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Abstract: The architectural potential of tensegrity structures is proven. Yet, paradoxically, very few real construction projects have been
built around the world. The main reasons are complex construction processes, lack of design and optimization guidelines, and excessive
self-weight due to the prestress needed to guarantee stiffness and dynamic behavior. Hence, optimizing the stiffness and self-weight is a
key aspect when designing a tensegrity footbridge. Previous research has demonstrated the validity of a design and optimization methodology,
based on morphological indicators, that identifies geometry with a maximum stiffness and=or a minimum self-weight for a family of structures.
In this paper, that methodology is applied to footbridges composed of tensegrity modules comprising simplex, quadruplex, pentaplex, and
hexaplex types. A comparison of the stiffest and lightest structures is provided, a practical case study is developed, and the relevance and
feasibility of such tensegrity footbridges are discussed. As a result, the study provides advice on optimum footbridge topologies with the
following characteristics: excellent stiffness and dynamic behavior; efficient structures composed of simplex modules; and self-weight that is
still rather high but similar to that of bended structures, although with potential to be reduced thanks to optimization of the prestress scenario.
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State of the Art and Objectives

Tensegrity is a word with controversial definitions (Hanaor 2012).
The term tensegrity system often refers to a system in a stable self-
equilibrated state comprising a discontinuous set of compressed
components inside a continuum of tensioned components (Motro
2005). In order to widen the potential of tensegrity to engineering
applications, it is also often considered that a tensegrity structure
may have k compressive components in contact on a single node.
In this case, Skelton and de Oliveira (2009, pp. 1–7) wrote about
a structure “of class k.” Extended tensegrity refers, in this article, to
other definitions of tensegrity. This includes, among others, struc-
tures with some members subjected to bending moments or struc-
tures that are prestressable only if supports exist.

Although tensegrity and extended tensegrity structures have
found a significant place in scientific papers these last decades,
the topic of tensegrity applied to footbridges is relatively absent
in the literature. Gómez-Jáuregui (2010) established a large state
of the art about tensegrity structures and their application to ar-
chitecture. He cited some authors suggesting the use of tensegrity
for bridge applications, but his investigations did not reveal any
existence of tensegrity-based bridge proposals before 2004. He
also cited some authors describing structures having, accord-
ing to them, a high stiffness and economical design. Other cited
authors, on the contrary, were more skeptical about the perfor-
mances of tensegrity structures in comparison with more classical
structures. Yet nowadays there is still a lack of rigorous and quan-
titative proofs about the structural efficiency or inefficiency of ten-
segrity structures for engineering applications, in particular bridges
and footbridges.

Fig. 1 shows a few creative prototypes with high architectural
potential, which, however, never reached the construction stage.
� In his 2004 master’s thesis, Gómez-Jáuregui (2010) proposed a

Class 1 (no struts in contact with each other) tensegrity footbridge
concept based on a succession of simplex modules [Fig. 1(a)].

� Architects from the firmWilkinsonEyre (2004) and the structural
engineer C. Balmond from Arup developed a prototype of a 35-
m-long tensegrity bridge composed of a mesh of tetrahedral cells
[Fig. 1(b)]. The footbridge was designed to span the Great Hall
of the National BuildingMuseum inWashington, DC, and to react
to pedestrians by lighting the glass struts as they were subjected to
changing stresses (Davey and Forster 2007).

� Micheletti et al. (2005) presented the Tor Vergata footbridge
[Fig. 1(c)], a 32-m-long Class 2 tensegrity footbridge composed of
reexpanded octahedron modules. The height (3.6 m), the num-
ber of modules (five), and the sections of the struts (193 mm
diameter, 12 mm thick) and of the cables (72 mm) were chosen
in order to find a compromise between maximum stiffness
(deflection of 8 cm under the most critical static loads combi-
nation) and cost efficiency (Micheletti 2012).
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� Mucedola and Paradiso (2013) proposed a suspended tensegrity
bridge project [Fig. 1(d)] intended to cross the Sesia River in Italy
for the sake of the 5,900-km bicycle route of the European facilities
program EuroVelo 8. The extended tensegrity footbridge, based on
a reviewed reexpanded octahedron module, would consist of two
main spans of 117 m and 78 m, with a height of 7 m (headroom of
2.85 m) and a straight 3.1-m-wide deck. The struts would have a
diameter of 300 mm with a thickness of 10 mm, while the cables
would have a diameter of 40 mm (Mucedola and Paradiso 2013).

� De Boeck (2013) presented an extended tensegrity topology
based on a succession of simplex modules according to a fractal
design [Fig. 1(e)]. In each simplex module, one strut is hor-
izontal and supports the deck. He detailed a 30-m-span structure
weighing 270 kN and able to support a distributed load of 6.25
kN/m with a maximum deflection of 55 mm.

In contrast, Fig. 2 shows two rare examples of existing footbridges
based on the tensegrity principle.
� In 2000, the architect den Hollander (Eekhout 2016, pp. 167–

178) designed the Bridge of Masts in Purmerend, Netherlands.
This 144-m-long pedestrian bridge in extended tensegrity is

supported by two rows of sixteen masts and sixty-four tensile
rods in such a way that the 3.5-m-wide deck is suspended and
visually independent of the masts [Fig. 2(a)].

� In 2009, Cox Rayner Architects and Arup designed the Kurilpa
Bridge in Brisbane, Australia. Rolvink et al. (2010) from Arup
described this 470-m-long (main span of 120 m) pedestrian
bridge [Fig. 2(b)] as a multimast cable-stay structure inspired by
the principle of tensegrity, which is “both lightweight and in-
credibly strong.”

Finding the feasibility range of tensegrity (foot)bridges on the ba-
sis of structural performances such as stiffness and self-weight re-
mains a complex optimization problem due to the requirement of
nonlinear calculations combined with the large number of parame-
ters that characterize such structures, for example, topology, span,
width, height, dimensions of the cross sections, materials properties,
prestress, and external loads.

Fig. 3 shows different bridge designs using the tensegrity prin-
ciple that have been optimized according to different methodologies.
� Briseghella et al. (2010) studied the influence of structural

height, prestress, and dimensions of the slab, beams, and cables

(e)

Fig. 1. Architectural projects: (a) Gómez-Jáuregui prototype (reprinted from Gómez-Jáuregui 2010, with permission); (b) WilkinsonEyre prototype
(image courtesy of WilkinsonEyre); (c) Tor Vergata footbridge (image courtesy of A. Micheletti); and (d) suspended tensegrity bridge (reprinted from
Mucedola and Paradiso 2013, with permission); (e) De Boeck (2013) prototype (reprinted from De Boeck 2013, with permission).
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on the dynamic behavior of a 30-m-long footbridge [Fig. 3(a)].
The prestressed arch deck is supported by four transverse rect-
angular beams (500�200�10 mm), which, together, are part of
the extended tensegrity system. The pretensioned steel struts
(25 mm, 1,000 MPa) provide the stiffness.

� From 2010 on, several authors made significant contributions in
the design of footbridges composed of tensegrity modules.
They studied the influence of several parameters on structural
behavior (Rhode-Barbarigos et al. 2010a; Rhode-Barbarigos
et al. 2010b); analyzed dynamic behavior (Bel Hadj Ali et al.
2010); controlled deployment numerically and experimentally
(Rhode-Barbarigos et al. 2012; Veuve et al. 2015; Sychterz and
Smith 2017); and presented a feasible configuration of a 20-m-
span Class 4 tensegrity pedestrian bridge initially proposed in
Motro et al. (2006) [Fig. 3(c)]. In particular, Rhode-Barbarigos
et al. (2010a) described a design=optimization process based on
parametric analysis of the cross-sectional area of the struts and
cables, the rigidity ratio (cables=struts), and the self-stress level.
Their method allows comparison of different modules’ topol-
ogies (square, pentagonal, hexagonal) thanks to a structural
efficiency index that takes into account both self-weight and
deflection of the structure.

� Averseng and Dubé (2012) compared the performances, in terms
of mass and deflection, of different geometries of a Class 2 de-
ployable 12-m tensegrity beam composed of a succession of
quadruplex modules. Their optimization methodology consisted
of progressively increasing the prestress level and cross-sectional

area until both no slacked cable criterion and allowable stresses
were respected. The optimal tensegrity beam maximizing their
performances indicator (defined as the inverse of the product
of the deflection and the mass) showed high deflection (L=130)
and important mass compared with traditional beams. Amouri
et al. (2015) improved their algorithm and presented three curved
tensegrity beams with three different geometries and various
materials [Fig. 3(b)].

� Skelton et al. (2014) and Carpentieri et al. (2015) found the
minimum mass design of a simply supported two-dimensional
(2D) tensegrity bridge carrying distributed loads [Fig. 3(d)].
They used the fractal principle through repetition of the minimal
mass module of Michell (1904) [Fig. 3(e)]. Their methodology
consisted of finding the analytic expression of a dimensionless
mass indicator in function of the topology and to minimize it
under material yielding or buckling constraint.

� Finally, Latteur et al. (2017) presented a design methodology
based on a stiffness and volume=mass optimization algo-
rithm for three-dimensional (3D) nonlinear hyperstatic and
prestressed structures composed of elements subjected only to
axial forces, with a special emphasis on tensegrity structures.
The methodology is based on dimensionless numbers called
morphological indicators that allow reducing the number of
parameters to consider for the stiffness and mass optimization
process. It allows rigorous determination of the best topolo-
gies within a given family of structures (the best ratio of span
over height, or L=H, and the best number of tensegrity mod-

Fig. 2. Existing footbridges: (a) Bridge of Masts (2000, Purmerend, Netherlands) by den Hollander (reprinted from Eekhout 2016, with permission);
and (b) Kurilpa Bridge (2009, Brisbane, Australia) by Cox Rayner Architects and Arup (Image credit: redbrickstock.com=Alamy Stock Photo).
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ules). The paper first demonstrates the optimization algo-
rithm and then gives numerical confirmations and examples.
In particular, Latteur et al. proposed, as an illustration of their
design methodology, the geometry of a tensegrity footbridge
composed of a succession of elementary tensegrity simplex
modules, called the snake footbridge (Fig. 4). The sinusoidal
design of the deck comes naturally from the fact that it sig-
nificantly increases not only the architectural value but also
the headroom for pedestrians, since the upper nodes of the
structures are not aligned.

This paper focuses mainly on topics related to tensegrity foot-
bridges. Concerning morphological indicators and other design
methodologies for tensegrity structures, a detailed state of the art
can be found in Latteur et al. (2017).

The aim of this paper is to develop and use the design meth-
odology demonstrated in Latteur et al. (2017) in order to prove the
feasibility of footbridges composed of a succession of elemen-
tary tensegrity modules of the types simplex, quadruplex, hexaplex,
and pentaplex (Figs. 4–7), with a suspended deck situated inside
the main Class 2 tensegrity structures. In other words, the study fo-
cuses on selection of the types of tensegrity modules, their number
S, and the ratios L=H (span over height) that lead to the lightest
and=or stiffest structures. The relevance of this type of construc-

tion with respect to other types of structures, such as trusses, is
discussed, and a practical example of a 40-m-long footbridge is
given.

Assumptions and Definitions

General Assumptions

This paper considers any structure
� of span L, height H, and width D, considered after application of

the prestress (Fig. 6) and composed of a number S of elementary
tensegrity modules of type simplex, quadruplex, pentaplex, or
hexaplex (Fig. 5);

� with nc cables made of the same material of specific weight qc,
Young’s modulus Ec, and design strength rc;

� with ns struts made of the same material of specific weight qs,
Young’s modulus Es, and design strength rs, and such that factor
u is defined as u ¼ rc=rs;

� with materials having an elastic linear behavior, rc and rs
coming, respectively, from the division of the characteristic
yield strength by the adequate security coefficient (discussed in
the next section);

Fig. 3. Optimized bridge projects using the tensegrity principle: (a) tensegrity bridge with a prestressed deck (reprinted from Briseghella et al. 2010,
with permission); (b) curved tensegrity beams (reprinted from Amouri et al. 2015, with permission from Taylor & Francis, http://www.tandfonline.com);
(c) hollow-rope footbridge (2006) (reprinted from Engineering Structures, Vol. 32, L. Rhode-Barbarigos, N. Bel Hadj Ali, R. Motro, and I. F. C. Smith,
“Designing tensegrity modules for pedestrian bridges,” pp. 1158–1167, � 2010, with permission from Elsevier); (d) 2D tensegrity bridge carrying
distributed loads; and (e) Michell’s minimal mass module. [Reprinted (e) and (f) fromMechanics Research Communications, Vol. 58, R. E. Skelton, F.
Fraternali, G. Carpentieri, and A. Micheletti, “Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity,”
pp. 124–132, � 2014, with permission from Elsevier.]
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� in which each cable (or any element remaining always in ten-
sion) of index i, subjected to a tension force Nc;i, has a cross-
sectional area Ac;i related to the design criterion

Nc;i=Ac;i ¼ rc ð1Þ

� in which each strut of index i has a cross sectional area As,i and
a moment of inertia Is,i, such that the form factor q, defined as

q ¼ Is,i/As,i
2 (Fig. 8), is supposed to be equal for all struts. The

area As,i of the strut of length L0,i subjected to a compression
force Ns,i is related to the design criterion (approximation of
corrected Euler’s critical load)

Ns;i

As;i
¼ 1

1þ L2
i

rs with
Li ¼ ki= p

ffiffiffiffiffiffiffiffiffiffiffiffi
Es=rs

p� �

ki ¼ L0;i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As;i=Is;i

p
8><
>: ð2Þ

Fig. 4. Snake footbridge design proposed by Latteur et al. (2017).

Fig. 5. Elementary tensegrity modules: (a) simplex; (b) quadruplex; (c) pentaplex; and (d) hexaplex.
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� in which cables and struts are designed according to Eqs. (1) and
(2) and, although the methodology allows a fully stressed design,
in this paper
B all struts have the same cross-sectional area As (and diameter
ds), provided by the most stressed strut, and

B longitudinal cables have the same cross-sectional area Ac;l (and
diameter dc;l) and transversal cables have the same cross-
sectional area Ac;t (and diameter dc;t) (this assumption comes
from the observation that the longitudinal cables are usually
more stressed than the transversal ones);

� with a maximum deflection d somewhere, for instance at mid-
span and vertically, considering that d is induced by both ex-
ternal load ~F and self-weight ~G;

� related to an indicator of buckling C developed by Latteur
(2000), and such that C ¼ rsL=

ffiffiffiffiffiffiffiffiffiffi
qEsF

p
; and

� with a total volume V of materials (cables and struts).

External Loads, Self-Weight, Prestress,
and Security Coefficients

The usual structural design methodology consists of calculating the
cross sections according to ultimate limit state (ULS) combinations
and limiting the deflections according to serviceability limit state
(SLS) combinations. Both depend on multiplication factors defined
in the codes, which are not the same from one country to another and
which have particular values for dead loads, live loads, wind, snow,
and other load cases. The ratio between ULS and SLS combinations
usually varies between 1.35 and 1.5. This way of designing must
also take into account security regarding both accidental loss of
prestress and accidental excessive prestress, as well as security co-
efficients on the characteristic yield strengths of materials (which
usually vary from 1 to 1.5, depending on the material). Globally,
such ULS=SLS design is not easy to associate with an optimization
methodology. Indeed, the assumptions about the multiplication
factors related to ULS and SLS combinations, the range of security
to consider for the prestress, and the security coefficients to consider
for the materials pollute the analysis and the objective comparison
between the different topologies. This is the reason why, in this
paper, ULS and SLS combinations are not considered: live load ~F
and self-weight ~G are not multiplied with any multiplication factor.
However, a way to consider all those uncertainties is to include them
in a single global security coefficient applied on the materials only.
In particular, for the results given in this paper, steel with a char-

acteristic yield strength of 355 MPa is considered both for cables
and struts (this assumption is discussed in section “Discussion and
Conclusion”), associated with a global security coefficient of 1.5,
which means
� a design strength equal to r ¼ rc ¼ rs ¼ 355=1.5 ¼ 237 MPa;
� an elastic modulus equal to E ¼ Ec ¼ Es ¼ 210,000 MPa;
� ratios E=r ¼ Ec=rc ¼ Es=rs ¼ 886; and
� a specific weight q ¼ qc ¼ qs ¼ 77 kN=m3.
The combination of the external load cases acting in the three
directions (x, y, z) on the n nodes of the structure is given by vector
~F, such as

~F ¼ F~f ¼ F tF1 ; t
F
2 ; . . . ; tFi ; . . . ; tF3n

� �

in which
~f ¼ tF1 ; t

F
2 ; . . . ; tFi ; . . . ; tF3n

� �
P j tFi j ¼ 1

8<
:

Values of FtFi are specified in Fig. 7 for each topology.
Self-weight is taken into account by assuming that each strut or

cable connected to a node adds to this node a vertical load equal to
half of its own self-weight. Self-weight is therefore considered a
new external load case ~G added to ~F, ~G being a 3n-dimensional
vector in which only the components related to the vertical axis are
non-null.

A judicious choice of prestress scenario ~P is necessary to ensure
the stability of the structure, to prevent some cables from slack
when the external load case ~F and self-weight ~G are considered,
and, finally, to reach the desired stiffness.

Vector ~P is composed of the nc þ ns values of the axial force Pi

in each element, cable, or strut (with tension for cables and com-
pression for struts). Those values are thus the internal axial forces
that exist before the application of the external load ~F and self-
weight ~G. The prestress scenario ~P is defined as follows:

~P ¼ bF~p ¼ bF tp1 ; t
p
2 ; . . . ; t

p
i ; . . . ; t

p
ncþns

� �

in which

~p ¼ tp1 ; t
p
2 ; . . . ; t

p
i ; . . . ; t

p
ncþns

� �

is the prestress state

�1 � tpi � 1

b � 0 is the prestress level

8>>>>>>>><
>>>>>>>>:

A self-stress mode is a particular value of ~p that maintains the initial
geometry of the structure, while a self-stress state is either a self-
stress mode or a combination of several self-stress modes.

For a prestress state ~p judiciously chosen, bmin is defined as the
particular value of b that leads to a situation in which the axial
force into the least-tensioned cable after consideration of the ex-
ternal load ~F and self-weight ~G is equal to zero, which means that
no cable slacks when b ¼ hbmin and h � 1

In this paper, h ¼ 1 and b ¼ bmin will be assumed, and the way to
find the value bmin is discussed in Latteur et al. (2017). The impact of
hs 1 is discussed in the conclusion of this paper.

As detailed in Latteur et al. (2017), a way to numerically create a
prestress scenario ~P is to numerically apply to some element i of the
structure an external axial force Fpre;i at its extremities.

The (nc þ ns) values of the external prestress force Fpre;i can be
defined by vector ~Fpre

Fig. 6. Footbridge composed of a number S ¼ 6 of elementary ten-
segrity simplex modules and subjected to a total external load F dis-
tributed on the upper nodes. The distribution of F depends on the
topology (see details in Fig. 7).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 7. Seven topologies of footbridges considered in this study and detailed in section “Assumptions and Definitions”: (a) simplex S1 and S2 (S2 is
similar to S1 but with a sinusoidal deck); (b) quadruplexQ1; (c) quadruplex Q2; (d) pentaplex P1; (e) pentaplex P2; (f) hexaplexH1; and (g) hexaplexH2.
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~Fpre ¼ bpreF~f pre ¼ bpreF tpre1 ; tpre2 ; . . . ; tprei ; . . . ; tprencþns

� �

with

~f pre ¼ tpre1 ; tpre2 ; . . . ; tprei ; . . . ; tprencþns

� �

�1 � tprei � 1

bpre � 0

8>>>><
>>>>:

The external axial prestress forces ~Fpre are thus generating the in-

ternal prestress forces ~P which may be different from ~Fpre. The
value bpre,min, just like bmin, is defined as the particular value of bpre
that leads to a situation in which the axial force in the least-
tensioned cable after application of the external load ~F and self-
weight ~G is equal to zero, which means that no cable slacks.

The proposed design methodology considers that the choice of
~f pre is arbitrary, chosen once and for all. Note that there may exist a
better choice of ~f pre, which leads to a stiffer or lighter structure. In
this paper, one assumes that the values of ~f pre are null for the cables
and identical for the struts: ~f pre¼ 0; . . . ; 0;�1; . . . ;�1ð Þ. This
hypothesis corresponds to a practical situation in which only struts
are equipped with a mechanical device that can elongate them.

Supports, Topologies, Load Cases, and Headroom

If Rs is the number of reactions at supports, the degree of redun-
dancy Dr of such structures composed of n nodes is given by the
following equation:

Dr¼ nc þ nsð Þ þ Rs � 3n

For each topology, many different positions of the supports can be
chosen. For instance, the support on node N2 is not essential to
ensure the global stability of the structure shown in Fig. 6. How-
ever, support on N2 greatly improves the structural behavior in
terms of stiffness [in this case, Dr ¼ (39 þ 18) þ 7 � 3�21 ¼ 1].

In order to perform a relevant comparison of the structures madeFig. 8. Values of form factor q ¼ Is=A2
s for usual cross sections.

Fig. 9. For a same degree of redundancy, the position of the supports (shown by arrows) strongly influences the structural behavior. From this point
of view, (b) is much better than (a).

Fig. 10. Headroom inside a simplex for straight deck configuration (S1) and snake deck configuration (S2).

© ASCE 04019112-8 J. Bridge Eng.
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of different topologies (for example, simplex and quadruplex), a same
degree of redundancy Dr equal to 1 is arbitrarily chosen in this paper.

Again, for a same degree of redundancy, several positions of
the supports can be chosen, but some of them are not adequate. Fig. 9
shows the simplified situation of a unique quadruplex in which both
situations correspond to Dr ¼ 1 and in which the prestress is in-
troduced via an identical elongation of the four struts. The structure
of Fig. 9(a) has very large displacements of the upper nodes when
the external load ~F is applied, while the structure of Fig. 9(b) has
much more limited displacements. This example shows that the best
choice of the position of the supports remains difficult to formalize.

This paper studies and compares seven different topologies asso-
ciated with their particular support positions and load distributions, as
shown in Fig. 7. Concerning the distribution of the external load ~F, it
is assumed that each external force acts vertically on the upper nodes.
Practically, this could be different, since the deck can be suspended
from the upper nodeswithmore than one cable, giving to the resultant
force a horizontal component. The deck could also be supported by
the lower and=or lateral nodes, which is not considered in this study.

An important topic is that the structures that do not allow a suf-
ficient deck width b and headroom hr should be omitted from the
results of the optimization process. Fig. 7 gives the formulas to
evaluate the headroom for each topology. In this paper, a minimum
width b ¼ 2 m and minimum headroom hr ¼ 2 m will be considered
in the sections “General Comparison of the Seven Topologies” and
“Practical Example: 40-m-Span Tensegrity Footbridge.” The value
hr ¼ 2 m is indeed the absolute minimum value, below which the
construction of a footbridge would be irrelevant (in many houses,
door openings have a 2-m height).

A solution to increase the headroom for topology S1 is to change
the straight geometry of the deck into a sinusoidal one (S1 then
becomes the S2 topology), as shown in Fig. 4.

Fig. 10 shows that
� for S1 and S2, sufficient headroom (>2 m) and deck width

(>2 m) need a height H of the structure above 8 m and 7 m,
respectively (note, however, that other topologies, such as Q1,
may offer better results in terms of hr and b and may allow the
reduction of H to values around 5 m, although these topologies
are not efficient, as will be shown); and

� considering such structures for spans shorter than 20 m makes
no sense, since the deck width and/or the headroom would be
insufficient. Indeed, optimum structures are found for slender-
ness L/H that range between 3 and 7, as shown in the results of
this article.

Dynamic Behavior

Footbridges are sensitive to pedestrian loading, and the accelerations
and deformation amplitudes that they experience must be limited.
Although vibration criteria are implicitly covered in SLSs, some
codes suggest, especially in the predesign stage, to keep the natural
frequencies of the footbridge outside a critical frequency band. For
instance, Eurocode 0 (CEN 1990) suggests avoiding the ranges 0–
2.5 Hz and 0–5 Hz, respectively, for horizontal and vertical vibra-
tions.Other design guidelines, such as the Sétra (Sétra=AFGC2006),
HIVOSS (Heinemeyer et al. 2009), and Tricon (Van den Broeck and
De Roeck 2012), give more precise information and are, therefore,
usually preferred. For instance, the Sétra guideline recommends
natural frequencies associated with horizontal vibrations outside the
range 0.5–1.1 Hz and those associated with vertical vibrations out-
side the range 1.7–2.1 Hz, as well as its first few integer multiples. At
the end of this paper (see the section “Practical Example: 40-m-Span
Tensegrity Footbridge”), a modal analysis of an S2 tensegrity foot-
bridge is reported and indicates that it features natural frequencies

outside the critical ranges. For this reason, the dynamic behavior
criterion is not included in the discussion of optimality of this paper.

Allowable Deflections

Limitation of the deflection is necessary for several reasons: be-
havior of supports, evacuation of water, aesthetic of the structure,
vibrations, and comfort of the pedestrians.

Concerning the live loads only, the deflection is often limited
to values between L=250 and L=750, depending on the standards,
or even from one project to another. For instance, Section 5 of
AASHTO (2009) recommends that “The deflection of the bridge
due to the unfactored pedestrian live loading shall not exceed 1=360
of the span length.”

Concerning the deflection d due to dead loads combined with live
loads, it is linked to the fundamental frequency t of a footbridge and
can be approximated with the equation 2pt%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81=d

p
[where t is

expressed in hertz; 9.81 is inmeters per second squared (m=s2); and d
is in meters]. This equation shows that, for a minimum fundamental
frequency equal to 2.5 Hz, d should be limited to 0.04 m, which
means L=500, for a span of 20 m. If the span or the required mini-
mum fundamental frequency is higher, the stiffness criteria should be
even stricter. Consequently, for large spans, the limitation of the
deflection may be too restrictive to guarantee a minimum comfort for
the pedestrians, and the vibration problemmust then be solved by use
of viscous or tuned mass dampers. Whatever the span, it is thus
largely accepted that the stiffer the structure is, the better it is.

In this paper, a footbridge with a deflection under both live loads
and self-weight greater than L=500 is considered inefficient. This is
of course an arbitrary choice, but globally it is in accordance with
the foregoing comments.

However, this study shows that the best structures in terms of
self-weight (essentially the structures composed of simplex mod-
ules) have surprisingly good stiffness, generally with a deflection
lower than L=500. The removal of the few cases with d=L > 1=500
in the section “General Comparison of the Seven Topologies” does
not change the global results and conclusions of the paper.

Design Methodology Using Morphological Indicators

It has been proven (Latteur et al. 2017) that, for a given structure
composed of S elementary tensegrity modules of span L, height H,
and width D, composed of materials of mechanical characteristics
(Ec, rc, Es, and rs), subjected to an external load ~F ¼ F~f and a
prestress scenario ~P ¼ bF~p, and with struts and cables designed
according to Eqs. (1) and (2),
� the deflection at midspan (or anywhere else) d=L depends only

on seven dimensionless numbers, according to

d
L
¼ f

L

H
;
L

D
;C;

Ec

rc
;
Es

rs
; S; b~p

� �
ð3Þ

� the volume V of materials, defined by its indicator of volumeW,
depends only on the same seven dimensionless numbers and on
u ¼ rc=rs, according to

W ¼ rsV
FL

¼ f
L

H
;
L

D
;C;

Ec

rc
;
Es

rs
; S; b~p; u

� �
ð4Þ

whereC is the indicator of buckling (Latteur et al. 2000, 2001) such
that C ¼ rsL=

ffiffiffiffiffiffiffiffiffiffi
qEsF

p
.

This methodology allows us to easily find the stiffest or the
lightest structure thanks to the efficiency curves shown in Fig. 11.
Indeed, assuming that

© ASCE 04019112-9 J. Bridge Eng.
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� the span L and the load case ~F of a given project are known,
� the materials are chosen (Ec=rc;Es=rs; u),
� the prestress level and state, respectively, b and ~p are arbitrarily

fixed, as explained in the assumptions, and
� D is proportional to H for a given topology of structures,
Eqs. (3) and (4) become, for a given number S of elementarymodules

d
L
¼ f

L

H
;C

� �
ð5Þ

and

W ¼ rsV
FL

¼ f
L

H
;C

� �
ð6Þ

Using Eqs. (5) and (6), the optimization and the design process are
thus greatly simplified, since the relative deflection d=L and the
indicator of volumeW depend only on the two parameters L=H and
C. This is illustrated in Fig. 11 for the indicator of volume W.

The goal of this paper is to compare the structural performances

Fig. 11. For a given practical case related to a given value of C, the
efficiency curve gives the best value L=H and the associated (best)
value of the indicator of volume W.

Fig. 12. Numerical algorithm used to find the value of [L=H, (L=d)max] related to given values of C and F.

© ASCE 04019112-10 J. Bridge Eng.
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(a)

(b)

(c)

Fig. 13. Family S1/S2, efficiency curves of W for L ¼ 40 m (F ¼ 130�10–4) and L ¼ 100 m (F ¼ 325�10–4): (a) efficiency curves of W and
qV=F; (b) associated values of L=d; and (c) associated values of L=H.

© ASCE 04019112-11 J. Bridge Eng.
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(stiffness and volume) of the seven topologies of structures shown
in Fig. 7 thanks to the efficiency curves and to discuss the relevance
of such structures for footbridge applications.

The developments of Latteur et al. (2017) consider only the
external load case ~F for the optimization process. This means a
structure that is optimized only for the external load case ~F might
no longer be optimum when the self-weight ~G is combined with ~F,
since self-weight ~G can reach a nonnegligible percentage of ~F for
large spans. However, a solution can be found, as explained in the
discussion that follows.

It is assumed that gravity is acting in the Z-direction and that the
bending of the elements due to their self-weight can be neglected.
For any structure, self-weight can thus be taken into account by
assuming that each strut or cable connected to a node adds to this
node a vertical load equal to half of its own self-weight. The process
is of course iterative: given an external load ~F, one can calculate the
required total volume V of materials and its associated self-weight
equivalent load case ~G, which leads to a new calculation of the
structure subjected to (~F þ ~G), and so on until the results converge
toward a final value of ~G.

Taking self-weight into account keeps the design methodology
described in Latteur et al. (2017) valid. Indeed,
� half of the self-weight of a strut or cable of index i of volume Vi

is equal to qVi=2; and
� given the fact that the part Wi of the indicator of volume related

to an element i of a structure subjected to ~F is equal to

Wi ¼ rsVi

FL
¼ f

L

H
;
L

D
;C;

Ec

rc
;
Es

rs
; S; b~p; u

� �
; one gets

qVi

2
¼ qL

r
� F

2
� f

L

H
;
L

D
;C;

Ec

rc
;
Es

rs
; S; b~p; u

� �

If Fc ¼ qcL=rc and Fs ¼ qsL=rs are defined, respectively, as the
indicators of self-weight (Latteur 2000) of the cables and the struts,
upper relations show that self-weight ~G coming from an external
load ~F is acting as a new load case that is proportional to F and
depends only on parameters L=H, L=D, C, Ec=rc, Es=rs, S, b~p, u,
Fc, and Fs. This allows us to extend Eqs. (3) and (4) as follows:

d
L
¼ f

L

H
;
L

D
;C;

Ec

rc
;
Es

rs
; S; b~p; u;Fc;Fs

� �

W ¼ rsV
FL

¼ f
L

H
;
L

D
;C;

Ec

rc
;
Es

rs
; S; b~p; u;Fc;Fs

� �

It is interesting to note that taking ~G into account makes this time
d=L dependent on factor u.

Note that if both cables and struts are considered in steel with
E ¼ 210 GPa, r ¼ 237 MPa, and q ¼ 77 kN=m3, the indicator of
self-weight is equal to F ¼ 0.325�10–6�L (with L in mm). For
spans limited to 100 m, the indicator of self-weight is thus limited to

(a) (b) (c) (d)

(e) (f)

Fig. 14. Construction of efficiency curve of W by selecting the best L=H for a fixed C with the constraints d � L=500, hr � 2 m, and b � 2 m.
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325�10–4. Furthermore, previous study (Latteur et al. 2000) has
shown that values of C higher than 100 are related to very heavy
and low-efficient structures.

A very interesting consequence of the existence of the indi-
cator of self-weight F is that it can be used to quantify the ratio
between the total self-weight qV of the structure and the total
external load F

qV
F

¼ q
V

F
¼ q

WL

rs
¼ FsW ¼ f

L

H
;
L

D
;C;

Ec

rc
;
Es

rs
; S;b~p; u;Fc;Fs

� �

Numerical Algorithm

Fig. 12 summarizes the algorithm used by the software that the
authors developed, already partly presented in Latteur et al. (2017)
but here modified to take into account self-weight as a load case
added to the external load case. The code was developed in Python,
and Fig. 12 shows the numerical optimization process that leads to
the results presented further.

The algorithm of Fig. 12 can be summarized as follows (for a
given number S of elementary tensegrity modules):
� materials are chosen; in this paper, steel (E=r ¼ Ec=rc ¼ 886

and u ¼ 1) is considered;
� the values of C, F, and L=H are first chosen within the ranges

0 � C � 100, 0 � F � 325�10–4, and 0 < L=H � 15;
� the value of F automatically gives the value of L (F ¼ 0.325�

10–6�L);
� factors q and F are arbitrarily chosen in order to respect the value

of C

C ¼ rL=
ffiffiffiffiffiffiffiffiffi
qEF

p
! qF ¼ ðrL=CÞ2=E

� the value of L=H gives the value of H;
� the iterative calculation loops give d=L (of L/d) at midspan

(and W) for those precise values of C, F, and L=H;
� if the process is repeated for each value of L=H, the couple (best

L=H, best d=L) or (best L=H, bestW) can be found for each value
ofC and reported on an efficiency curve. One efficiency curve is
related to a single value ofF (or the span L) and a single value of
E=r; and

� the same algorithm can be used for several values of S, for
instance, 2, 3, 4, 5, and 6.

Results for Family S1/S2 (Simplex)

The possible information resulting from analysis of the computa-
tions done for each of the seven topologies (Fig. 7) is very dense: for
example, the variations of d=L andW in function of L=H for a fixed
C, the efficiency curves of d=L associated with the corresponding
(and not necessarily optimum) values ofW, or the reverse situation,
in which the efficiency curves of W are drawn, in association with
the corresponding (and not necessarily optimum) values of d=L.
This can be done independently for each topology or as a com-
parison between all of them.

The criterion related to volume, linked to self-weight and
therefore to the cost of the structure, is very relevant. Indeed, this
research tends to show that these structures are very stiff but are
heavier than more classical structures, such as trusses. For a prac-
tical project, the criterion linked to the volume (or self-weight or
quantity of materials) is thus very relevant. Moreover, our studies
showed that the optimum structures in terms of volume are not very
far from the optimum structures in terms of deflection.

Hence, the aim of this paper is to prove the feasibility of such
footbridges. Therefore, it seems relevant and sufficient to consider
the lightest structures (efficiency curves related to W) and to show
that the associated values of d=L remain acceptable. This is why the
results shown in this paper focus mainly on the efficiency curves of
W and not of d=L.

Fig. 13 shows the efficiency curves of W of the footbridges
composed of S elementary simplex modules [family S1/S2 de-
scribed in Fig. 7(a)]. Fig. 13 leads to the following comments
(curves S ¼ 2 showed bad efficiency in terms of volume and de-
flection and were not drawn):
� The minimum volume of materials Vmin (orWmin) increases with

the growing values of the indicator of buckling C and of the
indicator of self-weight F (or the span L).

� To the contrary, the associated deflection d=L (or L=d) shows
small variations with C and F (in particular for S > 4).

� Globally, whatever the value of C, the minimum volume of
materials Vmin (orWmin) increases with the number of elementary
tensegrity modules S.

� S ¼ 5 always shows very good stiffness L=d above 550.
Moreover, since the deflection d is also due to self-weight,
the deflection under live loads only is much better than L=550.
The corresponding values of L=H are always between 6
and 10.

Fig. 15. Correction of Fig. 13 with constraints d � L=500, hr � 2 m, and b � 2 m (topology S2). All other cases have been rejected.
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� S ¼ 3 and S ¼ 4 have a better stiffness L=d than S ¼ 5 when F
(or the span L) and C increase.

� The choice 3 � S � 5 is always best, whatever the values of C
and F.

However, Fig. 13 does not exclude solutions with an insufficient
stiffness (d ¼ L=500 is considered a maximum in this paper, as
discussed in the section “Allowable Deflections”), an insufficient

headroom hr for pedestrians, or an insufficient deck width b (2 m for
both seems to be a minimum). Imposing a minimum value for hr
and b is equivalent to imposing a maximum value of ratio L=H,
noted (L=H)limit. Fig. 13 should thus be corrected according to the
methodology described in Fig. 14.
� Case (a): the solution with minimum volume corresponds to

L=d � 500.

Fig. 16. Family Q1, composed of quadruplex of Type 1.

© ASCE 04019112-14 J. Bridge Eng.
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� Cases (b) and (c): the solution with minimum volume is out
of the range of sufficient stiffness. However, a solution exists
with L=d ¼ 500, but a higher volume of materialWmin is needed.

� Case (d): no solution with L=d � 500 exists.
� Case (e) is similar to Case (a), but a nonoptimum solution has to

be considered to ensure sufficient headroom and deck width
combined with L=d � 500.

� Case (f) is similar to Case (a), but no solution can be found with
the three criteria respected.

Fig. 15 is a correction of Fig. 13 according to Fig. 14 in the way that it
shows, for spans equal to 40 m and 100 m, respectively, the optimum
structures of topology S2 combining d � L=500, hr � 2 m, and b �
2m.All the other situations have been rejected. OnFig. 15 are pointed
out two S2 structures related toC ¼ 48 and, respectively, S ¼ 4 and

Fig. 17. Family Q2, composed of quadruplex of Type 2.
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S ¼ 5. These two structures are further described in section “Practical
Example: 40-m-Span Tensegrity Footbridge.”

Study of the Other Topologies
Q1, Q2, P1, P2, H1, and H2

While the previous section detailed the S1=S2 family, composed of
simplex modules, this section summarizes the results for the other
topologies. To make the comparison easier, the curve S ¼ 5 related

to the S1=S2 topology has been systematically added to Figs. 16–21,
in dashed lines. In this section, the optimum values are given with no
constraint on hr and b, in contrast with the section “General Com-
parison of the Seven Topologies.”

Family Q1

Fig. 16 shows that this family has a stiffness that seldom reaches
L=d ¼ 500, while the simplex family shows a better stiffness,
around L=d ¼ 600, whatever the span or the value of C. For S ¼ 6

Fig. 18. Family P1, composed of pentaplex of Type 1.
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and S ¼ 7, the stiffness is never better than L=d ¼ 400, whatever
the span and the values of C. In terms of stiffness, S ¼ 5 is always
better than all the others, except for large spans and large values of
C, where S ¼ 3 and S ¼ 4 can slightly overtake L=d ¼ 500.

The volume is always higher than for the simplex family, except
for low values of C, whatever the span, but only for S ¼ 3 and
S ¼ 4. However, the gain in volume with respect to the simplex

family is insignificant and, furthermore, small values ofC for S ¼ 3
and S ¼ 4 correspond to a very bad stiffness.

In conclusion, excluding considerations linked to the head-
room, this family of structures is never more advantageous than
the simplex family, even if choices such as S ¼ 3, S ¼ 4 or S ¼ 5
for large spans and high values of C, can lead to acceptable
solutions.

Fig. 19. Family P2, composed of pentaplex of Type 2.
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Family Q2

Fig. 17 shows better behavior in the Q2 family than in the
Q1 family regarding stiffness, and many solutions with deflections
better than L=500 can be found. In particular, the solution S ¼ 5
is almost always the best regarding stiffness and is equivalent to the
simplex family. However, for similar performance regarding de-
flection, the volume of materials is much higher than for the sim-
plex family, and the volume increases very quickly up to irrelevant

values. There is an exception for S ¼ 3 and S ¼ 4 and for very
small values of C, but their lack of stiffness disqualifies them. In
conclusion, this family of structures is interesting only with S ¼ 5
and for small values of C, or for reasons linked to the headroom.

Family P1

Fig. 18 shows that the structures of the P1 family are always heavier
than those of the simplex family, whatever the span and the value

Fig. 20. Family H1, composed of hexaplex of Type 1.
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of C. For values of C above 50, the volume is at least doubled
in comparison with the simplex family. In terms of volume,
the only acceptable solution could be related to S ¼ 4 (and even
S ¼ 3) only for values of C lower than 20, but these situations
correspond to a low stiffness.

The conclusion is that this family should probably be rejected for
most cases.

Family P2

The results for this family are very similar to those of the P1 family,
as shown in Fig. 19. In terms of stiffness, S ¼ 3, S ¼ 4, and S ¼ 5
are acceptable and slightly better than for the P1 family. However,
the volume grows quickly after C ¼ 40, leading to unreasonable
solutions, particularly for large spans.

Fig. 21. Family H2, composed of hexaplex of Type 2.
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Fig. 22. Comparison of different families for L ¼ 40 m and L ¼ 100 m. Only structures with d � L=500 (deck width) and hr � 2 m (headroom for
pedestrians) have been kept.
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In conclusion, excluding considerations linked to the headroom,
this family of structures is never more advantageous than the
simplex family, even if choices such as S ¼ 3, S ¼ 4, and S ¼ 5
for small values of C can lead to acceptable solutions in terms of
volume, but with deflections slightly higher than L/500.

Family H1

Fig. 20 shows that the H1 family is interesting for S ¼ 3, with good
deflection performance, even sometimes better than that of the S1=S2
family. However, the volume remains much higher, particularly for
values of C > 30. Its interest is therefore limited to structures with
short or middle spans associated with a low value ofC; otherwise the
volume, and thus the cost, becomes unreasonable. Solutions also
exist with S ¼ 4 or S ¼ 5 but with a higher volume than S ¼ 3 and
with deflections slightly higher than L/500.

Family H2

Fig. 21 shows that the H2 family has characteristics very similar to
those of the H1 family. Similar conclusions can be drawn. S ¼ 3
shows excellent stiffness, always better than that of the simplex
family. However, for values of C > 20, the volume grows unrea-
sonably. In conclusion, solutions exist with S ¼ 3, S ¼ 4, and
S ¼ 5, but only when C is small.

General Comparison of the Seven Topologies

This section brings together the results presented in the sections “Re-
sults for Family S1=S2 (Simplex)” and “Study of the Other Topologies
Q1, Q2, P1, P2, H1, and H2” in order to make a general comparison.

Only the following structures with d � L=500, hr � 2 m (headroom
for pedestrians), and b � 2 m (deck width) have been kept:
� family S1=S2 (simplex) with S ¼ 3, S ¼ 4, and S ¼ 5,
� family Q1 (quadruplex of Type 1) with S ¼ 4 and S ¼ 5,
� family Q2 (quadruplex of Type 2) with S ¼ 3, S ¼ 4, and S ¼ 5,
� family P1 (pentaplex of Type 1) with S ¼ 4,
� family P2 (pentaplex of Type 2) with S ¼ 3, S ¼ 4, and S ¼ 5,
� family H1 (hexaplex of Type 1) with S ¼ 3, and
� family H2 (hexaplex of Type 2) with S ¼ 3.
Tables 1 and 2 summarize the best structures of Fig. 22 in terms
of volume, with the associated stiffness L=d and relative self-
weight qV=F. Structures are sorted from Column 1 to Column 5
according to their indicators of volume W in ascending order,
keeping only those that show a better stiffness L=d than the
previous lighter structures.

Concerning the volume, Fig. 22 and Tables 1 and 2 suggest that
� the H2 family with S ¼ 3 is always heavier than all the others,
� the simplex family with S ¼ 3, S ¼ 4, or S ¼ 5 always offers the

lightest solutions, whatever the span or the value of C,
� for small and medium spans, the simplex S2 solution is always

better, and for growing values of C, the number of tensegrity
modules has to decrease progressively from S ¼ 5 to S ¼ 3,

� for large spans, the simplex S1 (or S2) with three or four mod-
ules is always the lightest solution,

� family Q1 also offers competitive solutions, whatever the span,
for S ¼ 4 and S ¼ 5,

� all other families show unreasonable volumes, growing fast
when the span or the value of C grows, and

� for the lightest structures (family S1=S2), the ratio of self-weight
over total live load qV=F is between 25% and 125% for L ¼ 40 m
and between 75% and 600% for L ¼ 100 m, depending on the
values of C.

Concerning the stiffness, Fig. 22 andTables 1 and2 suggest that theH2

(a)

(b)

Fig. 23. Comparison between (a) tensegrity structure of topology S1=S2 with S ¼ 5 and (b) classical truss composed of five pyramidal modules.
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familywithS ¼ 3 is globally always stiffer than theothers.However, as
noted in the preceding discussion, it is also always the heavier and
should alwaysbe rejected, except for very small valuesofC.According
to the foregoing comments concerning the volume, if only families
S1=S2 and Q1 remain, one can conclude that, concerning the stiffness,
� for small and medium spans, the simplex S1=S2 with S ¼ 5 is

very good (L=600 up to L=800),
� S1=S2 with S ¼ 4 or S ¼ 3 also offer a very good stiffness for

growing values of C,
� for large spans, the simplex S1 (or S2) with three or four mod-

ules offers the stiffest solutions, and
� family Q1 with S ¼ 4 or S ¼ 5 also offers admissible solutions,

especially for high values of C.
Finally, taking into account the aspects of both volume and stiff-
ness, the simplex family has shown its superiority, followed by the
Q1 family with S ¼ 4 or S ¼ 5.

Comparison between a Tensegrity Footbridge
of Topology S1=S2 and a Truss Footbridge

In this section, a tensegrity footbridge of topology S1=S2 (simplex
with straight or sinusoidal deck), composed of five simplex mod-

ules [Fig. 23(a)], is compared with a truss footbridge composed of
five pyramidal modules [Fig. 23(b)]. The loads are uniformly
distributed on the deck level of the truss, and steel is also used
for each element (in such a way that all elements in tension have
the same cross section and all elements in compression have the
same cross section). Fig. 24 shows that for a span of 40 m, the
tensegrity structure is always about three to four times heavier
(83=27 ¼ 3.1 and 18=4 ¼ 4.5) than the lightest truss. Cadoni and
Micheletti (2012) compared the structural performance of a single-
layer tensegrity dome with a conventional truss dome and got
similar results. This important result is discussed in the conclusion
and must be nuanced. The truss is also slightly stiffer and corre-
sponds to lower values of L=H; in other words, the tensegrity
structure has to be more slender than the truss to reach an optimum
self-weight.

Practical Example: 40-m-Span
Tensegrity Footbridge

The assumptions are the following:
� span L ¼ 40 m,
� deck width b ¼ 2 m,

Fig. 24. Comparison between efficiency curves of W for a truss with S ¼ 5 and for a simplex topology S1=S2 with S ¼ 5 for L ¼ 40 m and
F ¼ 125�10–4, regardless of any constraints related to the deck’s width or headroom.
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� struts have hollow circular cross sections with a ratio e=d equal
to 0.1, which means a factor q equal to 0.363 (Fig. 8),

� cables have full cross sections,
� all materials are S355 steel (r ¼ 237 MPa, E ¼ 210.000 MPa,

E=r ¼ 886, q ¼ 77 kN=m3),
� dead loads related to the deck are estimated at 1 kN=m2, and live

loads acting on the deck, including snow and wind, are estimated
at 5.5 kN=m2; this corresponds to a total load F ¼ (1 þ 5.5)�
2�40 ¼ 520 kN, and

� the indicator of buckling is equal to C ¼ rsL=(qEsF)
1=2 ¼ 48,

and the indicator of self-weight is equal to F ¼ qL=r ¼ 0.0130.
Fig. 25 shows a few good possible solutions, in terms of both
volume and/or stiffness, and considering headroom aspects. The
lightest solution, Fig. 25(a), corresponds to the structure made of
simplex S2 (snake deck) with S ¼ 4, W ¼ 46, and L=d ¼ 572 (the
corresponding point is illustrated in Fig. 15 and 22). The self-
weight is about 7.8 kN=m, which is not so unusual for footbridges.
The example shows the benefit of the sinusoidal deck compared
with the straight deck: 311 kN instead of 372 kN for the topology
S1 with S ¼ 4 [Fig. 25(b)]. Regarding stiffness, the best structure
is H2 with S ¼ 3 [Fig. 25(e)], which reaches a value of L=d ¼ 786,
but for a self-weight that grows up to 16.2 kN=m, that is, double
that of the S2 with S ¼ 4 structure [Fig. 25(a)]. The structure H1
with S ¼ 3 [Fig. 25(d)] is not really interesting because its volume
is almost as high as that of H2 with S ¼ 3 [Fig. 25(e)], for a
deflection similar to that of S2 with S ¼ 5 [Fig. 25(c)].

Note, however, the following:
� The structure in Fig. 25(b), composed of simplex S1 (straight deck)

with S ¼ 4, offers a good solution, with W ¼ 55, L=d ¼ 561, and
headroom 2.9 m, mainly because it corresponds to the lightest
structure with a straight deck.

� The structure in Fig. 25(c), composed of simplex S2 (snake
deck) with S ¼ 5, also offers a good solution, with W ¼ 57,
L=d ¼ 731, and headroom 5.2 m.

� The last structure, Fig. 25(f), is a truss composed of five pyra-
midal modules, as presented in the previous section. Its stiffness
is globally slightly better than that of the tensegrity structures
(L=d ¼ 836). However, its self-weight is much lower, W ¼ 14,
compared with that of the best tensegrity structure,W ¼ 46. The
lightest tensegrity structures are thus, here, more than three times
heavier than the truss. This result is discussed in the conclusion
and must be nuanced.

Finally, Fig. 26 shows the lightest structure with no restriction on
headroom and deck width: here, imposing b � 2 increases the mass
by 11% in comparison with Fig. 25(a), the simplex S2 with S ¼ 4
related to W ¼ 46.

The severity of the dynamic interaction with walking pedes-
trians is assessed by means of a modal analysis. Table 3 summa-
rizes the natural frequencies computed for both the S2 tensegrity
structure with S ¼ 4 (Fig. 26) and the truss of Fig. 25(f). They are
calculated with the tangent stiffness matrix of the structure, con-
sidering the self-weight load case and the lumped mass matrix.
The first three torsional modes are much lower for the tensegrity
structure (0.15, 0.34, and 0.45 Hz) than for the truss (32.0, 59.5,
and 99.7 Hz), which confirms the greater deformability of the
former system in torsion, as well as an increased mass compared
with that of the truss. The fundamental bending mode in the
vertical plane is above 30 Hz, which confirms the very high
stiffness of the tensegrity structure in the vertical direction. More
important, the bending mode in the vertical direction and the
torsional modes—which have a component in the vertical
direction—are outside the main critical range corresponding to the
vertical dynamic loading of walking pedestrians, that is, 1.7–
2.1 Hz; quite far outside, in fact. Furthermore, in the horizontal
direction, only torsional modes—which have a component in the

(a) (b)

(c) (d)

(e) (f)

Fig. 25. Best solutions in terms of volume and=or deflection for the
given practical example and considering b ¼ 2 m and hr � 2 m.

Fig. 26. Lightest tensegrity structure composed of prismatic modules
for the given practical example regardless of deck’s width and head-
room aspects.

Table 3. Natural frequencies computed for tensegrity structure (simplex
S2) and truss

Mode No. Frequency (Hz) Description

Simplex S2: S ¼ 4, H ¼ 5.7 m
1 0.15 First torsional vibration mode
2 0.34 Second torsional vibration mode
3 0.45 Third torsional vibration mode
4 30.2 First bending mode in vertical plane
5 55.9 First bending mode in horizontal plane

Truss: S ¼ 5, H ¼ 8 m
1 1.09 Shear deformation in horizontal plane
2 26.0 First swaying mode
3 32.0 First torsional vibration mode
4 59.5 Second torsional vibration mode
5 99.7 Third torsional vibration mode

© ASCE 04019112-25 J. Bridge Eng.

 J. Bridge Eng., 2019, 24(12): 04019112 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ite
 d

e 
L

ie
ge

 o
n 

09
/2

6/
19

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



horizontal direction too—need to be considered. Their natural
frequencies also lie outside the main critical range for resonance
with human walk, that is, 0.5–1.1 Hz. This is not the case for the
truss structure, which features a horizontal mode shape at 1.09 Hz.
This problem could be fixed by changing the support conditions of
the truss, but this goes beyond the scope of this paper. Finally, it is
also noticed that the more important mass of the tensegrity
structure makes it less prone to human-structure synchronization
(Sétra 2006) and vandalism excitation (Schwartz et al. 2013).

Discussion and Conclusion

As noted in the abstract, the architectural potential of tensegrity
structures is proven, yet, paradoxically, very few real construction
projects have sprung up around the world. This fact has motivated
the authors to prove the practical feasibility of such structures.
This work first needed the important research summarized in
Latteur et al. (2017), which offered the possibility of using a
rigorous design and optimization methodology based on mor-
phological indicators. Thanks to this design methodology, it has
been possible to select the stiffest and the lightest footbridge
structures while also considering design constraints such as
headroom and deck width, in order to prove, or on the contrary to
reject, the feasibility of some topologies. This paper highlights the
good performance of several topologies, in particular the simplex
family S1=S2, which often reach a stiffness better than L=d ¼ 600
when subjected to both live loads and self-weight (which means
excellent performance under live loads only).

The results presented in this paper rely on several assump-
tions detailed in the section “Assumptions and Definitions.” The
practical case developed in the previous section shows that even
if the results in terms of stiffness and dynamic behavior are un-
expectedly excellent for some topologies, the volume of such
structures remains higher than the volume related to more clas-
sical structures such as trusses. However, the pyramidal truss is
among the lightest structures for crossing a span. A comparison
with other kinds of structures composed of bended beams or
nonfunicular arches (which is often an architect’s choice) would

certainly lead to much heavier structures than the truss, much
more similar to tensegrity structures in terms of material con-
sumption. For instance, considering again the example of the
previous section, but this time using two steel beams to cross the
span and support the deck, a solution could be two HL1000x554
steel profiles, with a stiffness of L=476 and a total self-weight
equal to 444 kN (deck not included), which means 11.1 kN=m.
This value has to be compared with the 7.8 kN=m for the lightest
tensegrity structure. Furthermore, the fundamental frequency of
the beams would be equal to 2.1 Hz, which is inside the critical
range for pedestrians. This simple example proves that the ten-
segrity structure is not necessarily a solution to avoid and is not
necessarily too heavy when compared with other kinds of
structures or special architectural structures.

Furthermore, there exist several tracks for investigation in order to
reduce the self-weight of tensegrity structures used as footbridges.
� Materials—The efficiency curves ofW presented in this paper are

related to steel with Es=rs ¼ Ec=rc ¼ 886 and rs ¼ rc ¼
237 MPa. However, for cables, other mechanical characteristics
could be considered, for instance rc ¼ 1,000 MPa and Ec=rc ¼
210, while struts are designed as before with Es=rs ¼ 886.
Considering again the example of Fig. 26 [S ¼ 4 and L=H ¼
40=5.7 ¼ 7], redrawn in Fig. 27(a), Fig. 27(c) shows that de-
creasing the ratio Ec=rc involves a lower self-weight (W ¼ 31)
but also a lower stiffness (L=d ¼ 175). It thus seems relevant to
cleverly tune the material properties (E, r, and q) in order to
minimize the self-weight while ensuring sufficient stiffness.
However, it remains difficult to compare structures with different
materials used for the struts, insofar asW itself depends on factors
Es=rs and on the indicator of buckling C, according to Eq. (4).
However, this limitation disappears if the structures have a linear
behavior, as explained in the conclusion of Latteur et al. (2017).

� Prestress level—This paper assumes that the prestress level
b ¼ bmin is fixed at its minimum, in such a way that no cable
slacks. Fig. 27(d) shows that the stiffness can be improved
(L=d ¼ 1,129) by increasing the prestress level or, in other
words, by considering h > 1 (with b ¼ hbmin). However, this
also has a negative impact on the self-weight (W ¼ 69 for
h ¼ 2). On the contrary, considering no prestress (h ¼ 0) with

(a) (b)

(c) (d) (e)

Fig. 27. Influence of material stiffness indicator E=r and prestress level b ¼ hbmin on stiffness L=d and self-weight W of a structure (S and L=H are
fixed).
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cables replaced by struts designed according to Eq. (2) leads to
structures with very low efficiency in terms of both self-weight
and stiffness, as shown in Fig. 27(b) (L=d ¼ 297, W ¼ 59 for
h ¼ 0). Finding a compromise between the material stiffness
indicators E=r and the prestress level b, both having an influence
on the stiffness and the self-weight [Fig. 27(e)], would therefore
be an interesting investigational path.

� Optimization of the prestress state—As explained in the section
“External Loads, Self-Weight, Prestress, and Security Coeffi-
cients,” one of the main assumptions of the design and optimi-
zation methodology relies on the choice of a prestress state, which
may not lead to optimum structures. In other words, researching a
way to insert the optimization of the prestress state directly into
the design methodology seems to be a relevant, and perhaps
promising, research field.

Finally, other aspects linked to robustness and to practical con-
struction should be considered before any real construction.
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Notation

The following symbols are used in this paper:
A ¼ cross-sectional area;

Ac, Ac,i ¼ cross-sectional area of cable of index i;
Ac,l ¼ cross-sectional area of longitudinal cable (horizontal

direction);
Ac,t ¼ cross-sectional area of transversal cable (triangular or

polygonal bases);
As, As,i ¼ cross-sectional area of strut of index i;

b ¼ width of suspended deck;
D ¼ width of structure before application of external load

~F;
Dr ¼ degree of redundancy of structure;
d ¼ diameter of cross section;

dc,l ¼ diameter of cross section of longitudinal cable;
dc,t ¼ diameter of cross section of transversal cable;
ds ¼ diameter of cross section of strut;
E ¼ Young’s modulus;
Ec ¼ Young’s modulus of cable material;
Es ¼ Young’s modulus of strut material;
e ¼ steel thickness for hollow section;
F ¼ see definition of ~F;
~F ¼ vector defined in section “External Loads, Self-

Weight, Prestress, and Security Coefficients”;
Fpre,
Fpre,i

¼ value of “equivalent” prestress into cable or strut of
index i, considered external axial load acting at both
extremities of cable (>0 because in traction) or strut
(<0 because in compression);

~Fpre ¼ vector defined in section “External Loads, Self-
Weight, Prestress, and Security Coefficients”;

f ¼ undefined function;
~f ¼ vector defined in section “External Loads, Self-

Weight, Prestress, and Security Coefficients”
~f pre ¼ vector defined in section “External Loads, Self-

Weight, Prestress, and Security Coefficients”;
~G ¼ self-weight of structure, considered acting as external

load case in combination with external load ~F;
H ¼ height of structure;

H1 ¼ family of structures composed of hexaplex of Type 1;
H2 ¼ family of structures composed of hexaplex of Type 2;
hr ¼ available headroom for pedestrians;

i, j, k ¼ integers used for iterations (¼ 0, 1, 2, . . . ), or index of
node, of strut or cable;

Is, Is,i ¼ cross-section moment of inertia of strut of index i;
k ¼ maximum number of struts in contact with each other;
L ¼ span of structure;

L0, L0,i ¼ length of member (strut or cable) of index i when
structure is subjected only to prestress ~P;

m ¼ equal to ratio e=d;
Nc,i ¼ axial force in cable of index i, positive because always

in traction, when structure is subjected to external load
~F, prestress ~P, and self-weight ~G;

Ns,j ¼ axial force in strut of index j, negative because always
in compression, when structure is subjected to external
load ~F, prestress ~P, and self-weight ~G;

n ¼ number of nodes;
nc ¼ number of cables;
ns ¼ number of struts;

P, Pi ¼ value of prestress force into cable (>0 because in
traction) or strut (<0 because in compression) of index
i, before application of external load;

P1 ¼ family of structures composed of pentaplex of Type 1;
P2 ¼ family of structures composed of pentaplex of Type 2;

~P, ~p ¼ vectors defined in section “External Loads, Self-
Weight, Prestress, and Security Coefficients”;

Q1 ¼ family of structures composed of quadruplex of
Type 1;

Q2 ¼ family of structures composed of quadruplex of
Type 2;

q ¼ defined only for struts as q ¼ Is=A2
s ;

Rs ¼ number of support reactions;
S ¼ number of elementary tensegrity modules that

compose structure;
S1 ¼ family of structures composed of simplex with straight

deck;
S2 ¼ family of structures composed of simplex with

sinusoidal deck;
tFi ¼ one value of vector ~f ;
tPi ¼ one value of vector ~p;
tprei ¼ one value of vector ~f pre;
u ¼ rc=rs;
V ¼ volume of materials (cables and struts);

W, Wmin ¼ indicator of volume, equal to rsV=FL;
b, bpre ¼ factor >0 defining prestress level;
bmin,

bpre,min

¼ value of b or bpre under which least-tensioned cable
slacks when loads are applied;

d ¼ deflection somewhere, for instance at midspan, due to
live loads and self-weight acting together;

h ¼ real number �1 related to prestress level;

Li ¼ ki= p
ffiffiffiffiffiffiffiffiffiffiffiffi
Es=rs

p� �
;

ki ¼ slenderness of strut of index i, equal to L0;i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As;i=Is;i

p
;

q ¼ specific weight of material;
qc ¼ specific weight of material used for cables;
qs ¼ specific weight of material used for struts;
r ¼ rc or rs;
rc ¼ maximum allowable stress in cables (including

security coefficient);
rs ¼ maximum allowable stress in struts (including security

coefficient);
t ¼ fundamental frequency in hertz;
F ¼ indicator of self-weight when Fc ¼ Fs;
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Fc ¼ qcL=rc and Fs ¼ qsL=rs ¼ indicators of self-weight
related to cables and to struts; and

C ¼ buckling indicator of structure, equal to rsL=(qEsF)
1=2.

References

AASHTO. 2009. Guide specifications for design of pedestrian bridges.
Washington, DC: AASHTO.

Amouri, S., J. Averseng, J. Quirant, and J.-F. Dubé. 2015. “Structural
design and control of modular tensegrity structures.” Eur. J. Environ.
Civ. Eng. 19 (6): 687–702. https://doi.org/10.1080/19648189.2014
.965849.

Averseng, J., and J. F. Dubé. 2012. “Design, analysis and self stress setting
of a lightweight deployable tensegrity modular structure.” Procedia
Eng. 40: 14–19. https://doi.org/10.1016/j.proeng.2012.07.048.

Bel Hadj Ali, N., L. Rhode-Barbarigos, A. A. Pascual Albi, and I. F. C.
Smith. 2010. “Design optimization and dynamic analysis of a
tensegrity-based footbridge.” Eng. Struct. 32 (11): 3650–3659. https://
doi.org/10.1016/j.engstruct.2010.08.009.

Briseghella, B., L. Fenu, W. Huang, and T. Zordan. 2010. “Tensegrity
bridge with prestressed deck.” In Proc., 34th IABSE Symp., Large
Structures and Infrastructures for Environmentally Constrained and
Urbanised Areas, 432. IABSE Report No. 97. Zurich, Switzerland:
International Association for Bridge and Structural Engineering.

Cadoni, D., and A. Micheletti. 2012. “Structural performances of single-
layer tensegrity domes.” Int. J. Space Struct. 27 (2=3): 167–178. https://
doi.org/10.1260/0266-3511.27.2-3.167.

Carpentieri, G., R. E. Skelton, and F. Fraternali. 2015. “Minimum mass
and optimal complexity of planar tensegrity bridges.” Int. J. Space
Struct. 30 (3=4): 221–243. https://doi.org/10.1260/0266-3511.30.3-4
.221.

CEN (European Committee for Standardization). 1990. Basis of structural
design, annexes A1 and A2. Eurocode 0. Brussels, Belgium: CEN.

Davey, P., and K. W. Forster. 2007. Exploring boundaries: The architec-
ture of Wilkinson Eyre, 114–115. Berlin: De Gruyter.

De Boeck, J. 2013. “Tensegrity bridges: Concept design of pedestrian
bridges using tensegrity as load carrying system.” M.Sc. thesis, Delft
Univ. of Technology. https://repository.tudelft.nl/islandora/object/uuid
%3Abdab80b7-ed0e-4236-8e8f-74ff4ac75be5.

Eekhout, M. 2016. Lectures on innovation in building technology: Lecture
articles for students of architecture, Delft 1992–2015=Nottingham
2005–2011. Amsterdam, Netherlands: IOS Press.

Gómez-Jáuregui, V. 2010. Tensegrity structures and their application to
architecture. Santander, Cantabria, Spain: PUbliCan—Ediciones Univ.
de Cantabria.

Hanaor, A. 2012. “Debunking ‘tensegrity’—a personal perspective.” Int.
J. Space Struct. 27 (2=3): 179–183. https://doi.org/10.1260%2F0266
-3511.27.2-3.179.

Heinemeyer, C., et al. 2009. “Design of lightweight footbridges for human
induced vibrations: Background document in support to the imple-
mentation, harmonization, and further development of the Eurocodes.”
Luxembourg: Office for Official Publications of the European Com-
munities.

Latteur, P. 2000. Optimisation et prédimensionnement des treillis,
arcs, poutres et câbles sur base d’indicateurs morphologiques. Appli-
cation aux structures soumises en partie ou en totalité au flambement.
Doctoral thesis, Vrije Univ. Brussel. https://orbi.uliege.be/handle/2268
/30107.

Latteur, P., J. Feron, and V. Denoël. 2017. “A design methodology for
lattice and tensegrity structures based on a stiffness and volume opti-
mization algorithm using morphological indicators.” Int. J. Space
Struct. 32 (3=4): 226–243. https://doi.org/10.1177/0266351117746267.

Latteur, P., P. Samyn, and P. De Wilde. 2000. “Comparaison des treillis
classiques de type Warren, Pratt et Howe: Optimisation et pré-

dimensionnement sur base d’indicateurs morphologiques.” Rev. Fr.
Génie Civ. 4 (4=2000).

Latteur, P., P. Samyn, and P. De Wilde. 2001. “Optimisation des arcs
funiculaires paraboliques et en chaînette: Aide à la conception sur base
d’indicateurs morphologiques.” Rev. Fr. Génie Civ. 5 (1): 89–116.
https://doi.org/10.1080/12795119.2001.9692296.

Micheletti, A. 2012. “Modular tensegrity structures: The ‘Tor Vergata’
footbridge.” In Mechanics, models and methods in civil engineering,
edited by M. Frémond and F. Maceri, 375–384. Vol. 61 of Lecture
Notes in Applied and Computational Mechanics. Berlin: Springer.
https://doi.org/10.1007/978-3-642-24638-8_25.

Micheletti, A., V. Nicotra, P. Podio-Guidugli, and S. Stucchi. 2005. “The
tensegrity footbridge at Torvergata University in Rome.” In Proc., 2nd
Int. Conf. Footbridge, 159–160. Venice: Italy.

Michell, A. G. M. 1904. “The limits of economy of material in frame-
structures.” London, Edinburgh, Dublin Philos. Mag. J. Sci. 8 (47):
589–597. https://doi.org/10.1080/14786440409463229.

Motro, R. 2005. Tenségrité. Paris: Hermes Science.
Motro, R., B. Maurin, and C. Silvestri. 2006. “Tensegrity rings and the

hollow rope.” In Proc., IASS Symp. 2006: New olympics, new shells and
spatial structures. 470–471. Madrid, Spain: International Association
for Shell and Spatial Structures.

Mucedola, M., and S. Paradiso. 2013. “Suspended tensegrity bridge.” Ac-
cessed March 23, 2018. https://issuu.com/stefanoparadiso3/docs/tesi
_mucedola_paradiso.

Rhode-Barbarigos, L., N. B. H. Ali, R. Motro, and I. F. C. Smith.
2010a. “Designing tensegrity modules for pedestrian bridges.” Eng.
Struct. 32 (4): 1158–1167. https://doi.org/10.1016/j.engstruct.2009.12
.042.

Rhode-Barbarigos, L., N. B. H. Ali, R. Motro, and I. F. C. Smith. 2012.
“Design aspects of a deployable tensegrity-hollow-rope footbridge.” Int.
J. Space Struct. 27 (2=3): 81–95. https://doi.org/10.1260/0266-3511.27
.2-3.81.

Rhode-Barbarigos, L., H. Jain, P. Kripakaran, and I. F. C. Smith. 2010b.
“Design of tensegrity structures using parametric analysis and stochastic
search.” Eng. Comput. 26 (2): 193–203. https://doi.org/10.1007/s00366
-009-0154-1.

Rolvink, A., R. van de Straat, and J. Coenders. 2010. “Parametric structural
design and beyond.” Int. J. Archit. Comput. 8 (3): 319–336. https://doi
.org/10.1260/1478-0771.8.3.319.

Schwartz, C., A. Berger, O. Bruls, B. Forthomme, J.-L. Croisier, and V.
Denoël. 2013. “Experimental study of the human ability to deliberately
excite a flexible floor.” In Research and applications in structural en-
gineering, mechanics and computation, edited by A. Zingoni, 55–58.
Boca Raton, FL: CRC Press.

Sétra=AFGC. 2006. “Evaluation du comportement vibratoire des passer-
elles piétonnes sous l’action des piétons” [Assessment of vibrational
behavior of footbridges under pedestrian loading]. Paris: Association
Française de Génie Civil.

Skelton, R. E., and M. de Oliveira. 2009. Tensegrity systems. Boston:
Springer. https://doi.org/10.1007/978-0-387-74242-7.

Skelton, R. E., F. Fraternali, G. Carpentieri, and A. Micheletti. 2014.
“Minimum mass design of tensegrity bridges with parametric archi-
tecture and multiscale complexity.”Mech. Res. Commun. 58 (Jun): 124–
132. https://doi.org/10.1016/j.mechrescom.2013.10.017.

Sychterz, A. C., and I. F. C. Smith. 2017. “Joint friction during deployment
of a near-full-scale tensegrity footbridge.” J. Struct. Eng. 143 (9):
04017081. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001817.

Van den Broeck, P., and G. De Roeck. 2012. “Tricon: Prediction and
control of human-induced vibrations of civil structures.” IWT Tetra-
project 090137. Flanders, Belgium: Agency for Innovation by Science
and Technology (IWT).

Veuve, N., S. D. Safaei, and I. F. C. Smith. 2015. “Deployment of a
tensegrity footbridge.” J. Struct. Eng. 141 (11): 04015021. https://doi
.org/10.1061/(ASCE)ST.1943-541X.0001260.

WilkinsonEyre. 2004. “Tensegrity Bridge.” Accessed September 2, 2018.
http://www.wilkinsoneyre.com/projects/tensegrity-bridge.

© ASCE 04019112-28 J. Bridge Eng.

 J. Bridge Eng., 2019, 24(12): 04019112 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ite
 d

e 
L

ie
ge

 o
n 

09
/2

6/
19

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1080/19648189.2014.965849
https://doi.org/10.1080/19648189.2014.965849
https://doi.org/10.1016/j.proeng.2012.07.048
https://doi.org/10.1016/j.engstruct.2010.08.009
https://doi.org/10.1016/j.engstruct.2010.08.009
https://doi.org/10.1260/0266-3511.27.2-3.167
https://doi.org/10.1260/0266-3511.27.2-3.167
https://doi.org/10.1260/0266-3511.30.3-4.221
https://doi.org/10.1260/0266-3511.30.3-4.221
https://repository.tudelft.nl/islandora/object/uuid%3Abdab80b7-ed0e-4236-8e8f-74ff4ac75be5
https://repository.tudelft.nl/islandora/object/uuid%3Abdab80b7-ed0e-4236-8e8f-74ff4ac75be5
https://doi.org/10.1260%2F0266-3511.27.2-3.179
https://doi.org/10.1260%2F0266-3511.27.2-3.179
https://orbi.uliege.be/handle/2268/30107
https://orbi.uliege.be/handle/2268/30107
https://doi.org/10.1177/0266351117746267
https://doi.org/10.1080/12795119.2001.9692296
https://doi.org/10.1007/978-3-642-24638-8_25
https://doi.org/10.1080/14786440409463229
https://issuu.com/stefanoparadiso3/docs/tesi_mucedola_paradiso
https://issuu.com/stefanoparadiso3/docs/tesi_mucedola_paradiso
https://doi.org/10.1016/j.engstruct.2009.12.042
https://doi.org/10.1016/j.engstruct.2009.12.042
https://doi.org/10.1260/0266-3511.27.2-3.81
https://doi.org/10.1260/0266-3511.27.2-3.81
https://doi.org/10.1007/s00366-009-0154-1
https://doi.org/10.1007/s00366-009-0154-1
https://doi.org/10.1260/1478-0771.8.3.319
https://doi.org/10.1260/1478-0771.8.3.319
https://doi.org/10.1007/978-0-387-74242-7
https://doi.org/10.1016/j.mechrescom.2013.10.017
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001817
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001260
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001260
http://www.wilkinsoneyre.com/projects/tensegrity-bridge

