 - 10010110 - 01101001 - - -
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Factorizations: an example

Example
We have

t=¢0 (1) (1) - $(0)
= 01101001 - 10010110 - 10010110 - 01101001 - - -

Let v = 010011001011010.
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Factorizations: an example

Example
We have

t=¢0 (1) (1) - $(0)
= 01101001 - 10010110 - 10010110 - 01101001 - - -

Let v = 010011001011010.
A factorization of order 3 of u is

(01001, 10).
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Unicity of the factorization?

Is the factorization of a word in Facg unique?
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Unicity of the factorization?

Is the factorization of a word in Facg unique?

No: the word 010 appears as a factor of t several times; it can be
factorized as 0p(1) or as ¢(0)0.

t=01-10-10-01-10-01-01-10---
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Unicity of the factorization?

Is the factorization of a word in Facg unique?

No: the word 010 appears as a factor of t several times; it can be
factorized as 0p(1) or as ¢(0)0.

t=01-10-10-01-10-01-01-10---
Proposition
Let u be a factor of t of length at least 2k — 1.

o If uis a factor of *~1(010) or ©*~1(101)

» it has exactly two factorizations (p, s) and (p’, s’);
» we have ||p| — |p'|| = ||s] — ||| = 2.
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Unicity of the factorization?

Is the factorization of a word in Facg unique?

No: the word 010 appears as a factor of t several times; it can be
factorized as 0p(1) or as ¢(0)0.

t=01-10-10-01-10-01-01-10---
Proposition
Let u be a factor of t of length at least 2k — 1.
o If uis a factor of *~1(010) or *~1(101)

» it has exactly two factorizations (p, s) and (p’, s’);
» we have ||p| — |p'|| = ||s] — ||| = 2.

o If uis not a factor of ©*~1(010) or *~1(101)
» it has a unique factorization.
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Relation between factorizations of a word: an example

Example
Let us consider the factor v = 01001011.

t = ©3(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -
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Relation between factorizations of a word: an example

Example
Let us consider the factor v = 01001011.

t = ©3(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Hence, (0,1001011) and (01001,011) are the two 3-factorizations of wv.
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Relation between factorizations of a word: an example

Example
Let us consider the factor v = 01001011.

t = ©3(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Hence, (0,1001011) and (01001,011) are the two 3-factorizations of wv.
Observe that

(0,1001011) = (0, »*(1)011)
and
(01001,011) = (0?(1),011).
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Relation between factorizations of a word: an example

Example
Let us consider the factor v = 01001011.

t = ©3(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Hence, (0,1001011) and (01001,011) are the two 3-factorizations of wv.
Observe that
(0,1001011) = (0, »*(1)011)

and
(01001,011) = (0?(1),011).

How can we deal with factors having two factorizations? Which one to
choose?
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Dealing with two factorizations

Equivalence =
k k o c
Let (p1,51), (p2,52) € A<?" x A<?". These two are equivalent for = if
there exist a € A, x,y € A* such that one of these cases occurs:
Q [p1| + st = [p2| + |s2] and
0 (p1,51) = (p2,%2);

(P1,51) = (x¢*"*(a), ¥) and (p2,%2) = (x, " *(a)y);
© (p1,51) = (x, 9" *(a)y) and (p2, 52) = (Xso H(a).y);
(p1,51) = (¢*71(a), ¥*7(3)) and (p2, 22) = (¥*71(3), " *(2));

o ‘(’P1| +1s1]) = (|p2| + |s2]) ‘ =2k and

@ (p1,51) = (x,¥) and (p2, 52) = (x*1(a), Y*1(3)y);
0 (p1,51) = (xp*(a), p*"1(3)y) and (p2, %2) = (x,y).
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Dealing with two factorizations

Equivalence =
Let (p1,s1), (p2,52) € A< % A<?" These two are equivalent for = if
there exist a € A, x,y € A* such that one of these cases occurs:
Q |p1| + [s1] = [p2| + |52 and
0 (p1,51) = (p2, 2);
@ (p1,51) = (x¢* Y (a),y) and (p2,2) = (x, ¥* H(a)y);
© (p1,51) = (x, 9 *(a)y) and (p2,52) = (x¢p*"(a),y);
0 (p1,51) = (¢*7(a),¢*7(3)) and (p2, %2) = (¥*7*(3), " *(a));
@ |(|p1| + [s1]) = (Ip2] + [s2])| = 2 and
© (p1,51) = (x,y) and (p2, %) = (xp*(a), p*H(3)y);
@ (p1,51) = (x¢p*1(a), ¢ H(3)y) and (p2, 52) = (x,¥).

Example (continuing)
The word v = 01001011 has the two factorizations (0, ©?(1)011) and
(0¢?(1),011). This corresponds to case (1.3), where x =0, y = 011.
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Link between ~; and =,

Proposition

If a word u € A=2~1 has two k-factorizations (p1, s1) and (p2, s2), then
these two are equivalent for =.

The equivalence class of the k-factorizations of u is called its type of
order k.
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Link between ~; and =,

Proposition

If a word u € A=2~1 has two k-factorizations (p1, s1) and (p2, s2), then
these two are equivalent for =.

The equivalence class of the k-factorizations of u is called its type of
order k.

Theorem
Let v and v be two factors of t of length n > 2% — 1. We have

urygVv< (puasu) =k (pv: 5v)-
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Link between ~; and =,

Proposition

If a word u € A=2~1 has two k-factorizations (p1, s1) and (p2, s2), then
these two are equivalent for =.

The equivalence class of the k-factorizations of u is called its type of
order k.

Theorem
Let v and v be two factors of t of length n > 2% — 1. We have

urygVv< (pu’su) =k (pv;sv)‘

Therefore, if k > 3 and n > 2k, we have

b (n) = #(Faca(t)/ ~i) = #({(pus 5u) : u € Faca(t)}/=)-
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Computing this quantity

Let n > 2k and for all £ € {0,...,2k71 — 1}, define
Pe={(pursu) - u € Facy(t). [pu| = £ or |pu| =27 + 03,
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Computing this quantity
Let n > 2% and for all £ € {0,...,25"1 — 1}, define

Py = {(pu,su) : u € Facy(t), |pu| = £ or |p,| =251 +1}.
Example
Let n =15, k =3 and ¢ = 2. We have
P, = {(01,10110), (01,01001), (10, 10110), (10, 01001),
(101001, 0), (101001, 1), (010110, 0), (010110, 1)}.
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Computing this quantity
Let n > 2% and for all £ € {0,...,25"1 — 1}, define
Py = {(pu, su) : u € Facy(t), |pu| = £ or |pu| = 2571 + ¢}.

Example
Let n =15, k =3 and ¢ = 2. We have

P, = {(01,10110), (01,01001), (10, 10110), (10,01001),
(101001, 0), (101001, 1), (010110, 0), (010110, 1)}

Hence,
2k=1_1
{(pu,su) : u € Facp(t)} = U Py
£=0
and
2k—1_1
b{(n) = > #(P/=).
£=0
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Computing this quantity (continued)

There exists £y such that
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Computing this quantity (continued)

There exists £y such that

Example
Let n =10, k =3 and £ = 2. We have £y = 2 because

P, = {(01,¢),(10,¢),
(101001,0110), (101001, 1001), (010110, 0110), (010110, 1001)}.
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Computing this quantity (continued)

There exists £y such that

Example
Let n =10, k =3 and £ = 2. We have £y = 2 because

P, = {(01,¢),(10,¢),
(101001,0110), (101001, 1001), (010110, 0110), (010110, 1001)}.

Denote by A the quantity n mod 2%. We have

2k=1 1, ifXx=0or A =2K1,
k=1 _ — ’ '
#{0,...,2 11\ {0, 6o} = { 2k=1 _ 2 otherwise.
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Computing this quantity (continued)

Moreover, we can show that

3, ifA=0;
#((PoUPgO)/Ek): 2, if)\:2k71;
8, otherwise;
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Computing this quantity (continued)

Moreover, we can show that

3, ifA=0;
#((PoUPgO)/Ek): 2, if)\:2k71;

8, otherwise;

and that, for all £ ¢ {0, 4o},

#(Pg/Ek) = 6
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Computing this quantity (continued)
Moreover, we can show that

3, ifA=0;
#((PoUPgO)/Ek): 2, if)\:2k71;

8, otherwise;

and that, for all £ ¢ {0, 4o},
# (Pe/=k) =6.
Hence, putting all the information together,

2k=1_1

# ({(pu,sy) : u € Facy(t)}/=k) = # U P,
/=0

[ 3.26-3, fA=0;
T | 3-2k—4, otherwise.
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Conclusion

It is also possible to show that, if u, v are two different factors of t of
length less than 2%, then u 4 v.

Therefore, bﬁk)(n) = pe(n) for all n < 2k — 1.
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Conclusion

It is also possible to show that, if u, v are two different factors of t of
length less than 2%, then u 4 v.

Therefore, bﬁk)(n) = pe(n) for all n < 2k — 1.

Finally, we obtain bgk)(n) = pe(n) for all n < 2k — 1 and, for all n > 2k,

(K, [ 3:-2K=3 ifn=0 (mod 2);
by’ (n) = { 3.2k — 4 otherwise.
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Conclusion

It is also possible to show that, if u, v are two different factors of t of
length less than 2%, then u 4 v.

Therefore, bﬁk)(n) = pe(n) for all n < 2k — 1.
Finally, we obtain bgk)(n) = pe(n) for all n < 2k — 1 and, for all n > 2k,

(K, [ 3:-2K=3 ifn=0 (mod 2);
by’ (n) = { 3.2k — 4 otherwise.

To end with an open question...
A Parikh-constant morphism is a morphism for which the images of all
letters are equal up to a permutation.

Could we generalize the technique to compute the exact value of b for
other fixed points of Parikh-constant morphisms?
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Thank_ you!
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