
Computing the k-binomial complexity
of the Thue–Morse word

July 08, 2019
Marie Lejeune (FNRS grantee)

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(1) = {0,

1

}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(1) = {0,

1

}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(1) = {0, 1}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(4) = {0110,

, 1101, 1010, 0100, 1001, . . .

}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(4) = {0110, 1101

, 1010, 0100, 1001, . . .

}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(4) = {0110, 1101, 1010

, 0100, 1001, . . .

}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(4) = {0110, 1101, 1010, 0100

, 1001, . . .

}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(4) = {0110, 1101, 1010, 0100, 1001

, . . .

}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(4) = {0110, 1101, 1010, 0100, 1001, . . .}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(4) = {0110, 1101, 1010, 0100, 1001, . . .}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant.

while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

Let’s look at the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

and more precisely at its factors of a given length:

Fact(4) = {0110, 1101, 1010, 0100, 1001, . . .}.

The factor complexity
pt : n 7→ #Fact(n)

is not bounded by a constant while k-binomial complexity

b(k)t : n 7→ #(Fact(n)/∼k)

is bounded.

Marie Lejeune (Liège University) July 08, 2019 2 / 23

k-binomial complexity of Thue–Morse

1 Preliminary definitions
Words, factors and subwords
Complexity functions
k-binomial complexity
The Thue–Morse word

2 Why to compute b(k)
t ?

3 Computing b(k)
t

Factorizations
Types of order k

k-binomial complexity of Thue–Morse

1 Preliminary definitions
Words, factors and subwords
Complexity functions
k-binomial complexity
The Thue–Morse word

2 Why to compute b(k)
t ?

3 Computing b(k)
t

Factorizations
Types of order k

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = 0102010. The word 021 is a subword of u, but not a factor of u.
The word 0201 is a factor of u, thus also a subword of u.

Let
(u
x

)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= ?

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.

The word 0201 is a factor of u, thus also a subword of u.

Let
(u
x

)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= ?

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x

)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= ?

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= ?

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = ? and
(
u

ab

)
= ?

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 1 and
(
u

ab

)
= ?

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= ?

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= ?

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= 1.

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= 2.

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= 3.

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= 4.

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= 5.

Marie Lejeune (Liège University) July 08, 2019 3 / 23

Factors and subwords

Let u = u1u2 · · · um be a finite or infinite word.

Definition
A (scattered) subword of u is a finite subsequence of the sequence
(uj)

m
j=1. A factor of u is a contiguous subword.

Let u = abacaba. The word acb is a subword of u, but not a factor of u.
The word acab is a factor of u, thus also a subword of u.

Let
(u
x
)
denote the number of times x appears as a subword in u and |u|x

the number of times it appears as a factor in u.

If u = aababa,

|u|ab = 2 and
(
u

ab

)
= 5.

Marie Lejeune (Liège University) July 08, 2019 3 / 23

k-binomial complexity of Thue–Morse

1 Preliminary definitions
Words, factors and subwords
Complexity functions
k-binomial complexity
The Thue–Morse word

2 Why to compute b(k)
t ?

3 Computing b(k)
t

Factorizations
Types of order k

Factor complexity

Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

Definition
The factor complexity of the word w is the function

pw : N∪{0} → N∪{0} : n 7→ #Facw(n).

Definition
The factor complexity of the word w is the function

pw : N∪{0} → N∪{0} : n 7→ #(Facw(n)/ ∼=),

where u ∼= v ⇔ u = v .

We can replace ∼= with other equivalence relations.

Marie Lejeune (Liège University) July 08, 2019 4 / 23

Factor complexity

Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

Definition
The factor complexity of the word w is the function

pw : N∪{0} → N∪{0} : n 7→ #Facw(n).

Definition
The factor complexity of the word w is the function

pw : N∪{0} → N∪{0} : n 7→ #(Facw(n)/ ∼=),

where u ∼= v ⇔ u = v .

We can replace ∼= with other equivalence relations.

Marie Lejeune (Liège University) July 08, 2019 4 / 23

Factor complexity

Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

Definition
The factor complexity of the word w is the function

pw : N∪{0} → N∪{0} : n 7→ #(Facw(n)/ ∼=),

where u ∼= v ⇔ u = v .

We can replace ∼= with other equivalence relations.

Marie Lejeune (Liège University) July 08, 2019 4 / 23

Factor complexity

Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

Definition
The factor complexity of the word w is the function

pw : N∪{0} → N∪{0} : n 7→ #(Facw(n)/ ∼=),

where u ∼= v ⇔ u = v .

We can replace ∼= with other equivalence relations.

Marie Lejeune (Liège University) July 08, 2019 4 / 23

Other equivalence relations

Different equivalence relations from ∼= can be considered:

• abelian equivalence: u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

If k ∈ N,
• k-abelian equivalence: u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• k-binomial equivalence: u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

We will deal with the last one.

Marie Lejeune (Liège University) July 08, 2019 5 / 23

Other equivalence relations

Different equivalence relations from ∼= can be considered:

• abelian equivalence: u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

If k ∈ N,
• k-abelian equivalence: u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• k-binomial equivalence: u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

We will deal with the last one.

Marie Lejeune (Liège University) July 08, 2019 5 / 23

Other equivalence relations

Different equivalence relations from ∼= can be considered:

• abelian equivalence: u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

If k ∈ N,
• k-abelian equivalence: u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• k-binomial equivalence: u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

We will deal with the last one.

Marie Lejeune (Liège University) July 08, 2019 5 / 23

Other equivalence relations

Different equivalence relations from ∼= can be considered:

• abelian equivalence: u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

If k ∈ N,
• k-abelian equivalence: u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• k-binomial equivalence: u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

We will deal with the last one.

Marie Lejeune (Liège University) July 08, 2019 5 / 23

Other equivalence relations

Different equivalence relations from ∼= can be considered:

• abelian equivalence: u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

If k ∈ N,
• k-abelian equivalence: u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• k-binomial equivalence: u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

We will deal with the last one.

Marie Lejeune (Liège University) July 08, 2019 5 / 23

k-binomial complexity of Thue–Morse

1 Preliminary definitions
Words, factors and subwords
Complexity functions
k-binomial complexity
The Thue–Morse word

2 Why to compute b(k)
t ?

3 Computing b(k)
t

Factorizations
Types of order k

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,

(
u

a

)
= 1 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 1 =

(
v

a

)

,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)

,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 1 =

(
v

b

)

,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 2 =

(
v

b

)

,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 3 =

(
v

b

)

,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)

,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)

,(
u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)

,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 1 =

(
v

ab

)

,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 2 =

(
v

ab

)

,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 3 =

(
v

ab

)

,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)

,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 1 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 2 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 3 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

k-binomial equivalence

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if(

u

x

)
=

(
v

x

)
∀x ∈ A≤k .

The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed, (

u

a

)
= 2 =

(
v

a

)
,

(
u

b

)
= 4 =

(
v

b

)
,

(
u

aa

)
= 1 =

(
v

aa

)
,(

u

bb

)
= 6 =

(
v

bb

)
,

(
u

ab

)
= 4 =

(
v

ab

)
,

(
u

ba

)
= 4 =

(
v

ba

)
.

Marie Lejeune (Liège University) July 08, 2019 6 / 23

Some properties

1. For all words u, v and for every nonnegative integer k ,

u ∼k+1 v ⇒ u ∼k v .

2. For all words u, v ,
u ∼1 v ⇔ u ∼ab,1 v .

Indeed, the words u and v are 1-abelian equivalent if(
u

a

)
=|u|a = |v |a=

(
v

a

)
∀a ∈ A.

Marie Lejeune (Liège University) July 08, 2019 7 / 23

Some properties

1. For all words u, v and for every nonnegative integer k ,

u ∼k+1 v ⇒ u ∼k v .

2. For all words u, v ,
u ∼1 v ⇔ u ∼ab,1 v .

Indeed, the words u and v are 1-abelian equivalent if(
u

a

)
=|u|a = |v |a=

(
v

a

)
∀a ∈ A.

Marie Lejeune (Liège University) July 08, 2019 7 / 23

Some properties

1. For all words u, v and for every nonnegative integer k ,

u ∼k+1 v ⇒ u ∼k v .

2. For all words u, v ,
u ∼1 v ⇔ u ∼ab,1 v .

Indeed, the words u and v are 1-abelian equivalent if(
u

a

)
=|u|a = |v |a=

(
v

a

)
∀a ∈ A.

Marie Lejeune (Liège University) July 08, 2019 7 / 23

k-binomial complexity

Definition
If w is an infinite word, we can define the function

b(k)w : N→ N : n 7→ #(Facw(n)/∼k),

which is called the k-binomial complexity of w.

We have an order relation between the different complexity functions:

ρabw (n) ≤ b(k)w (n) ≤ b(k+1)
w (n) ≤ pw(n) ∀n ∈ N, k ∈ N+

where ρabw is the abelian complexity function of the word w.

Marie Lejeune (Liège University) July 08, 2019 8 / 23

k-binomial complexity

Definition
If w is an infinite word, we can define the function

b(k)w : N→ N : n 7→ #(Facw(n)/∼k),

which is called the k-binomial complexity of w.

We have an order relation between the different complexity functions:

ρabw (n) ≤ b(k)w (n) ≤ b(k+1)
w (n) ≤ pw(n) ∀n ∈ N, k ∈ N+

where ρabw is the abelian complexity function of the word w.

Marie Lejeune (Liège University) July 08, 2019 8 / 23

k-binomial complexity of Thue–Morse

1 Preliminary definitions
Words, factors and subwords
Complexity functions
k-binomial complexity
The Thue–Morse word

2 Why to compute b(k)
t ?

3 Computing b(k)
t

Factorizations
Types of order k

A famous word...

Let us define the Thue–Morse morphism

ϕ : {0, 1}∗ → {0, 1}∗ :

{
0 7→ 01;
1 7→ 10.

We have

ϕ(0) = 01,

ϕ2(0) = 0110,

ϕ3(0) = 01101001,
. . .

We can thus define the Thue–Morse word as one of the fixed points of
the morphism ϕ :

t := ϕω(0) = 0110100110010110 · · ·

Marie Lejeune (Liège University) July 08, 2019 9 / 23

A famous word...

Let us define the Thue–Morse morphism

ϕ : {0, 1}∗ → {0, 1}∗ :

{
0 7→ 01;
1 7→ 10.

We have

ϕ(0) = 01,

ϕ2(0) = 0110,

ϕ3(0) = 01101001,
. . .

We can thus define the Thue–Morse word as one of the fixed points of
the morphism ϕ :

t := ϕω(0) = 0110100110010110 · · ·

Marie Lejeune (Liège University) July 08, 2019 9 / 23

A famous word...

Let us define the Thue–Morse morphism

ϕ : {0, 1}∗ → {0, 1}∗ :

{
0 7→ 01;
1 7→ 10.

We have

ϕ(0) = 01,

ϕ2(0) = 0110,

ϕ3(0) = 01101001,
. . .

We can thus define the Thue–Morse word as one of the fixed points of
the morphism ϕ :

t := ϕω(0) = 0110100110010110 · · ·

Marie Lejeune (Liège University) July 08, 2019 9 / 23

k-binomial complexity of Thue–Morse

1 Preliminary definitions
Words, factors and subwords
Complexity functions
k-binomial complexity
The Thue–Morse word

2 Why to compute b(k)
t ?

3 Computing b(k)
t

Factorizations
Types of order k

About Morse–Hedlund theorem

A lot of properties about factor complexity are known.

Theorem (Morse–Hedlund)
Let w be an infinite word on an `-letter alphabet. The three following
assertions are equivalent.
1. The word w is ultimately periodic: there exist finite words u and v

such that w = u · vω.
2. There exists n ∈ N such that pw(n) < n + `− 1.
3. The function pw is bounded by a constant.

Aperiodic words with minimal complexity
A Sturmian word is an infinite word having, as factor complexity,
p(n) = n + 1 for all n ∈ N.

Marie Lejeune (Liège University) July 08, 2019 10 / 23

About Morse–Hedlund theorem

A lot of properties about factor complexity are known.

Theorem (Morse–Hedlund)
Let w be an infinite word on an `-letter alphabet. The three following
assertions are equivalent.
1. The word w is ultimately periodic: there exist finite words u and v

such that w = u · vω.
2. There exists n ∈ N such that pw(n) < n + `− 1.
3. The function pw is bounded by a constant.

Aperiodic words with minimal complexity
A Sturmian word is an infinite word having, as factor complexity,
p(n) = n + 1 for all n ∈ N.

Marie Lejeune (Liège University) July 08, 2019 10 / 23

Sturmian words vs. Thue–Morse word

Let w be a Sturmian word. We have, for every n ≥ 2,

n < pw(n) < pt(n).

However, results are quite different when regarding the k-binomial
complexity function.

Theorem (M. Rigo, P. Salimov, 2015)
Let w be a Sturmian word. We have b(k)w (n) = pw(n) = n + 1 for all k ≥ 2.

Theorem (M. Rigo, P. Salimov, 2015)
For every k ≥ 1, there exists a constant Ck > 0 such that, for every
n ∈ N,

b(k)t (n) ≤ Ck .

Marie Lejeune (Liège University) July 08, 2019 11 / 23

Sturmian words vs. Thue–Morse word

Let w be a Sturmian word. We have, for every n ≥ 2,

n < pw(n) < pt(n).

However, results are quite different when regarding the k-binomial
complexity function.

Theorem (M. Rigo, P. Salimov, 2015)
Let w be a Sturmian word. We have b(k)w (n) = pw(n) = n + 1 for all k ≥ 2.

Theorem (M. Rigo, P. Salimov, 2015)
For every k ≥ 1, there exists a constant Ck > 0 such that, for every
n ∈ N,

b(k)t (n) ≤ Ck .

Marie Lejeune (Liège University) July 08, 2019 11 / 23

Sturmian words vs. Thue–Morse word

Let w be a Sturmian word. We have, for every n ≥ 2,

n < pw(n) < pt(n).

However, results are quite different when regarding the k-binomial
complexity function.

Theorem (M. Rigo, P. Salimov, 2015)
Let w be a Sturmian word. We have b(k)w (n) = pw(n) = n + 1 for all k ≥ 2.

Theorem (M. Rigo, P. Salimov, 2015)
For every k ≥ 1, there exists a constant Ck > 0 such that, for every
n ∈ N,

b(k)t (n) ≤ Ck .

Marie Lejeune (Liège University) July 08, 2019 11 / 23

The exact value of b(k)
t

Theorem (M. L., J. Leroy, M. Rigo, 2018)
Let k be a positive integer. For every n ≤ 2k − 1, we have

b(k)t (n) = pt(n),

while for every n ≥ 2k ,

b(k)t (n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

Cases where k = 1 or k = 2 can be computed by hand. We will thus
assume that k ≥ 3.

Marie Lejeune (Liège University) July 08, 2019 12 / 23

The exact value of b(k)
t

Theorem (M. L., J. Leroy, M. Rigo, 2018)
Let k be a positive integer. For every n ≤ 2k − 1, we have

b(k)t (n) = pt(n),

while for every n ≥ 2k ,

b(k)t (n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

Cases where k = 1 or k = 2 can be computed by hand. We will thus
assume that k ≥ 3.

Marie Lejeune (Liège University) July 08, 2019 12 / 23

k-binomial complexity of Thue–Morse

1 Preliminary definitions
Words, factors and subwords
Complexity functions
k-binomial complexity
The Thue–Morse word

2 Why to compute b(k)
t ?

3 Computing b(k)
t

Factorizations
Types of order k

k-binomial complexity of Thue–Morse

1 Preliminary definitions
Words, factors and subwords
Complexity functions
k-binomial complexity
The Thue–Morse word

2 Why to compute b(k)
t ?

3 Computing b(k)
t

Factorizations
Types of order k

Factorizations

Since t is the fixed point of ϕ, we have

t = ϕ(t) = ϕ2(t) = · · · = ϕk(t)

for all k ∈ N.

Moreover,

ϕk(t) = ϕk(t0)ϕk(t1)ϕk(t2) · · ·

Therefore, every factor u of t can be written in the form

pϕk(z)s,

where z is also a factor of t and where p (resp., s) is a proper suffix (resp.,
prefix) of ϕk(0) or ϕk(1).

The pair (p, s) is called a factorization of order k (or k-factorization)
of u.

Marie Lejeune (Liège University) July 08, 2019 13 / 23

Factorizations

Since t is the fixed point of ϕ, we have

t = ϕ(t) = ϕ2(t) = · · · = ϕk(t)

for all k ∈ N. Moreover,

ϕk(t) = ϕk(t0)ϕk(t1)ϕk(t2) · · ·

Therefore, every factor u of t can be written in the form

pϕk(z)s,

where z is also a factor of t and where p (resp., s) is a proper suffix (resp.,
prefix) of ϕk(0) or ϕk(1).

The pair (p, s) is called a factorization of order k (or k-factorization)
of u.

Marie Lejeune (Liège University) July 08, 2019 13 / 23

Factorizations

Since t is the fixed point of ϕ, we have

t = ϕ(t) = ϕ2(t) = · · · = ϕk(t)

for all k ∈ N. Moreover,

ϕk(t) = ϕk(t0)ϕk(t1)ϕk(t2) · · ·

Therefore, every factor u of t can be written in the form

pϕk(z)s,

where z is also a factor of t and where p (resp., s) is a proper suffix (resp.,
prefix) of ϕk(0) or ϕk(1).

The pair (p, s) is called a factorization of order k (or k-factorization)
of u.

Marie Lejeune (Liège University) July 08, 2019 13 / 23

Factorizations

Since t is the fixed point of ϕ, we have

t = ϕ(t) = ϕ2(t) = · · · = ϕk(t)

for all k ∈ N. Moreover,

ϕk(t) = ϕk(t0)ϕk(t1)ϕk(t2) · · ·

Therefore, every factor u of t can be written in the form

pϕk(z)s,

where z is also a factor of t and where p (resp., s) is a proper suffix (resp.,
prefix) of ϕk(0) or ϕk(1).

The pair (p, s) is called a factorization of order k (or k-factorization)
of u.

Marie Lejeune (Liège University) July 08, 2019 13 / 23

Factorizations: an example

Example
We have

t = ϕ3(0) · ϕ3(1) · ϕ3(1) · ϕ3(0) · · ·
= 01101001 · 10010110 · 10010110 · 01101001 · · ·

Let u = 010011001011010.
A factorization of order 3 of u is

(01001, 10).

Marie Lejeune (Liège University) July 08, 2019 14 / 23

Factorizations: an example

Example
We have

t = ϕ3(0) · ϕ3(1) · ϕ3(1) · ϕ3(0) · · ·
= 01101001 · 10010110 · 10010110 · 01101001 · · ·

Let u = 010011001011010.

A factorization of order 3 of u is

(01001, 10).

Marie Lejeune (Liège University) July 08, 2019 14 / 23

Factorizations: an example

Example
We have

t = ϕ3(0) · ϕ3(1) · ϕ3(1) · ϕ3(0) · · ·
= 01101001 · 10010110 · 10010110 · 01101001 · · ·

Let u = 010011001011010.
A factorization of order 3 of u is

(01001, 10).

Marie Lejeune (Liège University) July 08, 2019 14 / 23

Unicity of the factorization?

Is the factorization of a word in Fact unique?

No: the word 010 appears as a factor of t several times; it can be
factorized as 0ϕ(1) or as ϕ(0)0.

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

Proposition
Let u be a factor of t of length at least 2k − 1.

If u is a factor of ϕk−1(010) or ϕk−1(101)
I it has exactly two factorizations (p, s) and (p′, s ′);
I we have ||p| − |p′|| = ||s| − |s ′|| = 2k−1.

If u is not a factor of ϕk−1(010) or ϕk−1(101)
I it has a unique factorization.

Marie Lejeune (Liège University) July 08, 2019 15 / 23

Unicity of the factorization?

Is the factorization of a word in Fact unique?

No: the word 010 appears as a factor of t several times; it can be
factorized as 0ϕ(1) or as ϕ(0)0.

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

Proposition
Let u be a factor of t of length at least 2k − 1.

If u is a factor of ϕk−1(010) or ϕk−1(101)
I it has exactly two factorizations (p, s) and (p′, s ′);
I we have ||p| − |p′|| = ||s| − |s ′|| = 2k−1.

If u is not a factor of ϕk−1(010) or ϕk−1(101)
I it has a unique factorization.

Marie Lejeune (Liège University) July 08, 2019 15 / 23

Unicity of the factorization?

Is the factorization of a word in Fact unique?

No: the word 010 appears as a factor of t several times; it can be
factorized as 0ϕ(1) or as ϕ(0)0.

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

Proposition
Let u be a factor of t of length at least 2k − 1.

If u is a factor of ϕk−1(010) or ϕk−1(101)
I it has exactly two factorizations (p, s) and (p′, s ′);
I we have ||p| − |p′|| = ||s| − |s ′|| = 2k−1.

If u is not a factor of ϕk−1(010) or ϕk−1(101)
I it has a unique factorization.

Marie Lejeune (Liège University) July 08, 2019 15 / 23

Unicity of the factorization?

Is the factorization of a word in Fact unique?

No: the word 010 appears as a factor of t several times; it can be
factorized as 0ϕ(1) or as ϕ(0)0.

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

Proposition
Let u be a factor of t of length at least 2k − 1.

If u is a factor of ϕk−1(010) or ϕk−1(101)
I it has exactly two factorizations (p, s) and (p′, s ′);
I we have ||p| − |p′|| = ||s| − |s ′|| = 2k−1.

If u is not a factor of ϕk−1(010) or ϕk−1(101)
I it has a unique factorization.

Marie Lejeune (Liège University) July 08, 2019 15 / 23

Relation between factorizations of a word: an example

Example
Let us consider the factor u = 01001011.

t = ϕ3(t) = 01101001 · 10010110 · 10010110 · 01101001·
10010110 · 01101001 · 01101001 · · ·

Hence, (0, 1001011) and (01001, 011) are the two 3-factorizations of u.
Observe that

(0, 1001011) = (0, ϕ2(1)011)

and
(01001, 011) = (0ϕ2(1), 011).

How can we deal with factors having two factorizations? Which one to
choose?

Marie Lejeune (Liège University) July 08, 2019 16 / 23

Relation between factorizations of a word: an example

Example
Let us consider the factor u = 01001011.

t = ϕ3(t) = 01101001 · 10010110 · 10010110 · 01101001·
10010110 · 01101001 · 01101001 · · ·

Hence, (0, 1001011) and (01001, 011) are the two 3-factorizations of u.

Observe that
(0, 1001011) = (0, ϕ2(1)011)

and
(01001, 011) = (0ϕ2(1), 011).

How can we deal with factors having two factorizations? Which one to
choose?

Marie Lejeune (Liège University) July 08, 2019 16 / 23

Relation between factorizations of a word: an example

Example
Let us consider the factor u = 01001011.

t = ϕ3(t) = 01101001 · 10010110 · 10010110 · 01101001·
10010110 · 01101001 · 01101001 · · ·

Hence, (0, 1001011) and (01001, 011) are the two 3-factorizations of u.
Observe that

(0, 1001011) = (0, ϕ2(1)011)

and
(01001, 011) = (0ϕ2(1), 011).

How can we deal with factors having two factorizations? Which one to
choose?

Marie Lejeune (Liège University) July 08, 2019 16 / 23

Relation between factorizations of a word: an example

Example
Let us consider the factor u = 01001011.

t = ϕ3(t) = 01101001 · 10010110 · 10010110 · 01101001·
10010110 · 01101001 · 01101001 · · ·

Hence, (0, 1001011) and (01001, 011) are the two 3-factorizations of u.
Observe that

(0, 1001011) = (0, ϕ2(1)011)

and
(01001, 011) = (0ϕ2(1), 011).

How can we deal with factors having two factorizations? Which one to
choose?

Marie Lejeune (Liège University) July 08, 2019 16 / 23

k-binomial complexity of Thue–Morse

1 Preliminary definitions
Words, factors and subwords
Complexity functions
k-binomial complexity
The Thue–Morse word

2 Why to compute b(k)
t ?

3 Computing b(k)
t

Factorizations
Types of order k

Dealing with two factorizations

Equivalence ≡k

Let (p1, s1), (p2, s2) ∈ A<2k × A<2k . These two are equivalent for ≡k if
there exist a ∈ A, x , y ∈ A∗ such that one of these cases occurs:

1 |p1|+ |s1| = |p2|+ |s2| and
1 (p1, s1) = (p2, s2);
2 (p1, s1) = (xϕk−1(a), y) and (p2, s2) = (x , ϕk−1(a)y);
3 (p1, s1) = (x , ϕk−1(a)y) and (p2, s2) = (xϕk−1(a), y);
4 (p1, s1) = (ϕk−1(a), ϕk−1(a)) and (p2, s2) = (ϕk−1(a), ϕk−1(a));

2
∣∣(|p1|+ |s1|)− (|p2|+ |s2|)

∣∣ = 2k and
1 (p1, s1) = (x , y) and (p2, s2) = (xϕk−1(a), ϕk−1(ā)y);
2 (p1, s1) = (xϕk−1(a), ϕk−1(ā)y) and (p2, s2) = (x , y).

Example (continuing)
The word u = 01001011 has the two factorizations (0, ϕ2(1)011) and
(0ϕ2(1), 011). This corresponds to case (1.3), where x = 0, y = 011.

Marie Lejeune (Liège University) July 08, 2019 17 / 23

Dealing with two factorizations

Equivalence ≡k

Let (p1, s1), (p2, s2) ∈ A<2k × A<2k . These two are equivalent for ≡k if
there exist a ∈ A, x , y ∈ A∗ such that one of these cases occurs:

1 |p1|+ |s1| = |p2|+ |s2| and
1 (p1, s1) = (p2, s2);
2 (p1, s1) = (xϕk−1(a), y) and (p2, s2) = (x , ϕk−1(a)y);
3 (p1, s1) = (x , ϕk−1(a)y) and (p2, s2) = (xϕk−1(a), y);
4 (p1, s1) = (ϕk−1(a), ϕk−1(a)) and (p2, s2) = (ϕk−1(a), ϕk−1(a));

2
∣∣(|p1|+ |s1|)− (|p2|+ |s2|)

∣∣ = 2k and
1 (p1, s1) = (x , y) and (p2, s2) = (xϕk−1(a), ϕk−1(ā)y);
2 (p1, s1) = (xϕk−1(a), ϕk−1(ā)y) and (p2, s2) = (x , y).

Example (continuing)
The word u = 01001011 has the two factorizations (0, ϕ2(1)011) and
(0ϕ2(1), 011). This corresponds to case (1.3), where x = 0, y = 011.

Marie Lejeune (Liège University) July 08, 2019 17 / 23

Link between ∼k and ≡k

Proposition
If a word u ∈ A≥2k−1 has two k-factorizations (p1, s1) and (p2, s2), then
these two are equivalent for ≡k .

The equivalence class of the k-factorizations of u is called its type of
order k .

Theorem
Let u and v be two factors of t of length n ≥ 2k − 1. We have

u ∼k v ⇔ (pu, su) ≡k (pv , sv).

Therefore, if k ≥ 3 and n ≥ 2k , we have

b(k)t (n) = #(Facn(t)/∼k) = #({(pu, su) : u ∈ Facn(t)}/≡k).

Marie Lejeune (Liège University) July 08, 2019 18 / 23

Link between ∼k and ≡k

Proposition
If a word u ∈ A≥2k−1 has two k-factorizations (p1, s1) and (p2, s2), then
these two are equivalent for ≡k .

The equivalence class of the k-factorizations of u is called its type of
order k .

Theorem
Let u and v be two factors of t of length n ≥ 2k − 1. We have

u ∼k v ⇔ (pu, su) ≡k (pv , sv).

Therefore, if k ≥ 3 and n ≥ 2k , we have

b(k)t (n) = #(Facn(t)/∼k) = #({(pu, su) : u ∈ Facn(t)}/≡k).

Marie Lejeune (Liège University) July 08, 2019 18 / 23

Link between ∼k and ≡k

Proposition
If a word u ∈ A≥2k−1 has two k-factorizations (p1, s1) and (p2, s2), then
these two are equivalent for ≡k .

The equivalence class of the k-factorizations of u is called its type of
order k .

Theorem
Let u and v be two factors of t of length n ≥ 2k − 1. We have

u ∼k v ⇔ (pu, su) ≡k (pv , sv).

Therefore, if k ≥ 3 and n ≥ 2k , we have

b(k)t (n) = #(Facn(t)/∼k) = #({(pu, su) : u ∈ Facn(t)}/≡k).

Marie Lejeune (Liège University) July 08, 2019 18 / 23

Computing this quantity

Let n ≥ 2k and for all ` ∈ {0, . . . , 2k−1 − 1}, define
P` = {(pu, su) : u ∈ Facn(t), |pu| = ` or |pu| = 2k−1 + `}.

Example
Let n = 15, k = 3 and ` = 2. We have

P2 = {(01, 10110), (01, 01001), (10, 10110), (10, 01001),

(101001, 0), (101001, 1), (010110, 0), (010110, 1)}.

Hence,

{(pu, su) : u ∈ Facn(t)} =
2k−1−1⋃
`=0

P`

and

b(k)t (n) =
2k−1−1∑
`=0

#(P`/≡k).

Marie Lejeune (Liège University) July 08, 2019 19 / 23

Computing this quantity

Let n ≥ 2k and for all ` ∈ {0, . . . , 2k−1 − 1}, define
P` = {(pu, su) : u ∈ Facn(t), |pu| = ` or |pu| = 2k−1 + `}.

Example
Let n = 15, k = 3 and ` = 2. We have

P2 = {(01, 10110), (01, 01001), (10, 10110), (10, 01001),

(101001, 0), (101001, 1), (010110, 0), (010110, 1)}.

Hence,

{(pu, su) : u ∈ Facn(t)} =
2k−1−1⋃
`=0

P`

and

b(k)t (n) =
2k−1−1∑
`=0

#(P`/≡k).

Marie Lejeune (Liège University) July 08, 2019 19 / 23

Computing this quantity

Let n ≥ 2k and for all ` ∈ {0, . . . , 2k−1 − 1}, define
P` = {(pu, su) : u ∈ Facn(t), |pu| = ` or |pu| = 2k−1 + `}.

Example
Let n = 15, k = 3 and ` = 2. We have

P2 = {(01, 10110), (01, 01001), (10, 10110), (10, 01001),

(101001, 0), (101001, 1), (010110, 0), (010110, 1)}.

Hence,

{(pu, su) : u ∈ Facn(t)} =
2k−1−1⋃
`=0

P`

and

b(k)t (n) =
2k−1−1∑
`=0

#(P`/≡k).

Marie Lejeune (Liège University) July 08, 2019 19 / 23

Computing this quantity (continued)

There exists `0 such that

P`0 = {(pu, su) : u ∈ Facn(t), |su| = 0 or |su| = 2k−1}.

Example
Let n = 10, k = 3 and ` = 2. We have `0 = 2 because

P2 = {(01, ε), (10, ε),

(101001, 0110), (101001, 1001), (010110, 0110), (010110, 1001)}.

Denote by λ the quantity n mod 2k . We have

#{0, . . . , 2k−1 − 1} \ {0, `0} =

{
2k−1 − 1, if λ = 0 or λ = 2k−1;
2k−1 − 2, otherwise.

Marie Lejeune (Liège University) July 08, 2019 20 / 23

Computing this quantity (continued)

There exists `0 such that

P`0 = {(pu, su) : u ∈ Facn(t), |su| = 0 or |su| = 2k−1}.

Example
Let n = 10, k = 3 and ` = 2. We have `0 = 2 because

P2 = {(01, ε), (10, ε),

(101001, 0110), (101001, 1001), (010110, 0110), (010110, 1001)}.

Denote by λ the quantity n mod 2k . We have

#{0, . . . , 2k−1 − 1} \ {0, `0} =

{
2k−1 − 1, if λ = 0 or λ = 2k−1;
2k−1 − 2, otherwise.

Marie Lejeune (Liège University) July 08, 2019 20 / 23

Computing this quantity (continued)

There exists `0 such that

P`0 = {(pu, su) : u ∈ Facn(t), |su| = 0 or |su| = 2k−1}.

Example
Let n = 10, k = 3 and ` = 2. We have `0 = 2 because

P2 = {(01, ε), (10, ε),

(101001, 0110), (101001, 1001), (010110, 0110), (010110, 1001)}.

Denote by λ the quantity n mod 2k . We have

#{0, . . . , 2k−1 − 1} \ {0, `0} =

{
2k−1 − 1, if λ = 0 or λ = 2k−1;
2k−1 − 2, otherwise.

Marie Lejeune (Liège University) July 08, 2019 20 / 23

Computing this quantity (continued)

Moreover, we can show that

((P0 ∪ P`0)/≡k) =


3, if λ = 0;
2, if λ = 2k−1;
8, otherwise;

and that, for all ` 6∈ {0, `0},

(P`/≡k) = 6.

Hence, putting all the information together,

({(pu, su) : u ∈ Facn(t)}/≡k) =
2k−1−1⋃
`=0

P`

=

{
3 · 2k − 3, if λ = 0;
3 · 2k − 4, otherwise.

Marie Lejeune (Liège University) July 08, 2019 21 / 23

Computing this quantity (continued)

Moreover, we can show that

((P0 ∪ P`0)/≡k) =


3, if λ = 0;
2, if λ = 2k−1;
8, otherwise;

and that, for all ` 6∈ {0, `0},

(P`/≡k) = 6.

Hence, putting all the information together,

({(pu, su) : u ∈ Facn(t)}/≡k) =
2k−1−1⋃
`=0

P`

=

{
3 · 2k − 3, if λ = 0;
3 · 2k − 4, otherwise.

Marie Lejeune (Liège University) July 08, 2019 21 / 23

Computing this quantity (continued)

Moreover, we can show that

((P0 ∪ P`0)/≡k) =


3, if λ = 0;
2, if λ = 2k−1;
8, otherwise;

and that, for all ` 6∈ {0, `0},

(P`/≡k) = 6.

Hence, putting all the information together,

({(pu, su) : u ∈ Facn(t)}/≡k) =
2k−1−1⋃
`=0

P`

=

{
3 · 2k − 3, if λ = 0;
3 · 2k − 4, otherwise.

Marie Lejeune (Liège University) July 08, 2019 21 / 23

Conclusion

It is also possible to show that, if u, v are two different factors of t of
length less than 2k , then u 6∼k v .
Therefore, b(k)t (n) = pt(n) for all n ≤ 2k − 1.

Finally, we obtain b(k)t (n) = pt(n) for all n ≤ 2k − 1 and, for all n ≥ 2k ,

b(k)t (n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

To end with an open question...
A Parikh-constant morphism is a morphism for which the images of all
letters are equal up to a permutation.

Could we generalize the technique to compute the exact value of b(k) for
other fixed points of Parikh-constant morphisms?

Marie Lejeune (Liège University) July 08, 2019 22 / 23

Conclusion

It is also possible to show that, if u, v are two different factors of t of
length less than 2k , then u 6∼k v .
Therefore, b(k)t (n) = pt(n) for all n ≤ 2k − 1.

Finally, we obtain b(k)t (n) = pt(n) for all n ≤ 2k − 1 and, for all n ≥ 2k ,

b(k)t (n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

To end with an open question...
A Parikh-constant morphism is a morphism for which the images of all
letters are equal up to a permutation.

Could we generalize the technique to compute the exact value of b(k) for
other fixed points of Parikh-constant morphisms?

Marie Lejeune (Liège University) July 08, 2019 22 / 23

Conclusion

It is also possible to show that, if u, v are two different factors of t of
length less than 2k , then u 6∼k v .
Therefore, b(k)t (n) = pt(n) for all n ≤ 2k − 1.

Finally, we obtain b(k)t (n) = pt(n) for all n ≤ 2k − 1 and, for all n ≥ 2k ,

b(k)t (n) =

{
3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

To end with an open question...
A Parikh-constant morphism is a morphism for which the images of all
letters are equal up to a permutation.

Could we generalize the technique to compute the exact value of b(k) for
other fixed points of Parikh-constant morphisms?

Marie Lejeune (Liège University) July 08, 2019 22 / 23

Thank you!

Marie Lejeune (Liège University) July 08, 2019 23 / 23

	Preliminary definitions
	Words, factors and subwords
	Complexity functions
	k-binomial complexity
	The Thue–Morse word

	Why to compute bt(k)?
	Computing bt(k)
	Factorizations
	Types of order k

