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• Multi-scale modelling

– 2 problems are solved 

concurrently

• The macro-scale problem

• The meso-scale problem 

(on a meso-scale Volume 

Element)

• Length-scales separation

Objectives

P, σ, q, … F, Ɛ, T, 𝛁T, …

BVP

Macro-scale

Material 

response

Extraction of a meso-

scale Volume Element

Lmacro>>LVE>>Lmicro

For accuracy: Size of the meso-

scale volume element smaller than

the characteristic length of the

macro-scale loading

To be statistically representative:

Size of the meso-scale volume

element larger than the

characteristic length of the micro-

structure
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• Non-linear responses of composites

– RVE size is too large

– Structural response suffers from scatter 

– Requires the use of smaller VEs

• Main objective

– To develop an integrated stochastic multiscale approach to predict 

failure of composites

Objectives

Lmacro>>LVE>~Lmicro

For accuracy: Size of the meso-

scale volume element smaller than

the characteristic length of the

macro-scale loading

Meso-scale volume element no

longer statistically representative:

Stochastic Volume Elements
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• Proposed methodology

– To develop a stochastic Mean Field Homogenization method able to predict the 

probabilistic distribution of material response at an intermediate scale from micro-

structural constituents characterization

Methodology

𝜔 =∪𝑖 𝜔𝑖
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• Uncertainty quantification of micro-structure & micro-structure generator

Methodology

𝜔 =∪𝑖 𝜔𝑖
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• 2000x and 3000x SEM images

• Fibers detection

Experimental measurements
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• Basic geometric information of fibers' cross sections

– Fiber radius distribution 𝑝𝑅 𝑟

• Basic spatial information of fibers

– The distribution of the nearest-neighbor net distance

function 𝑝𝑑1st 𝑑

– The distribution of the orientation of the undirected line

connecting the center points of a fiber to its nearest

neighbor 𝑝𝜗1st 𝜃

– The distribution of the difference between the net

distance to the second and the first nearest-neighbor

𝑝Δ𝑑 𝑑 with Δ𝑑 = 𝑑2nd − 𝑑1st

– The distribution of the second nearest-neighbor’s

location referring to the first nearest-neighbor 𝑝Δ𝜗 𝜃

with Δ𝜗 = 𝜗2nd − 𝜗1st

Micro-structure stochastic model

𝑅0

𝑅1

𝜗1st

𝑑1st∆𝜗

𝜗2nd
𝑑2nd

𝑅2
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• Histograms of random micro-structures’ descriptors

Micro-structure stochastic model

𝑅0

𝑅1

𝜗1st

𝑑1st∆𝜗

𝜗2nd
𝑑2nd

𝑅2
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• Dependency of the four random variables 𝑑1st, ∆𝑑, 𝜗1st, ∆𝜗

• Correlation matrix 

• Distances correlation matrix

𝑑1st and  ∆𝑑 are dependent

they will have to be generated

from their empirical copula

Micro-structure stochastic model

𝑑1st ∆𝑑 𝜗1st ∆𝜗

𝑑1st 1.0 0.27 0.04 0.08

∆𝑑 1.0 0.05 0.06

𝜗1st 1.0 0.05

∆𝜗 1.0

𝑑1st ∆𝑑 𝜗1st ∆𝜗

𝑑1st 1.0 0.21 0.01 0.02

∆𝑑 1.0 0.002 -0.005

𝜗1st 1.0 0.02

∆𝜗 1.0

𝑅0

𝑅1

𝜗1st

𝑑1st∆𝜗

𝜗2nd
𝑑2nd

𝑅2
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• 𝑑1st and  ∆𝑑 should be generated using their empirical copula

Micro-structure stochastic model

∆𝑑

SEM sample Generated sample

𝑑1st

∆𝑑

∆𝑑

𝑑1st

Directly from 

copula generator

Statistic result from 

generated SVE

𝑅0

𝑅1

𝜗1st

𝑑1st∆𝜗

𝜗2nd
𝑑2nd

𝑅2
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• Numerical micro-structures are generated by a fiber additive process

– Arbitrary size

– Arbitrary number

– Possibility to generate non-homogenous distributions

Micro-structure stochastic model
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• SVEs definition

Methodology

𝜔 =∪𝑖 𝜔𝑖
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Micro-structural model of fiber-reinforced highly crosslinked epoxy

• UD Composites with RTM6 epoxy matrix

– Identified matrix material behaviour

• Hyperelastic viscoelastic-viscoplastic constitutive model enhanced by 

a multi-mechanism nonlocal damage model 

– To be used in micro-structural analysis

• Behaviour in composite is different

• Introduce a length-scale effect

• Resin model implementation:

– Requires non-local form [Bažant 1988]

• Introduction of characteristic length 𝑙𝑐

• Weighted average:   𝑍 𝒙 =  𝑉𝐶
𝑊 𝒚;𝒙, 𝑙𝑐 𝑍 𝐲 𝑑𝒚

– Implicit form [Peerlings et al. 1998]

• New degrees of freedom:  𝑍

• New Helmholtz-type equations:  𝑍 − 𝑙𝑐
2 Δ  𝑍 = 𝑍

– Has a length scale effect

Local: no mesh 

convergence

𝜎

𝜀
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• Resin model

– Material changes represented via internal variables 

– Constitutive law  𝐏 𝐅; 𝒁 𝑡′

• Internal  variables  𝒁 𝑡′

• Multi-damage strategy

– Non-local damage evolution laws

• Saturation law

• Failure law
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Kinematic hardening

Both hardening

& saturated damage

Isotropic hardening

& failure damage

𝐏 = 𝟏 − 𝐷𝑠 𝟏 − 𝐷𝑓  𝐏

 𝐷𝑠 = 𝐷𝑠 𝐷𝑠, 𝐅 𝑡 , 𝜒𝑠 𝑡 ; 𝑍 𝜏 , 𝜏 ∈ [0 𝑡]  𝜒𝑠

 𝛾𝑠 − 𝑙𝑠
2 Δ 𝛾𝑠 = 𝛾𝑠

𝜒𝑠 𝑡 = max
𝜏

 𝛾𝑠 𝜏

 𝐷𝑓 = 𝐷𝑓 𝐷𝑓, 𝐅 𝑡 , 𝜒𝑓 𝑡 ; 𝑍 𝜏 , 𝜏 ∈ [0 𝑡]  𝜒𝑓

 𝛾𝑓 − 𝑙𝑓
2 Δ 𝛾𝑓 = 𝛾𝑓

𝜒𝑓 𝑡 = max
𝜏

 𝛾𝑓 𝜏

Micro-structural model of fiber-reinforced highly crosslinked epoxy
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Micro-structural model of fiber-reinforced highly crosslinked epoxy

• Resin model: saturated softening

– Saturated damage evolution

– Several hardening/softening combinations
• Requires composite material tests
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𝐷𝑠∞ = 0.2
𝐷𝑠∞ = 0.31

Experiment

𝐷𝑠∞ = 0.51
𝐷𝑠∞ = 0.62

 𝐷𝑠 = 𝐻𝑠 𝜒𝑠 − 𝜒𝑠0
𝜁𝑠 𝐷𝑠∞ − 𝐷𝑠  𝜒𝑠

 𝛾𝑠 − 𝑙𝑠
2 Δ 𝛾𝑠 = 𝛾

𝜒𝑠 = max
𝜏

𝜒𝑠0,  𝛾𝑠 𝜏

Pure resin uniaxial 

tests
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Micro-structural model of fiber-reinforced highly crosslinked epoxy

• Resin model: saturated softening

– Several hardening/softening combinations
• Requires composite material tests

– Length scale effect

– Non-local BC at fibre interface 
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• Resin model: failure softening

– Failure surface

– Damage evolution

– Affect ductility

– Calibration

• From localization simulation

• Recover the epoxy 𝐺𝑐

Micro-structural model of fiber-reinforced highly crosslinked epoxy

 𝐷𝑓 = 𝐻𝑓 𝜒𝑓
𝜁𝑓

1 − 𝐷𝑓
−𝜁𝑑

 𝜒𝑓

 𝛾𝑓 − 𝑙𝑓
2 Δ 𝛾𝑓 = 𝛾𝑓

𝜒𝑓 = max
𝜏

 𝛾𝑓 𝜏

𝑙𝑓 = 3 μm 𝛻0  𝛾𝑓 ⋅ 𝐍 = 0

𝜙𝑓 = 𝛾 − 𝑎 exp −𝑏
tr  𝝉

3  𝜏𝑒𝑞
− 𝑐

𝜙𝑓 − 𝑟 ≤ 0;  𝑟 ≥ 0; and  𝑟 𝜙𝑓 − 𝑟 = 0

 𝛾𝑓 =  𝑟

-True Strain

-T
ru

e
 S

tr
e
s
s

𝐻𝑓

𝜒𝑓

𝐷𝑓

𝑅

Total failure

Unloading path

Loading path

Localization 

onset

Dissipation onset

𝜎

𝒟

𝒟loc

𝒟end

𝐺𝑐 =
𝒟end − 𝒟loc

𝐴0
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Micro-structural model of fiber-reinforced highly crosslinked epoxy

• UD Composites with RTM6 epoxy matrix

– 2D simulations of 25 x 25 μm 40% volume fraction composite SVEs

0

0.5

1
𝐷𝑓
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• Extraction of apparent responses

Methodology

𝜔 =∪𝑖 𝜔𝑖
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• Window technique

– Extraction of Stochastic Volume Elements

• 𝑙SVE = 25 𝜇𝑚

• Correlation

– For each SVE

• Extract apparent homogenized material tensor ℂM

• Consistent boundary conditions:

– Periodic (PBC)

– Minimum kinematics (SUBC)

– Kinematic (KUBC)

Stochastic homogenization on the SVEs

𝑥

𝑦

SVE 𝑥, 𝑦

SVE 𝑥′, 𝑦

SVE 𝑥′, 𝑦′

t

𝑙SVE𝜺M =
1

𝑉 𝜔
 
𝜔

𝜺m𝑑𝜔

𝝈M =
1

𝑉 𝜔
 
𝜔

𝝈m𝑑𝜔

ℂM =
𝜕𝝈M

𝜕𝒖M ⊗𝛁M

𝑅𝐫𝐬 𝝉 =
𝔼 𝑟 𝒙 − 𝔼 𝑟 𝑠 𝒙 + 𝝉 − 𝔼 𝑠

𝔼 𝑟 − 𝔼 𝑟
2

𝔼 𝑠 − 𝔼 𝑠
2
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• Apparent elastic properties: distribution & Correlation

– For large enough RVE (𝑙SVE > 10 𝜇𝑚)  

Stochastic homogenization on the SVEs

𝑙SVE = 25 𝜇𝑚

Auto/cross correlation vanishes at 𝜏 = 𝑙SVE

Distributions get closer to normal

𝑙SVE = 25 𝜇𝑚

Apparent properties of different SVEs 

are independent 

However the distributions depend on 

• 𝑙SVE
• The boundary conditions
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• Apparent response

– Independent Stochastic Volume Elements

• 𝑙SVE = 25 𝜇𝑚

– Stochastic homogenization

• Extract apparent responses

– 3 stages

• Linear response

• (Damage-enhanced) elasto-plasticity

• Failure (loss of size objectivity)

Stochastic homogenization on the SVEs

𝜺M =
1

𝑉 𝜔
 
𝜔

𝜺m𝑑𝜔

𝝈M =
1

𝑉 𝜔
 
𝜔

𝝈m𝑑𝜔

ℂM =
𝜕𝝈M

𝜕𝒖M ⊗𝛁M

Stochastic Homogenization

SVE realizations

Linear Non-linear Failure
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• Stochastic Mean-Field Homogenization-based model

– First stage: linear elasticity

Methodology

𝜔 =∪𝑖 𝜔𝑖
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• Mean-Field-Homogenization (MFH)

– Linear composites

– We use Mori-Tanaka assumption for 𝔹𝜀 I, ℂ0 , ℂI

• Stochastic MFH

– How to define randomness?

Stochastic Mean-Field Homogenization

𝛆M =  𝛆 = 𝑣0𝛆0 + 𝑣I𝛆I

𝛆I = 𝔹𝜀 I, ℂ0 , ℂI : 𝛆0

𝛔M =  𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I

inclusions

composite

matrix

𝛆I

𝛔

𝛆

ℂ0

 𝛆 = 𝛆M
𝛆0

ℂI

ℂM = ℂM I, ℂ0 , ℂI , 𝑣I

𝜔 =∪𝑖 𝜔𝑖

wI

w0

L. Wu, V.-D. Nguyen, L. Adam, L. Noels, An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites (2019)
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• Mean-Field-Homogenization (MFH)

– Linear composites

• Consider an equivalent system

– For each SVE realization 𝑖:

ℂM and 𝜈I known

– Anisotropy from ℂM
𝑖

𝜃 is evaluated

– Fiber behavior uniform

 ℂI for one SVE

– Remaining optimization problem:

Stochastic Mean-Field Homogenization

𝛆M =  𝛆 = 𝑣0𝛆0 + 𝑣I𝛆I

𝛆I = 𝔹𝜀 I, ℂ0 , ℂI : 𝛆0

𝛔M =  𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I

inclusions

composite

matrix

𝛆I

𝛔

𝛆

ℂ0

 𝛆 = 𝛆M
𝛆0

ℂI

Defined as 

random variables

ℂM ≃  ℂM( I,  ℂ0 ,  ℂI , 𝑣I, 𝜃)

ℂ0ℂI

 ℂ0

 ℂI

𝜃

𝑎

𝑏

Equivalent 

inclusion

min
𝑎

𝑏
,  𝐸0 , 𝜈0

ℂM −  ℂM(
𝑎

𝑏
,  𝐸0 ,  𝜈0 ; 𝑣I, 𝜃,  ℂI )

 ℂM =  ℂM I, ℂ0 , ℂI , 𝑣I

𝜔 =∪𝑖 𝜔𝑖

wI

w0
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• Inverse stochastic identification

– Comparison of homogenized 

properties from SVE realizations 

and stochastic MFH

Stochastic Mean-Field Homogenization

ℂM ≃  ℂM( I,  ℂ0 ,  ℂI , 𝑣I, 𝜃)

ℂ0ℂI

 ℂ0

 ℂI

𝜃

𝑎

𝑏

Equivalent 

inclusion
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• Stochastic Mean-Field Homogenization-based model

– Second stage: damage-enhanced elasto-plasticity

Methodology

𝜔 =∪𝑖 𝜔𝑖
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• Non-linear Mean-Field-homogenization

– Linear composites 

– Non-linear composites

Non-linear stochastic Mean-Field Homogenization

𝛆M =  𝛆 = 𝑣0𝛆0 + 𝑣I𝛆I

𝛆I = 𝔹𝜀 I, ℂ0 , ℂI : 𝛆0

𝛔M =  𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I

inclusions

composite

matrix

𝛆I

𝛔

𝛆

ℂ0

 𝛆 = 𝛆M
𝛆0

ℂI

inclusions

composite

matrix

𝚫𝛆I

𝛔

𝛆𝚫𝛆M 𝚫𝛆0

𝚫𝛆M = Δ𝛆 = 𝑣0Δ𝛆0 + 𝑣IΔ𝛆I

𝚫𝛆I = 𝔹𝜀 I, ℂ0
LCC, ℂ𝐼

LCC : 𝚫𝛆0

𝛔M =  𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I

Define a linear 

comparison 

composite material
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Non-linear stochastic Mean-Field Homogenization

• View to damage Mean-Field-homogenization

– Incremental forms

• Strain increments in the same direction

– Because of the damaging process, the fiber 

phase is elastically unloaded during matrix 

softening

• Solution

– We need to define the LCC from another state

inclusions

composite

matrix:

Δ𝛆I Δ 𝛆 Δ𝛆0

𝛔

𝛆

ℂ0
alg

ℂI
alg

matrix

inclusions

𝛔

𝛆
Δ𝛆I Δ𝛆0

𝚫𝛆𝐈 = 𝔹𝜀 I, ℂ0
alg
, ℂI

alg
: 𝚫𝛆𝟎
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• Incremental-secant Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-

free state

• Residual stress in components

Non-linear stochastic Mean-Field Homogenization

inclusions

composite

matrix

𝚫𝛆I
unload

𝛔

𝛆

𝚫𝛆M
unload

𝚫𝛆0
unload

ℂI
el

ℂ0
el
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• Incremental-secant Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-

free state

• Residual stress in components

– Define Linear Comparison Composite

• From unloaded state

• Incremental-secant loading

• Incremental secant operator

Non-linear stochastic Mean-Field Homogenization
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• Non-linear inverse identification

– First step from elastic response

Non-linear stochastic Mean-Field Homogenization

ℂ0ℂI
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• Non-linear inverse identification

– First step from elastic response

– Second step from the LCC

• New optimization problem

• Extract the equivalent hardening  𝑅  𝑝0 from the 

incremental secant tensor

Non-linear stochastic Mean-Field Homogenization
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• Damage-enhanced Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-

free state

• Residual stress in components

Non-linear stochastic Mean-Field Homogenization
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• Damage-enhanced Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-

free state

• Residual stress in components

– Define Linear Comparison Composite

• From elastic state

• Incremental-secant loading

• Incremental secant operator

Non-linear stochastic Mean-Field Homogenization

𝚫𝛆M
𝐫 = Δ𝛆 = 𝑣0Δ𝛆0
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• Damage-enhanced inverse identification

– Second step: elastic unloading

• Identify damage evolution  𝐷0

Non-linear stochastic Mean-Field Homogenization
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L. Wu, V.-D. Nguyen, L. Adam, L. Noels, An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites (2019)
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• Damage-enhanced inverse identification

– Second step: elastic unloading

• Identify damage evolution  𝐷0

– Third step from the LCC

•

• Extract the equivalent hardening  𝑅  𝑝0 & damage 

evolution  D0  𝑝0 from incremental secant tensor:

Non-linear stochastic Mean-Field Homogenization
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L. Wu, V.-D. Nguyen, L. Adam, L. Noels, An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites (2019)
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• Stochastic Mean-Field Homogenization-based model

– Third stage: Failure

Methodology

𝜔 =∪𝑖 𝜔𝑖
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Mean-Field Homogenization with failure

• Need to recover size objectivity

– Strength is objective

– Critical energy release rate is objective

0

0.5

1
𝐷𝑓

Total failure

Unloading paths

Loading path

Localization 

onset

Dissipation onset

𝜎

𝒟

𝒟loc

𝒟end

𝐺𝑐 =
𝒟end − 𝒟loc

𝐴0

𝜎𝑐

𝜎𝑐
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• Non-linear SVE simulations

Mean-Field Homogenization with failure

0.0408

0.0780

0.0654

0.1019

Gc [N/mm]
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Mean-Field Homogenization with failure

• Damage-enhanced mean-field homogenization

– Requires non-local form for the matrix part of homogenized 

behavior

• Following implicit form [Peerlings et al. 1998]

– Apparent matrix plastic strain 𝑝0

– Non-local apparent matrix plastic strain  𝑝0

– Matrix damage evolution 

• New Helmholtz-type equations:

–

– Definition of non-local length 𝑙𝑐

 ℂ0
SD  𝑝0

 ℂI
S

𝜃

𝑎

𝑏

)Δ𝐷0 = 𝐹𝐷(𝚫𝛆𝟎, Δ  𝑝0

 𝑝0 − 𝑙𝑐
2𝛻 ⋅ 𝛻  𝑝0 = 𝑝0

)Δ𝐷0 = 𝐹𝐷(𝚫𝛆𝟎, Δ𝑝0
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Mean-Field Homogenization with failure

• Damage-enhanced mean-field homogenization

– Requires non-local form for the matrix homogenized behavior

• Matrix damage evolution 

• New Helmholtz-type equations:

–

– Definition of non-local length 𝑙𝑐

• Evaluation of non-local length

– To recover the energy release rate of SVEs

 ℂ0
SD  𝑝0

 ℂI
S

𝜃

𝑎

𝑏)Δ𝐷0 = 𝐹𝐷(𝚫𝛆𝟎, Δ  𝑝0

 𝑝0 − 𝑙𝑐
2𝛻 ⋅ 𝛻  𝑝0 = 𝑝0

𝑅 ≫ 𝑙𝑐
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0.10355 0.363
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Mean-Field Homogenization with failure

• More convenient to fix non-local length

– For macro-scale Stochastic FEM

– To increase its length

• Modify the damage evolution to recover 𝐺𝑐
– Before localization onset: identified evolution

– After localization onset:

•

• Iterate on α and 𝛽

)Δ𝐷0 = 𝐹𝐷(𝚫𝛆𝟎, Δ  𝑝0 𝑅 ≫ 𝑙𝑐

𝐿 ≫ 𝑙𝑐

Non-local MFH 

material law
Δ𝐷0 = α(  𝑝0 + Δ 𝑝0 −  𝑝0onset)

β Δ  𝑝0

Total failure Loading path

Localization 

onset

Dissipation onset

𝜎

𝒟
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𝒟end

𝐺𝑐 =
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𝐴0

Method 𝐺𝑐 [N mm-1]

SVE 0.0945

MFH 0.0932
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• Use Stochastic Mean-Field Homogenization as constitutive law 

Methodology

𝜔 =∪𝑖 𝜔𝑖
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Use of stochastic Mean-Field Homogenization

• Stochastic simulations require two discretizations

– Random vector field discretization

• Of MFH-model parameters

• Stochastic MFH-model parameters identified

• Potentially more cells than SVE realizations

parameters need to be generated 

– Finite element discretization

• Finer than random field grid 



CM3 1-4 October 2019 Computational Modeling of Complex Materials across the Scales (CMCS) 71

• Generation of random field

– Inverse identification  vs. diffusion map –based generator [Soize, Ghanem 2016]

Use of stochastic Mean-Field Homogenization
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Use of stochastic Mean-Field Homogenization

• Ply loading realizations

– Preliminary results (softening part not implemented)



CM3 1-4 October 2019 Computational Modeling of Complex Materials across the Scales (CMCS) 74

• Stochastic micro-structures

– Geometrical features from statistical measurements

– Micro-structure geometry generator

– Experimentally calibrated/validated epoxy model with length scale effect

• Inverse MFH identification

– MFH is used as a micro-mechanics based model

– Parameters identified from SVE simulations

– Localization behaviour identified using objective fields

• Stochastic Finite elements

– Stochastic MFH is used as material law

– Random fields (MFH parameters) generated using data-driven approach

– First ply simulations  

Conclusions
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Thank you for your attention! 

Special thanks to: 

STOMMMAC project
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