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Abstract. The production of strange particles (kaons, hyperons) and hypernuclei in light charged-particle—
induced reactions in the energy range of a few GeV (2-15GeV) has become a topic of active research in
several facilities (e.g., HypHI and PANDA at GSI and/or FAIR (Germany), JLab (USA), and JPARC
(Japan)). This energy range represents the low-energy limit of the string models (degree of freedom: quark
and gluon) or the high-energy limit of the so-called spallation models (degree of freedom: hadrons). A well-
known spallation model is INCL, the Li¢ge intranuclear cascade model (combined with a de-excitation
model to complete the reaction). INCL, known to give good results up to 2-3 GeV, was recently upgraded
by the implementation of multiple pion emission to extend the energy range of applicability up to roughly
15 GeV. The next step, to account also for strange particle production, both for refining the high-energy
domain and making it usable when strangeness appears, requires the following main ingredients: i) the
relevant elementary cross sections (production, scattering, and absorption) and ii) the characteristics of
the associated final states. Some of those ingredients are already known and, sometimes, already used
in models of the same type (e.g., Bertini, GiBUU), but this paper aims at reviewing the situation by
compiling, updating, and comparing the necessary elementary information which are independent of the
model used.

1 Introduction

The modelling of nuclear reactions involving a light projectile and an atomic nucleus from a few tens of MeV to a
few GeV is important for a large variety of applications, ranging from nuclear waste transmutation, to spacecraft
shielding, through hadron therapy. This type of reactions is called spallation reactions. Technically, it is assumed that
a proper description of spallation reactions starts at about 100-200 MeV. However, special attention to the low-energy
domain showed that results down to a few tens of MeV could be as good as those obtained via models dedicated to the
description of low-energy nuclear reactions [1]. Spallation reactions are usually described by two steps. The first step
is called the intranuclear cascade (INC), because the incident projectile gives rise to a cascade of hadronic reactions
within the nucleus with emission of energetic particles leading to a remaining excited nucleus. The second step is the
de-excitation of the nucleus via evaporation, fission, Fermi-breakup, or multifragmentation. During the last twenty
years great improvements have been achieved modelling those reactions, often driven by projects on spallation neutron
sources (shielding of neutron beams or transmutation of nuclear waste). In 2010, IAEA tested the reliability for most of
the models used worldwide [2]. Various observables enabled to scrutinize the qualities and shortcomings of the models.

The INCL (Liege Intranuclear Cascade) model, which is developed by the authors of this paper, was recognized as
one of the best spallation code up to 2-3 GeV according to the TAEA 2010 benchmark. We decided then to improve
and extend our model [3]. Among the different topics one can cite the improvement of low-energy cluster-induced
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reactions [4], the few-nucleon removal study [5, 6], and the extension to high energies (up to 15GeV) [7-9]. For
extending the model to high energies we introduced the main new channel, which is multiple pion emission in NN
and 7w interactions. This type of emission is based on the hypothesis that the produced baryonic resonances have
so short lifetimes that their decay, in several pions, occurs before they interact with another particle in the nucleus.
In addition, the overlap of their large widths makes difficult the choice of a specific resonance. Finally, the very good
results obtained when comparing the new model predictions to experimental data and other models confirmed that
the main features can be described on this manner. However, other particles, especially strange particles, can be
produced to a lesser extent when the energy goes up. Even if they only play a minor role during the cascade, strange
particle production contributes a few percent of the nucleon-nucleon inelastic cross section for energies from 2 GeV
to 15 GeV; therefore, taking them into account could improve the modelling. The improvements and implementations
will also bring new possibilities, which are important for simulating specific experiment involving, for instance, kaon
emission. Comparisons with experimental data may also probe the nuclear medium effects. In addition, hypernuclei,
whose interest grows with new facilities and experiments (e.g., HypHI and PANDA at GSI and/or FAIR (Germany),
JLab (USA), J-PARC (Japan)), can also be studied. We want to stress the particular interest of possibility of studying
hypernuclei with the extended INCL model. Beyond having a general high predictive power, the combination of the
INCL model with the de-excitation Abla model is probably the most suitable tool to study the propagation of baryons
in a nuclear medium, as testified by the IAEA intercomparison mentioned above.

The needed ingredients to account for strange particles (limited in this paper to Kaons, antiKaons, Lambda, Sigmas)
are their characteristics, reaction cross sections involving strange particles in the initial and/or final state, angular
distributions, momentum and charge repartition of the particles in the final state. This paper describes the ingredients
and especially the parametrizations of the reaction cross sections involving strange particles. These ingredients are
independent of the code considered and can be used in any other code. It is worth mentioning that hyperon and
kaon production from a nucleus are already modelled in several codes, e.g., GiBUU [10,11], JAM [12], LAQGSM [13],
INCL2.0 [14,15], and Bertini [16]. Numerous scenarios exist to treat the production of strange particles. Some models
split the energy range in two parts: a low-energy part with a center-of-mass energy roughly below 3-4 GeV and a high-
energy part. The low-energy part is described either by resonances or directly by their decay products. However, the
cross sections are then often treated differently as it is done in INCL; there are often given in resonant and non-resonant
terms. For the high energy part the LUND string model [17] is usually used. Some other models, like Bertini and INCL,
which both focus on the energy domain considered here, i.e., below 15 GeV, consider directly the decay products of
the resonances and they rest on experimental data, calculation results (e.g., from string models), and approximations.
Therefore, some information already exists. However, we investigated new parametrizations by using all available
materials (experimental data, hypotheses, and models) and here we use the opportunity to report our best knowledge
of the thus determined cross sections and to improve some parametrizations. Our goal is also to provide a rather
comprehensive set of cross sections and angular distributions in an as simple and accurate as possible shape, that can be
used by other model builders and/or end-users. In addition, our work attempts to a systematic and coherent elaboration
of fitted cross sections, largely based on symmetry and simple hadronic models, as explained in detail in this paper.

The paper starts with the list of particles and reactions considered. Then, the way the reaction cross sections have
been parametrized is described in sect. 3. Section 4 is devoted to the particles in the final states and more precisely
to their emission angles and momenta. There we also describe the charge repartition. Since such information already
partly exist in literature, comparisons of the earlier data with the new results obtained here are given in sect. 5. Finally,
we draw some conclusions.

2 Particles and reactions

In a first step, only the non-resonant particles with one unit of strangeness were considered. Therefore Kaons (K° and

KT), antiKaons (FO and K~ )(the difference between Kaons and antiKaons is relevant in this paper), Sigmas (X',
X9 and X7T), and the Lambda (A) were added, i.e., particles with a nuclear spin J = 0 and J = 1/2 and with a
strangeness —1 for baryons and +1 for mesons.

The types of particles considered also define the types of reactions that must be considered. Doing so, we use their
relative importance, given by the experimental cross sections. Knowing that the main particles that evolve during the
intranuclear cascade are nucleons and pions, we consider reactions contributing at least 1% to the NN and 7N total
cross section and at least 10% of the total cross section for YN (Y = A or ), KN, and KN reaction. The reactions
take into account in this work are listed in table 1. This choice is based on available experimental data.

In addition, we include two other types of reactions. The first one considers strangeness production via AN
reactions. A’s are less numerous than nucleons and 7’s, but are nevertheless expected to contribute significantly to the
strangeness production according to the study of Tsushima et al. [18]. The second type is the strange production in
reactions where many particles are produced in the final state but no exclusive measurements are available. Since their
contributions increase significantly with increasing energy, a specific study was necessary to get the correct inclusive
strangeness production cross section [19]. Table 2 lists the channels for both types of reactions also taken into account.
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Table 1. List of considered reactions involving strangeness based on experimental data.

NN — NAK TN — AK NK — NK NK — NK
— NYK — YK — Am — NKm
— NAKT — AKT — X — NKnrw
— NYKm — YKm — NKn NA — NA
— NAKnn — AK7nm — Arm — NXY
— NYKnrw — Anm — Xrm NXY — NA
— NNKK — NKK — NKnrm — NXY

Table 2. List of the reactions involving strangeness and requiring information to be taken exclusively from models. Meaning
of X is explained in sect. 3 and excludes the reactions cited in table 1.

AN - NAK NN - K+ X
- NYK
— AAK N — K+ X
= AXK
- NNKK

In the reaction listed in table 2, kaon production is equivalent to strangeness production, since it is the only particle
with strangeness +1, in the energy range under consideration in this paper, which can counterbalance the production
of strangeness —1 of A, X and K particles (strangeness is conserved in strong interaction processes).

Considering isospin, there are 488 channels, excluding the reactions NN — K + X and 7 N — K + X of table 2,
which must be characterized by their reaction cross sections (sect. 3) and their final state, i.e., charge repartitions,
emission angle, and energy of the particles (sect. 4).

3 Reaction cross sections

Among the ingredients needed to include new particles in an INC model, reaction cross sections are the most important.
As far as possible they are taken from experimental data. However, measurements are not always performed on the
entire energy range, rarely for all isospin channels, and are often inexistent when numerous particles exist in the final
state. To overcome these limitations a step-by-step procedure has been developed to obtain parametrizations of the
required cross sections (tables 1 and 2). First, an overview of the available experimental data has been performed.
Second, two methods based on isospin symmetry allowed to extend our database by increasing the available information.
Third, the still missing cross sections were determined using models and/or similar reactions with the help of plausible
hypotheses. Finally, generic formulae, which can be applied to parametrize the cross sections, are given in the last
subsection.

3.1 Available experimental data

The number of measured data for each reaction from table 1 are given in table 3. The energy range goes up to 32 GeV
and the data are taken from Landolt-Bornstein [19] and two other papers [20,21].

Since some of the published experimental data are rather old, our study offers the possibility to check and summarize
our knowledge of the cross sections. We therefore give for each reaction the number of isospin channels, number of
experimental data points, and the Gini coefficient.

The Gini coefficient [22] is a statistical tool used typically in economy to measure the dispersion of a system (usually
the income distribution of the residents of a nation). The coefficient takes values between 0 (perfect repartition) and 1
(maximal inequality). The Gini coefficient for the discrete case is calculated as follows:

257 iy n+l
G = = -
nY iy Yi n

; (1)

with y; the number of data in the i-th channel arranged as y;11 > y; (non-cumulative). This coefficient measures the
repartition of data in the different isospin channels and, in our case (with a very high inequality and a high number
of channels), correspond to the missing part of data for each reaction. For example, if G = 0.8 approximatively 80%
of more data are needed to complete the 20% of existing data and to make the entire database for each channel as
precise as for the most precise channel.
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Table 3. Available experimental data points for reactions studied in this work.

Reaction # of channels 7 of data Gini coefficient

NN to
NAK 4 31 0.62
NXK 10 44 0.69
NAK~ 10 29 0.63
NYKnr 26 43 0.74
NAKnn 16 14 0.77
NYXKrr 44 15 0.87
NNKK 10 16 0.71
7N to
AK 4 108 0.75
YK 10 158 0.74
AKT 10 68 0.72
YK 26 148 0.77
AKnr 16 60 0.81
YKnm 44 63 0.86
NKK 14 57 0.81
AN to
NA 2 44 0.5
NX 4 11 0.75
2N to
NA 4 11 0.75
NXY 10 21 0.80
KN to
NK 6 687 0.61
NKn 14 500 0.72
NKrm 22 124 0.87
Am 4 349 0.52
X 10 685 0.59
Anm 6 256 0.66
Y 16 496 0.73
KN to
NK 4 134 0.69
NKr 14 223 0.62
NKnmw 22 123 0.89

Table 3 shows the number of data depends strongly on the given reaction. For example, in average there are only
2-3 points per channel for the NN collisions while for the NK reactions more than 35 data per channel are available.
However, the Gini coefficients exhibit an important inhomogeneity (G > 0.5) with respect to the isospin channels.
There is also a significant inhomogeneity, not given by the Gini coefficient, with respect to the energy range studied,
with more data at the threshold and in the resonances region (see fig. 1). When available, these data nevertheless
enable a reliable parametrization over the entire considered energy range (up to 15 GeV).

Using only experimental data the reaction cross sections were determined (sometimes partially) only for about
17% of the channels listed in table 1. For the remaining 83% various hypotheses were necessary, which are explained
in some detail in the next subsections.
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Fig. 1. K~ p — Ant7n~ reaction cross section as a function of the K~ momentum. Data taken from [19].
3.2 The Bystricky procedure

The first method used to get information on missing isospin channels is based on the assumption of isospin symmetry,
which is described in detail by Bystricky et al. [23]. Their goal was to provide a phenomenological calculation tool
for elastic and inelastic cross sections in the framework of isospin symmetry for the reactions NN — NNz and
NN — NNr.

The procedure, which is based on the isospin decomposition of systems, was used by Sophie Pedoux [7] to find
missing cross sections in channels involving multiple pion production. The procedure was applied up to the production
of four pions and determined cross section were then implemented in a previous version of INCL. Briefly, the initial
state of two nucleons [NN) is projected on the final state decomposed into the nucleon final state (NN| and the pion
final state (z7|. The amplitude of the reaction is given by the following equation:

M(NN — NNzr) = ((NN| @ (zr|) M |NN), (2)

with M the reduced matrix element. Equation (2) is subsequently decomposed using isospin projection:
<I(1)I?(,1) [OLP | ML) = CG Myo peo s (3)

with CG the associated Clebsch-Gordan coefficient, I and Iél) the NN system isospin and its projection, I(?) and
I?()Q) the zm system isospin and its projection, I and I?(f) the initial state isospin and its projection and M;u) )
the reduced matrix element for the isospin decomposition I*7MJ(2) This equation can be written as the isospin
decomposition on each multiplet system involved in the initial and final state contracted on the reduced matrix element.

Next, by integrating over all kinematic variables of the final state and summing over all permutations we obtain a
decomposition of the cross section on isospin states, which is then compared with others to establish relations between
the different cross sections.

This same procedure was then applied to reactions involving strange particles. In our case, eq. (2) can be written
as the tensor product of the nucleon, pion, kaon, antiKaon, Lambda, and Sigma systems of the initial and final state
contracted on the reduced matrix element. With this, eq. (2) becomes:

M = (Initial state — xyN zxmayY 2k K 27K) = ((znN| @ (2.7 @ (2y Y| @ (25 K| ® (2 K|) M |Initial state)
= ({system1| ® (system2|) M |Initial state), (4)

with (systeml| and (system?2| a contraction of the final multiplet systems in two arbitrary systems. Note that the
final result does not depend on the choice of contraction.

The so obtained results are either simple equalities between individual cross sections, resulting form the Clebsch-
Gordan coefficients associated with isospin symmetry, or equations between several cross sections resulting from the
cross sections associated with a given total value of the isospin which can be expressed as sums of partial cross sections
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on various final charge states. Non-trivial expressions of this kind are reported in appendix A in bold. As example, for
the reaction Nm — NKK we get:

0(77+p—>pK+FO> ZO'(?T_TL—>TLKOK_) , (5)
o (7T_p — nKOFO) +o (w_p — nK+K_) +0o (w_p — pKOK_) +o (7r+p — pK"'FO) =
20 (ﬂop — nKJrFO) + 20 (ﬂop — pKOFO> + 20 (7r0p —pKTK™). (6)

Errors arising from this procedure are introduced by the isospin invariance hypothesis and are estimated to be in
the range of a few percent, which is approximately the mass differences between particles belonging to a same multiplet.

The Bystricky procedure allowed us to reduce the missing information on the reaction cross sections by approx-
imately a factor 2, i.e., we increased the knowledge of the reaction cross sections by about a factor of 2. Thus, at
this stage 35% of the channels were parametrized, still 65% are missing. For establishing a complete database another
method, also based on isospin symmetry, was used (see next subsection).

3.3 Hadron exchange model

In order to complete the dataset, a procedure based on the hadron exchange model (HEM) was developed. The basic of
the model is to apply the isospin symmetry at the Feynman diagram level, considering only diagrams at leading order, to
obtain cross section ratios. This way, once again, unknown cross sections can be determined from known cross sections.

This procedure is an adaptation of the method used by Li [24] and Sibirtsev [25]. In this method, complete Feynman
diagrams are considered and not only the initial and final states as in the Bystricky procedure [23]. The method used
by Li and Sibirtsev treats the case of pion and kaon exchange. Here, baryon exchange is also considered because of the
type of studied cross sections. Initially, the hadron exchange model was developed with the idea to calculate explicitly
a cross section and then using the isospin symmetry to determine easily other channel cross sections for a specific
type of reaction. Here, the explicit calculation is replaced by a fit of experimental data. In the following, the method
is explained and illustrated in an example.

Similar to the Bystricky method, the procedure determines in a first step relations between matrix elements and,
in a second step, the cross section ratios by integrating over all kinematic variables of the squared matrix elements:

g:/|/\/lfi|2d!2. (7)

To make things easier, the method used by Li and Sibirtsev neglects interferences between diagrams. They estimated
that this hypothesis could change their result by about 30%. In our case, first we consider only the ratios between
cross sections and second we check, as far as possible, the results by comparing to experimental data or results arising
from the Bystricky procedure. Doing so, the cross section of a specific isospin channel can be rewritten as the sum of
all individual diagram contributions:

o(channel) = Z/|MX1 (channel)|*d£2, (8)

with M x, (channel) the diagram amplitude of the isospin channel with the exchange particle X;. In the reduced matrix
element amplitude, there are three types of contribution: the initial and final fields, the propagators, and the vertices.
Due to isospin symmetry, in the case of the same type of exchange particles, propagators and fields are identical.
Therefore, the only difference between matrix elements comes from the vertices. However, the vertices have the same
structure when the same particle types are involved. Consequently, these vertices are linked together by the isospin
symmetry and this link can be obtained using Clebsch-Gordan coefficients. Note that Kaons and antiKaons have the
same field and the same propagator because of the matter/antimatter symmetry. Considering a specific vertex with
two incoming particles and one outgoing particle, the contribution can be written as

<[OUtI§Ut | V

Iin(l)f:izn(l),Iin@)[:iznm> =CGVx vz, 9)
with 7°"* and I$"* the outgoing particle isospin and its projection, 1) and I;n(l) the isospin and the projection of the
i-th incoming particle, )V the matrix element associated to the vertex, C'G the associated Clebsch-Gordan coefficient,
and Vx y,z the projected matrix element for the incoming and outgoing particles of type X, Y, Z. Since Clebsch-Gordan
coeflicients are scalar, diagrams with the same type of exchange particle are linked by a coefficient that is independent
of energy. The matrix element of one diagram can be rewritten as

Mx, (channel) = ax,(channel) x Mx., (10)
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Fig. 2. List of Feynman diagrams at leading order for the 7N — Y K reaction.

with My, the isospin-independent part of the matrix element and ax,(channel) the product of all Clebsch-Gordan
coefficients coming from each vertex (isospin-dependent part). A factor n! appears in the case of n identical particles
in the final state. The matrix element 9, contains all the propagators, field contributions, and the structure of
the vertices. The ax, (channel) coefficient is a real scalar, which contains only the factor linking the different matrix
elements. Using eq. (10), eq. (8) can be rewritten as

o(channel) = Z lax, (channel)|? / My, |2d 2. (11)

Two cases must be distinguished. In the first case, all |ax (channel;)/ax (channely)| ratios are equal, independent
of the diagram. In such a case, the cross section ratio of the two channels can easily be determined. In the second
case with unequal ratios, extra information and hypotheses are required. In a first step, global relations obtained from
the Bystricky procedure were systematically used as extra information. In a second step, hypotheses linking diagrams
together or neglecting some diagrams are needed. Small coupling constants involved and/or small disintegration rates
of the intermediate particles allow to leave out some diagrams. Note that all resonances (the A particle is not considered
as a nucleon resonance from an isospin point of view: Ja # Jx) are automatically considered because a given particle
and its resonances have the same isospin and the same isospin projection. Therefore the ax coefficients are identical.
Consequently, the sum over all diagram amplitudes with the same type of exchange particle can be treated as

Z lax, (channel)|? / My, [2d2 = |ax(channel)|? Z / My, [2dR = |aX(channel)|2/|§mX\2dQ, (12)
X

x™

with Xi(*) the particle and its resonances (x) and My the isospin-independent general matrix element of the particle
type X defined as

2, (13)

M=) My,
x™)

In order to illustrate the basic procedure, the way to solve the difficulties but also demonstrating the limits, we
discuss an illustrative case based on the 71N — X K reaction. Sadly, the hadron exchange model give no solution in this
case but instead present the rare advantage to be relatively simple but to exhibit numerous problems, which appear
often in more complex cases.

Five diagrams (three types), listed in fig. 2, are considered.
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Table 4. List of normalized ax, (channel) squared coefficients for the reaction 71N — Y'K.

ax a a3 ay a’
atp — XTKT 1 1 1/2 0 1
7% — ZTK° 1/2 0 1 1/2 2/9
7' — XOKT 1/4 1 0 1/4 4/9
77p— SOK° 1/2 0 1 1/2 2/9
TTp— NTKT 0 1 1/2 1 1/9

Using eq. (11) the cross section is given by

o(rN — YK) :c@(/|WIK|2dQ+ai/|9ﬁA|2dQ+aQE/|2mg|2d!2+a?v/|§mN|2dQ—|—a2A/|§mA|2dQ. (14)

In this example, there are two vertices in each diagram called v;* and v3 as shown in fig. 2. The X exchange in
the case 7tp — YT KT is a X°. Then, the projection on isospin eigenstates at vi’ is

Py(vy’) (nFp — ZTKT) = ((K*| @ (X)) VIp)

= (3] @ o) [33) vy = fEvr 15

Doing the same calculation for each diagram, each channel, and each vertex gives the coefficients ax, once a global
normalization has been chosen. The counterweight of this normalization is hidden in the isospin-independent part of
the matrix element. Here the choice is that the largest ax, is equal to 1. All ag(i are given in table 4. Only channels
with an incoming proton are given here since channels with an incoming neutron can easily be deduced. It can be seen
that the agg coefficients of the 7% — X1 KO channel are equal to the ones of the 7~ p — XOK° channel. Therefore,
we can infer:

o(r’p = XTK?) =0 (n7p— X°K"). (16)

Second, another interesting point is given by the following relations:
203 = a’ + 2a% — 2a%, (17)
9a% = 2d% — 2a% + 8a%. (18)

Thus, if we define three new matrix elements

B2 = e — D+ S (19)
D = 047 + S+ DA, (20)
Daf? = M+ [9? — S[Ms P 1)
eq. (14) becomes:
o(rN — YK) = a% / |7, )2d 02 + a? / |22 + a% / |M3]%ds2. (22)

The |9M;|? being unknown, extra hypotheses are needed to obtain other relations between the cross sections of
the different channels. Their reliability will, however, directly affect the reliability of the final result. The hypotheses
for this show-case are: the experimental data exhibit some similarities between the known channel cross sections (3
channels in the 10 that which should be parametrized are reasonably well measured). It can be reasonably argued that

o(n7p— XK ~o(n"p— X KT). (23)

That implies:
|90 2 = 2|9 — (90052 (24)

Finally, two more hypotheses are necessary to link the isospin channel cross sections of the reaction 7N — Y'K.
First N and/or A exchanges were neglected, because the strange decay ratio is very weak for most of the resonances.
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Fig. 3. Experimental 71N — Y K cross sections.

Second, the graphs with a A exchange and a X’ exchange are supposed to be equivalent, because of their similar nature.
Doing so, there follows:

M| = [Ma]? = (M|, (25)
We finally get

o(ntp = XTKT) =o(nn™ — XK
5 5
= go(wop — YTKY%) = go(ﬂ_p — 50K
5 5
= ga(nﬂ"' — XOKT) = go(mro — YTKT)
=20(r% — X°K*) = 20(nm" — X°K")

= ga(wfp — XYK" = gcr(mrJr — XTK). (26)

After all necessary relations have been found, the result is always compared to the experimental data and/or
the predictions by the Bystricky procedure, if available, in order to check if the hypotheses used are reasonable.
Unfortunately, in this special case the result obtained by the HEM procedure is not very reasonable (see fig. 3), likely
due to unreliable hypotheses.

We anticipate that, the Bystricky procedure predictions associated to available experimental data are sufficient for
parametrizing all TN — YK channels. Then, exclusive cross sections were fitted channel per channel for the ones with
experimental data and the other cross sections are determined using the symmetries from the Bystricky procedure.
However, in cases without enough experimental data, the relations obtained with sometimes questionable hypotheses
must be kept. In general, the reliability of relations found using this method decreases with the increasing number of
outgoing particles. This is due to the increasing number of Feynman diagrams, which should be taken into account
and which then increases the number of hypothesis needed. An example of a case that works well even if the prediction
does not match perfectly over the entire energy range with the experimental data for many channels is shown in
fig. 4.

The errors introduced by this method on the isospin average cross sections are estimated to be around 10%—20%,
supposing that hypotheses are wisely chosen because, even if a specific isospin channel is under- or over-estimated by
a large factor, the Bystricky procedure provides relatively strong constraints on the isospin average cross sections. The
list of all graphs considered and relations found are available in appendix A.

Thanks to the use of isospin symmetry in the hadron exchange model, combined with experimental data and the
Bystricky procedure, around 72% of the required information (table 1) can be obtained.
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Fig. 4. Experimental KN — X cross section showing the cross section of known channels normalized with the coefficients
given by the HEM are equivalent.

3.4 Enlarging the data set

Unfortunately, both methods, which are based on isospin symmetries in combination with experimental data, are not
sufficient to provide a parametrization for all reactions listed in table 1. The missing cross sections were either obtained
from models or from our best knowledge of similar reactions (notably based on reactions already studied in a previous
version of INCL [3]). The reactions of interest are:

- NN - NNKK;
~ NN - NAK7n, NN — NYKr;
-~ NN - NAKnn, NN — NYKnr.

Parametrization of the NN — NNKK reaction cross section parametrization is taken from [25] (eq. (21)).

For the other four reactions we assume similarities with the already included reactions o(NN — NN7) and
o(NN — NNnrr), taking into account the center-of-mass energy (/s in MeV in the following equations). Actually,
in these cases, the changes in the shape of the cross sections, when adding a pion in the final state, is supposed to be
the same as if a hyperon and a kaon replace a nucleon and a pion:

ONN—NN=r(y/s — 540)

— T = — 9 2
ONN—NaKr(V8) = 30NN Nak(Vs) X o (/5 — 540) (27)
B ONN—NNxx(V/s — 620)
ONN-NKx(V8) = 30NN NoKr(Vs) X o xn (V5 — 620) (28)
ONN—NN=r(V/5 = 675)
— T = — i ) 2
ONN—NAKrr(VS) = ONN—NaKx(V3) X NN NN (/5 — 675) (29)
ONN—NNn=r(y/S— 755
ONN—NsKrr(V8) = ONN—NKx(V5) X NNV ) (30)

0'NN—>NN7r(\/§ — 755) '

The factor 3 used in eqs. (27) and (28) is a normalization factor needed to fit the few available experimental data.
The method was tested using the same type of reaction cross sections (strangeness produced or not) with the 7N
initial state that are already relatively well described. It appears also a factor of approximatively 3 between the cross
section ratio oy N Nrrr/OrN—Nzr and the cross section ratio oxn_yxx/0rN—yv Kk With the appropriately shifted
center of mass energy. Note that this verification starts with the 7N — N7 reaction, because the reaction 7N — Nm
is an elastic reaction and therefore, is clearly not similar to TN — Y K.
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Fig. 5. Particle rate per reaction in pp— K+X reactions in the Fritiof model [27] as a function of the incident proton momentum.

The charge repartition is determined by using the work done in subsect. 3.3 for NN — NNKK, NN — NAKT,
and NN — NXY K reactions. As discussed previously, the method based on the hadron exchange model is not used
to calculate the total cross sections for those reactions (too many hypotheses needed), but it can be used to determine
the charge repartition. The charge repartition for NN — NAK#m and NN — NXKnm were determined using an
approach by Iljinov et al. [26], simplified to take into account only the combinatorics of the final state as it was done
in the Bertini model [16]. The method determines the ratio of channel cross sections from a same reaction based only
on the particle multiplicities in the final state as

7 (Al +B = Zj:mpnrh.” x]j) Hj:”,P,W+,»-- ;! 7

with x; the number of particle ¢ in the final state.

In addition, and as mentioned in sect. 2 and table 2, two additional reaction types must be taken into account:
strangeness production reactions with numerous particles in final states and A-induced strange production reactions.

For increasing energy, kaon production is associated with an increasing number of particles in the final state and,
consequently, the reactions listed in table 1 are not sufficient to account for kaon production. Actually, the additional
particles are mostly pions as demonstrated by the Fritiof model [27] (see fig. 5). Therefore, regarding the high-energy
reactions NN — K 4+ X and 7N — K + X, inclusive parametrizations of the cross sections are determined from
experimental measurement and individual cross sections can be generated by trying to reproduce as good as possible
the particle multiplicities given by the Fritiof model [27] using a random generator.

The parametrization for A-induced strangeness production cross sections listed in table 2 are taken from [18], except
for the reaction AN — NNKK, which is discussed below and given in appendix B. Since the estimates given by [18]
for the cross sections related to AN collisions are very large compared to the cross sections related to NN collisions
with the same final states (factor ~ 10), it was decided to take the isospin average cross section 0(AN — NNKK)
as 10 times the isospin average cross section o(NN — NNKK).

Even if the number of A particles present in the nuclear volume during the collision is significantly lower than
the number of pions and nucleons, A-induced reaction are expected to contribute significantly to the strangeness
production. Indeed, the cross sections calculated by Tsushima et al. [18] for A-induced reactions are much larger
than those measured for pion-induced or nucleon-induced reactions. However, for these parametrizations, they used
hypotheses, which are not obviously good for the entire energy range studied in this work and the experimental data
in NN — NYK calculated with the same hypotheses are not always well reproduced (see [18], fig. 7). Considering
the rather large uncertainties associated to these theoretical cross sections, this kind of reaction is supposed to be the
largest source of error on strangeness production in our code.

The charge repartition was determined based on information obtained from the Bystricky procedure and the hadron
exchange model.
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3.5 Parametrizations

Different generic formula were used to parametrize the reaction cross sections. The reactions considered are of two
types: elastic and inelastic. This section presents our choice of fit functions. We give below the generic formula and in
appendix B the parametrizations for all reactions in the whole energy domain considered (momentum in laboratory
frame of reference below 15 GeV).

The elastic scattering cross sections become extremely large when the incoming particle momentum goes down
to zero. Upper limits are placed at low energies to avoid cross section divergences. The limits have no consequences
on the final result if placed high enough, because the cross sections are only used to determine which reaction will
contribute. The elastic cross sections appear relatively complex in the energy range studied here to be defined by a
singular function. As a result of which the energy ranges studied were split into several parts in order to get better
parametrizations of the cross sections. The following functions were used:

o(prap) = a + be “Pab, (32)
o(prab) = a +bpyp. (33)

Note that this kind of reaction is often resonant; the resonances are fitted by adding bumps of Gaussian shape on
the underlying background.

The quasi-elastic reactions, which are NK — N'K’', NK — N ’F/, and NX — N'X’ are especially problematic
at low energies with respect to the assumption of isospin symmetry because of the existence or absence of reaction
thresholds. This asymmetry is taken into account by a cross section shift, which “breaks” the isospin symmetry
hypothesis for both reactions.

The inelastic cross sections are the most important for the physics studied here. A lot of different formulae were
tested. The following function, which is similar to formulae found in literature, gives good results for most reactions.
We used the basic formula over the entire energy range even for those reactions where only few data concentrated in
a narrow energy range exist,

(plab - po)b

_flab 70 (34)
(prab + po)° P,

o(pab) = a
with po the threshold momentum and a, b, ¢, and d positive fitting parameters. In a few cases, Gaussian functions are
added in order to fit resonances.

4 Characteristics of the final states

After fixing the type of reaction, the final state must be determined. Doing so, charge and momentum must be assigned
to each particle in the final state.

In most cases, charge repartition is determined using isospin symmetry and the hadron exchange model, which both
predict relations between the isospin channel cross sections. The ratios are given in appendix A. We then randomly
chose the charge repartition using the ratios determined before. For the reaction NN — NY Krm, the Bystricky
procedure and the hadron exchange model discussed in sect. 3 are not able to provide any ratio. Therefore, the
simplified Tljinov et al. approach [26] is used.

The other information needed to define the final state is the three-momentum of outgoing particles. In INCL,
there are two different options to determine the kinematics of outgoing particles: the first one is to provide an angular
distribution based on experimental measurements. The second one is to use a phase space generator, which is isotropic
for the simplest cases or more sophisticated for more complex cases (Kopylov [28] or Raubold-Lynch [29]). Typically,
no experimental data are available and therefore, phase space generators are used. Nevertheless, studies providing
Legendre coefficient have been carried out for KN [30-43] and 7N [44-50] elastic and quasi-elastic reactions. The
results are used to provide angular distributions for KN and 7N reactions. Details are given and summarized in
table 5.

The angular distributions for a given energy are usually parametrized using Legendre polynomials as follows:

A5 O _ ya(5 lz_;Al(\/E)Pl(cos Ocrm.). (35)

with X the c.m. reduced wavelength, A; the [-th Legendre coefficient, /s the center-of-mass energy, O, ,,. the angle of
the outgoing particle with its initial momentum in the center of mass reference frame, and P, the [-th—order Legendre
polynomial.
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Table 5. List of reactions where the angular distributions were studied experimentally. Momentum range and references are
given.

Ap (MeV/e) Reaction Refs.
225-2374 Kp—Kp [30-38]
235-1355 K p—K'n [35-40]
436-1843 K~ p— Az [37-39,41-43]
436-865 K™ p— 3" [37,41,43]
436-1843 K p— X%r¥ [37-39,43]
9302375 7 p— K°A° [44-46)

1040-2375 7 p— K°5° [47,48]
1105-2473 tp— KtY~ [49,50]

The experimental papers treating the angular distributions provide often A; at different energies [30—49]. If it is not
the case, like in [50], Legendre coefficients were determined by us (cf. appendix C). However, the Legendre coefficients
determined in experiments strongly depend on the experimental set-up, like the backward detection and the angular
binning, and can therefore provide an angular distribution that is only valid in a partial angular range. Sometimes,
aberrations like negative density probability also appear. In an intranuclear cascade model, a description of Legendre
coefficients as a function of the energy is needed. Doing so, a direct (non-parametric) fit of the A; using all Legendre
coefficients coming from the experiments were done. Using these fitted A;, we observed that most of the negative
density probability problems disappeared. When negative probability density problems persists, the density is set to
zero. Thanks to the cross section parametrization (see sect. 3), only the A;(1/s)/Ao(v/s) fittings are needed. Below,
we elaborate on the two methods used to define the A;(v/s)/Ao(y/s) ratios in the given energy range.

The first method used is the Nadaraya-Watson kernel regression [51]. The parametrization of the ratios is obtained
by determining the function ni,(x) given by

in(a) = Sz K@= @) 4 (36)

Z?:l Kp(x — ;)

with (z;,y;) the set of n data, K}, is a kernel, here a Gaussian with a standard deviation defined so that their quartiles
(viewed as probability densities) are at +0.25h. The denominator in eq. (36) is the normalization term. In our analysis,
the bandwidth was chosen as h = 25, 50, 100, 150 or 200 MeV /c either on the whole energy range or according to
energy bins. The latter case is used when complex structures or narrow resonances appear, taking care of avoiding
fitting non-physical fluctuations.

The second method used is the smoothing spline regression [52]. This method consists in the minimization of the
following function:

> - ile)? +1 [ " (@) de, (37)

i=1

with (z;,y;) the set of n data, fi the non-parametric fit function (a spline), and A the smoothing parameter. This
method corresponds to the common y? minimization with a second term used to limit quick variations in the fit
function. The smoothing parameter was for each cases optimized by hand to obtain a good compromise between the
smoothness and the proximity to the data in order to fit resonances but to avoid fitting the noise.

As already mentioned, there is no fit function for the two non-parametric methods. The result is a tabulation of
Legendre coefficients as a function of the momentum with bins as small as needed. An example is shown in fig. 6.

The two methods use completely different ways of fitting but give very similar results, as shown in fig. 6. The choice
to use one or the other was made case-by-case. Out of the data range, it was decided to use an isotropic distribution
in the energy range below the experimental data and a more and more forward peaked distribution for higher energies

Tables used in INCL are available in the electronic Supplementary Material. Note that the extrapolation of the
Ai(v/s)/Ap(/s) outside the energy range considered here is not reliable and is likely to produce unphysical results.

5 Comparison with other models

Here we compare the input parameters determined in this paper, namely cross sections, charge repartition, and phase-
space generation, to the same input parameters available in the literature and already used in other models considering
strangeness production in the same energy range. These models are: i) INCL2.0 [14,15], a version developed to study
anti-proton physics and including kaon physics; ii) the Bertini Cascade model [16]; and iii) the GiIBUU model [10,11].
To do this comparison, different examples will be discussed in order to show the strength and the weakness of each
model.
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Fig. 6. Example of A;(y/s5)/Ao(y/s) fit in the case K~ p — An® using Nadaraya-Watson kernel regression (blue), and smoothing
spline regression (red).

The different models parametrize the reactions using different methods. The Bertini cascade model tabulates the
cross sections based on parametrization and calculation at 30 kinetic energies corresponding to as many intervals
whose width is increasing logarithmically with the incident energy and spanning the 0 to 32 GeV domain. In INCL2.0,
cross sections were parametrized only for reactions with two particles in the final state. The parametrization is often a
fit in one or two parts using a formula like 0 = a p®, with p the momentum in the laboratory frame of reference. In the
GiBUU model, the energy range is divided in two parts: the low-energy part is fitted with parametrizations and the
high-energy part is treated using PYTHIA [53], which is based on the Lund string model [54]. The transition between
the low-energy parametrization and the PYTHIA predictions is a smooth linear transition in an energy transition
range. The energy range considered in GiBUU is /s = 2.2 £ 0.2 GeV in meson-baryon collisions, which corresponds,
in term of momentum, to 2.1+0.5 GeV /¢ for pion nucleon collisions and to 1.9+ 0.2 GeV /¢ for kaon nucleon collisions,
and /s = 3.44+0.1 GeV in baryon-baryon collision, which corresponds to 5.140.4 GeV /¢ for nucleon-nucleon collisions.

Nucleon-nucleon collisions have a high contribution in the strangeness production. The first open reaction channel
with a proton as a projectile is the pp — pAK™ channel, which is important at low energies but which contributes less
and less at high energies. As shown in fig. 7, all models reproduce well the experimental cross sections. However, in the
range 3.7-5 GeV /¢, where there are no experimental data, there are significant differences between the different fits.
Such differences are very common when experimental data are not available in some energy range and/or are rather
inconsistent.

A typical problematic channel is pp — pXTK? with the cross section parametrization shown in fig. 8. The
parametrization from our work matches relatively well the experimental data at energies up to 4 GeV /¢ but underes-
timates the high-energy part. This is due to the compromise between inclusive calculations from the Fritiof model [27]
and exclusive cross section measurements. We have chosen to artificially reduce our fit in order to be consistent with
the inclusive cross section data. However, this type of reaction could deserve extra work according to its contribution
in INC models. Another crucial point for this type of reaction, which can also be observed in fig. 8, is the inconsistency
of the experimental data. For example, the two measurements around 3.7 GeV /c differ with a factor 3 and the data
point at 10 GeV is suspiciously high compared not only to other data from this reaction but also compared to other
isospin channels, which seem to show decreasing cross sections with increasing energy. The parametrizations in the
other models differ strongly from our work. The Bertini cascade model and the GiBUU model, which uses the formula
from [18] scaled by a factor 0.7, are other compromises with the experimental data.

Figure 9 highlights a problem with the INCL2.0 parametrizations. The result of the parametrization describes
correctly the magnitude of cross sections but does not give good fits of the energy dependence of the cross sections. As
seen in fig. 9, the cross section is slightly overestimated in the energy range 1.5-2 GeV /c for the 7~ p — AK? reaction
and in the energy range 1.5-10 GeV/c for the n7p — XTKT reaction. In the Bertini cascade model tabulations,
because of the few energy intervals, quick variations in cross sections as a function of energy can be missed. For
example, for the reaction 7~ p — AK? shown in fig. 9, the Bertini cascade model reproduces well the experimental
data near the threshold and at high energies but, the first interval being too wide, some part of the cross section
is underestimated. The 7—p — AK? cross section from the GiBUU model is close to the experimental data up to
1.4 GeV/c but, surprisingly, there are relatively large deviations from the experimental data at higher momenta.
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Fig. 7. The pp — pAK™ cross section fits from the Bertini cascade model (green line), GiBUU (blue line), and this work (red
line) compared to experimental data (black dots) as a function of the incident proton momentum. Note that above 5.5 GeV/c
GiBUU used Pythia, and so has no proper parametrization.
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Fig. 8. The pp — pX T K" cross section fits from the Bertini cascade model (green line), GiBUU (blue line), and this work (red
line) compared to experimental data (black dots) as a function of the incident proton momentum. Note that above 5.5 GeV/c
GiBUU used Pythia, and so has no proper parametrization.

However, this deviation is in the energy range of the transition between the parametrization and the PYTHIA model
(see above). Note also that the parametrization for the reaction 7tp — XTK™T from this work is slightly shifted to
higher energies (about 10 MeV —so seen only at low energies) because the isospin invariance considers an equal mass
for all particles belonging to a same multiplet. Here, the mass for a multiplet was considered as the heaviest mass of
this multiplet and therefore, can produce this artefact.
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Fig. 9. The 7 p — AK® and ntp — X T K™ cross sections fits from the Bertini cascade model (green line), GiBUU (blue line),
INCL2.0 (orange line), and this work (red line) compared to experimental data (black dots) as a function of the incident pion
momentum.

og(np->AK*mt)

. Exp. data
this work

GiBUU
Bertini

cross section (mb)
=)
=
1

0.014

Pion momentum (GeV/c)

Fig. 10. The 7~ p — AKTm~ cross section fits from the Bertini cascade model (green line), GiBUU (blue line), and this work
(red line) compared to experimental data (black dots) as a function of the incident pion momentum.

Figure 10 illustrates another important result: the predictions at high energies from the Bertini cascade model
are significantly different from our results. However, since there are only very few experimental data in this energy
range, we cannot state which model is more reliable. This phenomenon is also visible in fig. 11, though with more
physical relevance. Deviations between experimental data and predictions are not very problematic when cross sections
are relatively low because other reactions dominate. However, deviations of two orders of magnitude as seen for the
reaction K—n — X%7~ (fig. 11) are much more significant. Again, looking only at the experimental data, it is not
obvious which of the parametrizations are correct. Fortunately, for this special case the deviations have a low impact
on the entire cascade because antiKaons, except if they are projectiles, play a minor role (very low production yield).

Resonances are not treated directly in our work. However, they appear as Gaussians in the cross section parametriza-
tion. If the hadron exchange model is used to determine a missing channel, those resonances appear also in the missing
channel cross section even if they cannot be the intermediate state because of quantum number considerations. As
an example, the resonances fitted for the reaction K~p — X970 (fig. 11) appear also in the K—n — X%~ cross
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Fig. 11. The K p(n) — Z°7°) cross section fits from the Bertini cascade model (green line), INCL2.0 (orange line), and
this work (red line) compared to experimental data (black dots) as a function of the incident kaon momentum.
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Fig. 12. The K~ p quasi-elastic cross section fits from the Bertini cascade model (green line), INCL2.0 (orange line), and this
work (red line) compared to experimental data (black dots) as a function of the incident kaon momentum.

section fit, even if the third component of the isospin differs (0 for the former and —1 for the latter). Note that the
GiBUU parametrization is not shown in fig. 11 because the reaction is treated in a different way using resonant and
non-resonant cross sections. Therefore, no simple formula can be given. Figures 11 and 12 also show another problem
with the earlier INCL2.0 parametrizations: resonances are not reproduced. In contrast and as an improvement, the

parametrizations proposed in this work and in the Bertini cascade model have no difficulties reproducing resonant
cross sections.

Unlike antiKaon-nucleon collision cross sections discussed above, the KTp elastic cross section is important for
spallation process with either nucleons or pions as projectiles. This is due to the low production rate of antiKaons
compared to Kaons. Figure 13 shows that the cross section is well reproduced using the results from this work and
in the Bertini cascade model. Also the GiBUU model gives a good description of the experimental data. Differences
between the three different approaches are observable at low energies where the differences are not very relevant

because of the lack of competing processes in this energy range. In contrast, the INCL2.0 model underestimates the
cross sections over the entire energy range.
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Fig. 13. The K*p elastic cross section fits from the Bertini cascade model (green line), INCL2.0 (orange line), GiBUU (blue
line), and this work (red line) compared to experimental data (black dots) as a function of the incident kaon momentum.

In general, the parametrizations of the three different models fit the experimental data (if available) rather well.
However, if experimental data are missing in an energy range, fits can be very different.

The two last subjects developed in our work are charge repartition and phase space generation. Since information
about phase space generation in other models is too scarce, a comparison between the different models is not possible.
Considering charge repartition, different methods are used by the different models. The Bertini cascade model uses a
simplified version [16] of the Iljinov et al. approach [26]. For the GiBUU model, the charge repartition is determined
using isospin rules and, in the case TN — N KK, using the hadron exchange model with K* and 7 exchange diagrams.
In INCL2.0, the charge repartition was determined using isospin invariance rules by neglecting interferences.

6 Conclusion

A comprehensive and consistent description of all relevant elementary reactions involving strangeness production,
scattering, and absorption when a light particle hit a nucleus was performed. Here we focused on energies below
15 GeV. The considered reactions are compiled in tables 1 and 2. This work was motivated by the implementation of
strange particle physics into the intranuclear cascade model INCL with two major goals: refinement of the high-energy
modelling (beyond 2-3 GeV) and possibility to contribute to hypernucleus studies.

This description includes parametrization of reaction cross sections, charge repartition, and phase space generation.
These parametrizations are based on experimental measurements, when available, in order to be as model-independent
as possible. Unfortunately, for the reaction cross sections less than 20% of the needed information can be obtained
directly in this way. Therefore hypotheses and models are used to complete the parametrization. Isospin symmetry
allows to parametrize a large number of cross sections by linking known and unknown cross sections. This is applied
in two different ways, either by taking into account only the initial and final states (called Bystricky procedure) or
by considering the isospin symmetry at each vertex of the Feynman diagrams used in a hadron exchange model.
Nevertheless, still roughly one third of the cross sections needed additional information for a full characterization.
Then, in few cases where experimental data were rare, it was necessary to use similarities, e.g., in the cross section
ratios when one pion is added. Finally two types of reactions were fully based on modelling, i.e. without possible
confrontation with experimental data: reactions with numerous particles in the final state (with increasing energy)
and A-induced reactions.

For quality control, we compared our cross sections to experimental data and parametrizations used in other
models. They reproduce quite well the measurements, but assessing the quality of our cross sections for reactions and
in energy ranges where no experimental data exist is still a problem. It is worth to mention that parametrizations differ
often where no data point is measured. A typical case is the A-induced reactions that should play an interesting role.
No measurements exist and our parametrization relies on a theoretical model stating that those channels contribute
in a significant way in kaon and hyperon production [17].
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This set of newly parametrized cross sections, dealing with strangeness, will be implemented in the INCL code
and formulae are given in appendix B. Calculations of kaon and hyperon production, as well as of hypernucleus
production, from interactions of a light particle with a nucleus will be soon performed and compared to experimental
data. According to the available measurements, not only the reliability of the parametrizations obtained in this work
will be estimated, but also the role and the weight of the different elementary reactions analysed. Those comparisons
could add new constraints on these latter.

We hope that this compilation of formulae will be useful, not only for the users of transport codes, but also to
model developers and physicists, who are interested in hypernuclear physics.

The authors would like to thank Janus Weil and the GiBUU Collaboration, Denis Wright, Nikolai Mokhov and Gudima
Konstantin for the different models calculations. We also thank Georg Schnabel and Jose-Luis Rodriguez-Sanchez for useful and
productive discussions.

Appendix A. Relations extracted from the hadron exchange model and from the Bystricky
procedure

This appendix summarizes the relations obtained from the hadron exchange model (normal style) and the relation
obtain from the Bystricky procedure (in bold) (see subsects. 3.2 and 3.3).
In what follows, N represents a nucleon, A a Delta particle, B a nucleon or a Delta particle, Y a hyperon, 7 a

pion, K a kaon (excluding K’ and K7), and K an antiKaon.

The reliability of equation displayed here are discussed in the paper. In resume, bold equations (coming from the
Bystricky procedure) are highly reliable equations. Normal style equations (coming from the hadron exchange model)
often used debatable hypotheses, which could produce surprising results but always consistent with equations in bold.

Reaction type: NK(K,A) — NK(K, A)

The reactions NK — NK, NK — NK, and NA — NA do not have symmetries, except the trivial ones. They
also have threshold effects, therefore the hadron exchange model is not relevant for these reactions.

’Reaction type: NN — NY K ‘

o(pp — pAK™) = o(nn — nAK")
o(pn — pAK®) = o(pn — nAK™)

do(pp — pXTK®) = do(nn — nE~K¥) =80 (pp — pXK ™) = 80(nn — nZ'K?)
=o(pp = n¥TK") =o(nn — pE~K°) = %”(m — pX'K’) = %”(Im —nX’K")
=do(pn — pX~KT) = 4o(pn — nXTKY)

o(pn — pX~Kt)+ o(pp —» nXTK') + o(pp — pETK°) =
20(pn — pX°K°) + 20(pp — pX°K™)

’ Reaction type: NN — NY K7 ‘

Calculations are based on NN — AYK — NY K.
4 4
§a(pp — pAK ™) = §o(nn —nAKT17) = 20(pp — pAK T 1%) = 20(nn — nAK 7°)

= 4o(pp — nAK 7)) = do(nn — pAK°7™) = 20(pn — pAKT77) = 20(pn — nAK 7™)
= o(pn — pAK°7®) = o(pn — nAK T 7°)
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o(pn —» pAK ™) + o(pp — nAK 7)) + o(pp — pAK°nT) =
20 (pn — pAK°7®) + 20(pp — pAK+x0)

o(pp — pETK7%) = o(nn — nX " KT7%) = 20(pp — nET K1) = 20(nn — pX~K*r7)
=o(pp — nZtK*7°) = o(nn — pX~ K°n°) = 20(pp — pXT K n7) = 20(nn — nE” K'n*)
=o(pp — pX°K+7%) = o(nn — nX K1) = 20(pp — nX°K"n) = 20(nn — pX K7 ™)

4 4 4 4
= §a(pp — pXK07T) = §a(nn —nX'KTr) = §0’(pp —pX Ktrt) = §U(nn —nXTK717)

4 4
= §a(pn —pX K%)= §U(pn —nXTK 1) =20(pn — pX°K7%) = 20(pn — nE KT x%)
=do(pn — pEX°K*717) = 4o(pn — nX° K1) = o(pn — pX~ Kt 71°) = o(pn — nETK7%)
=20(pn — pXTK°17) = 20(pn — nX " KT T)

o(pn —» pX~KT7°%) 4+ o(pp —» nEXTK+T7%) + o(pp —» pETK°7°) =
o(pn — pX°Ktrn~) + o(pp — nE°KTnt) + o(pp — pX°K°nT)

o(pn — pX~K°7T) + o(pn — pXTK°x™) + o(pp — nET K7 ™)
+o(pp — pX Ktrt) +o(pp - pZTKTn7) =

o(pn — pX°Ktn~) 4+ 20(pn — pX°K°%°) + o(pp — nX°KtxnT)
+20(pp — pE°K %) + o(pp — pZ°Knt)

’ Reaction type: NN — NNK?‘

4o(pp — ppKTK~) = 4o(nn — nnKOFO) =4o(pp — ppKOKO) =do(nn — nnKTK™)
=o(pp — anJr?O) =o(nn — pnK°K~) = o(pn — ppK°K~) = o(pn — nnK+FO)
=4/90(pn — pnK"K~) =4/90(pn — anOFO)

No solution with the Bystricky procedure

’Reaction type: NK — NKm ‘

1 1
0.830(pK ™+ — pKT7°) = 0.830 (nK" — nK7°) = gor(pK+ — pK7 ™) = ga(nKO —nKtr7)
=1.250(pK" — nKTn") =1.250(nK" — pK°7n™) = o(pK° — pK*n7) = o(nK* — nK°r™)
= 1.180(pK" — pK°7%) = 1.180 (nK+ — nKT7°) = 0.680 (pK® — nKT7°) = 0.680(nK ™ — pK°7")
= 0.450(pK" — nK°7%) = 0450 (nK*™ — pKn™)

o(pK® - nK°nt) + o(pK°® —» pKTn7) + o(pKT - nKT7nt) + o(pKt — pK°nt) =
20(pK°® — nKtx°) + 20(pK°® — pK°7°) 4+ 20 (pKT — pK+=x°)
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’ Reaction type: NK — NKnrw ‘

o(pKT — pKtrtr7) = o(nK® — nKnt7r7) = 80 (pK ™ — pK T 797%) = 80(nK° — nK°77°)
=o(pK" — pK7nt 1Y) = o(nK® —» nK*71%77) = 20(pK+ — nK177°%) = 20(nK° — pK°7%7™)
=4o(pK+t = nK°rTn") =40(nK°® — pKtr 7n7) = 0(pK° — pKTn%7) = o(nK T — nK%7 " x0)
=o(pK® - pK’7rTn7) =o(nK" — nKtrT17) = 80(pK® — pK°7°7%) = 8o(nK T — nK T 71x")
=40(pK°® - nKtrTn7) =do(nK+ — pK°rTn7) = 40(pK® — nKt7%7%) = do(nK+ — pK°77%)
=20(pK° —» nK°7"7%) = 20(nK* — pK*7%77)

o(pK°® — nK°nT7°%) + 40 (pK°® — nKT7°7°) 4+ 40 (pK°® — pK°7°7°) 4+ 0 (pK° — pK 7% ™)
+o(pKT - nKtnT7% + o(pKT — pK°nT7°%) + 40(pK+ — pK+t7%°2%) = 20(pK° —» nKtnt7n7)
+20(pK° — pK°ntn7) + 20(pKt — nK°ntnt) + 20(pKT — pKtntn7)

’Reaction type: NK — NKn ‘

120(p?0 — p?oﬂ'o) =120(nK~ — nK 7°) = 60(p?0 —pK 7)) =60(nK~ — nfoﬁ_)

= 12U(p?0 — n?Oer) =120(nK~ - pK 77 ) =90(pK~ — pfoﬁf) = 90(n?0 —nK ")
=120(pK~ — pK 7°) = 120(71?0 — nfoﬂo) =30(pK~ — nfowo) = 3a(nfo — pK~7%)
=80(pK~ —nK 7") = SU(TLFO — pfow_)

o(pK~ - nK nt)+o(pK~ — pfoﬂ'_) + a‘(pf0 — nfoﬂ"'") + U(pfo —pK—7nt) =
20(pK~ — nfoﬂ'o) +20(pK~ — pK—7°) + 20(pf0 — pfoﬂ'o)

’ Reaction type: NK — NKnrn ‘

J(p?o — pFOWJrﬂ*) =o(nK~ —nK ntn7) = 40(p?0 — p?owoﬂo) =do(nK~ — nK 71x°%)
= U(pfo —pK 1) =o(nK~ — nfowow_) = O’(pFO — nfowﬂro) =o(nK~ — pK n%7)

o pFO —nK 7trt)=0c(nK — pfoﬂ'_w_) =o(pK~ — pfoﬁoﬂ_) = U(nfo — nK - nt7Y)

= O'(TLFO — nfoﬂﬂr*) =do(pK~ — pK n'7%) = 40(nf0 — 77,?071'071'0)
= o(nK= — pK ntn7) =20(pK~ — nfowowo) = QJ(TLFO — pK~n%7%)
K’ — pfowow_)

I
Q

(

o(pK~ — pK whn~
( o
(

)
)
pK~ — nfoﬂﬂr*) (
)=

o(pK~ — nK ntr°

g

oc(pK~ - nK nT7°%) 4+ 40(pK~ — nfoﬂ'oﬂ'o) + 40(pK~ — pK—7°7°)
+o(pK~ — pfoﬂ'ow_) + cr(pf0 — nfoﬂ'"Fﬂ'O)

+ o'(pf0 — pK~ntx0%) + 40’(19?0 — pfoﬂ'oﬂ'o) =

20(pK~ — nfoﬂ'""ﬂ'_) +20(pK~ — pK 7wtw™)

+ ZU(pfo —nK ntat) 4+ ZU(pEO — pf0ﬂ+7r_)
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’ Reaction type: NK — Y& ‘

U(p?o — Ant) =o(nK~ — An™) =20(pK~ — ArY) = 20(nfo — An®)

U(pfo — AnT) = 20(pK~ — A7°)

U(p?o — St =o(nK™ — X7 71%) = a(pFO — Y07t =o(nK~ — X%77)
3 3, 3 3 —
= ZO’(pK_ — Xtr) = za(nKO — X)) = ia(pK_ — X070 = QU(TLKO — 32079)

=o(pK~ — X nt) = a(nfo — XtrT)

0'(pfO — Xta% = U(pfo — X0 T)

o(pK~ — X nt) + o(pK~ — Stn~) = 20(pK~ — 3°7°) + o (pK_ — X n°)

’ Reaction type: NK — Y7 ‘

o(p?o — At =o(nK~ — Ar%n ™) = o(pK~ — Antn) = o(nfo — ArTnT)

=4do(pK~ — An’7%) = 4a(nF0 — Ar%7%)

40 (pK~ — An7°) + U(pfo — Ant70%) = 20(pK~ — Antn™)

ga(pfo — XtataT) = ga(an - X rtaT) = 4a(p?0 — X070 = do(nK~ — X 7%7%)
6 550 0+ 0y_0 - 0.0 —y_3 (0 -4y _ 3 - o
:go(pK — Xrtr ):ga(nK — X ):§U(pK - X T )zia(nK — X )
_ 3 3
=o(pK~ — Xt777) = O’(TLKO — X atrY) = io(pK7 — X0ty = §a(nK0 — X0t
. 3 3
=80(pK~ — X°7%7%) = SU(nKO — X07970) = §U(pK_ — X rtrY) = ia(nKO — Zta0r7)
o(pK~ — X ntn%) +o(pK~ — XTx%x7) + 2a'(pf0 — X070 =
20(pK~ — X%7nt7n™) + z)'(pf0 — X0t 70)

O'(pfo — X atat) + o'(pf0 — XtataT) =
20(pK~ — X°7n%7%) + U(pfo — X0xtn0) 4+ O'(pfo — Xt a070)
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’ Reaction type: NY — N'Y”’

20(pA — pX°) = 20(nA — nX%) = o(pA - nXT) = o(nAd — px~)

o(pA — nXt) = 20(pA — pX°)

20(pX° — pA) =20(nX° — nA) = o(pX~ — nA) = o(nEtT — pA)

o(pX~ — nA) =20(pX° — pA)

o(pX” = pX ) =oc(nET = nXt) =o(pXt = pIXT) =¥ —nX")
o(pX® = nXT) =X’ = pX7) = o(pX® — px°) = o(nX° — nX")

’Reaction type: AN — NNKF‘

o(ATTp — ppKJrFO) =0(An —nnK°K™) =20(A""n — ppKTK~) = 20(A™p — nnKOFO)
Attn — an“LFO) =20(A"p — npK°K~) = 20(A" n — ppKofo) =20(A"p—=nnKTK")

(

(

=20(ATp — anJrFO) =20(A% — npK°K™) = 30(ATn — ppK°K ™) = 30(A% — nnK+FO)
=60(ATn - pnKTK™) = 60(A% — npKofO) =30(ATn — anOFO) =30(A% — npKTK™)
(Atn — nnK"’FO) =20(A% — ppK K ™)

30(Atn — nnK+fo) =20(AtTTn — an""fO)

30(Atn — anofo) +o(Attn — an"'fO) =
30(Atp - ppKTK™) +o(ATTn — ppKOEO)

30(Atn - pnKTK~) +o(ATtn — an"'"fO) =
30(Atp — ppKOFO) +o(ATTn — ppKTK™)

30‘(A+n — ppKOK_) + 30’(A+p — ppKOEO) + 30‘(A+p — ppK+K_) =
20(ATTn — an"'fO) +o(ATTn — ppKofo)
+o(ATTn — ppKTK™) +o0(ATTp — ppK+fO)

30(Atp — pnK1tK’) + 30(Atp — ppK°K ") 4+ 30(Atp — ppKTK ™) =
o(Attn — an"'fO) +o(Attn — ppKOKO)
+ O‘(A++'n — ppK+K_) + 20’(A++p — ppK+F0)
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’Reaction type: AN — BYK‘

o(ATn — pAKT) = 0(A™p — nAK®) = 30(ATp — pAK ™) = 30(A%% — nAK?) =
30(ATn — pAK®) = 30(A% — nAK ™) = 30(ATn — nAK™) = 30(A% — pAK?)

o(ATtn — pAK') = 30(AtTp —» pAK™T) = 30(Atp — pAK®) = 30(ATn — pAK™)

o(ATTp 5 pETKT) =0(A™n - nE K% =20(AT n — pETK®) = 20(A p — nX " KT)

= 20(A++n —pX'Kt) =20(A"p —nX K% = 20(AT T — nXTKT) =20(A p — pX~ K)
(ATp — pXTK®) =30(A% — nX K1) =30(A%p — pE°K ™) = 30(A% — nX°KY)

=20(ATp = nETKT) =20(A% — pX~K°) =20(ATn — pX°KY) = 20(A% — nX°K™T)

=30(ATn — pY KT) =30(A% — nETK") =30(ATn — nETKY) =30(A% — pX~K)

=30(ATn - nY°K") =30(A% — pX°K")

30(Atn - nX°Kt) +o(ATTn — pX°Kt) =30(AtTp —» pXTK®) + 0(ATTn —» nXTK™)

30(ATn - nXtK%) 4+ o(AtTp - pXTKT) =30 (Atp - pX°KT) + o(ATTn — pX°KT)

30(Atn —» pX~ K1) =20(ATTn — pX°K™T)

30(Atn — pX°K°%) + 30(Atp — pX°KT) +30(ATp — pXTK®) =
o(Attn - nXtTKt) +20(ATTn — pXTKO) +20(ATTp —» pXTKT)
30(ATp - nXtTKt) +30(ATp - pX°KT) + 30(Atp — pXTK°) =
o(Attn - nXtTKt) +o(ATTn — pX°KT)

+o0(ATTn — pETK®) +20(ATTp — pETKT)

30(ATTp — AKTATT) =30(A™n — AK A7) = 40(ATTn — AKTAY) = 46(A™p — AK°A?)
=30(ATTn — AKATT) =30(A p — AKTA™) =40(ATp — AKTAY) = 40(A% — AK°A)
=60(ATp — AK°AT) = 60(A%N — AKTAT) =30(ATn — AKTA%) = 30(A% — AK°AT)
=60(ATn — AK°AT) = 60(A% — AKTA)

30(Atn — AK°AT) +20(ATTn - AKTAT) =20(ATTn — AK°ATH) L o(ATTp - AKTATT)
30(Atn — AKTA%) =40(ATtn — AKTAT)

30(Atp - AKTAT) +20(ATTn - AKTAT) =o(ATTn — AK°ATH) 4+ 20(ATTp — AKTATT)
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60(ATTp — XOKTATT) =60(A n — Z'K°A7) =60(ATn — XOKTAY) =60(A p — XOKYA%)
=120(ATTp —» XTKATT) = 120(A"n — X KTA™) = 120(ATn — X°KYATT) = 120(A p — S°KTA™)
=20(AT 0 — STKTAY =20(A7p — " K°AT) = 20(ATTn — XTKOAT) =20(A p — X~ KT AY)
=30(ATTn - XTKTATY) =30(A p — XTKYA7) =30(ATp — XOKYATT) = 30(A% — XK+ A7)
=60(ATp — XTKTA%) =60(A% — X" K°AT) = 60(ATp — X" KTATT) =60(A% — STK°A™)
=120(A%p — Z°KTAT) = 120(A% — XOKA%) = 120(ATn — Z°K°AT) = 120(A% — XK TA?)
=60(AtTp — XTKAT) = 60(A% — X" KTAY) = 60(ATn — XTKTAT) =60(A% — U KYATT)
=30(Atn — X'KTA% =30(A% — S°K°AT) = 60(ATh — X" KTAT) = 60(A% — ETKYA?)

=60(ATn — XTKA% = 60(A% — X" KTAT) =60(ATn — 2" K°AT) = 60(A% — STKTA™)

20(ATn — X"K°ATH) 4+ 20(ATTp —» ZTKTAT) =
30(ATp - ZTKTA%) 4 o(AtTn — XTKTA”)

120(A*Tn — X°K°AT) + 150(ATp —» ZTKTA%) 4+ 20(ATTn — XTK°AT)

+ ZU(A'H'n — 2_K+A++) + 90'(A++n — 2+K+AO) + 20'(A++p — Z’+K0A++)
+40(ATTp - XOKTATT) =180(Atp — X°KTAT)

+60(ATTn — X°K°ATT) L 80(ATTHn — ZOKTAT) 4 180(ATTp - XTKTAT)

60(ATn — XTK°A%) +90(Atp — ZTKTA%) +20(ATTn — X" K+TATT)
+90(ATTn - XTKTA% 4+ 20(ATTp — ZTKATT) =

60(ATp — X°KTAT) 4 20(ATTn —» XOK°ATT) + 60(ATTn — ZTKCAT)
+80(ATTn — XOKTAT) +100(ATTp - XTKTAT)

120(AtTn - X" KTAT) +180c(Atp —» X°KTAT) + 60(ATTn — XTK°AT)
+160(ATTn — X°KTAT) +180(ATTp — ZTKTAT) =

90(ATp —» ZTKTA%) 4+ 20(ATTn — X°K°ATT) £ 100(AT TR — Z-KTATT)
+150(ATTn - XTKTA% + 60(ATTp - XTKOATT) 4 80(ATHTp —» XOKTATT)

60(Atn — X°KTA% +60(ATp — Z°KTAT) 4 20(ATTn — ZOK°ATT)
+20(Attp - XTKTAT) =30(Atp —» ZTKTA%) 4+ 20(ATTn — XTK?AT)
+20(ATTn - XTKTATH) 4+ o(ATtn — ZTKTA%) 4+ 20(ATHp — ZTKOATT)

40(ATp — X°K°ATT) 4+ 60(ATp —» X°KTAT) +20(ATTn — X°K°ATT)
+40(ATTn - X°KTAT) +20(ATTp - XTKTAT) =

30(ATp —» XTKTA% 4+ 20(ATTn —» XTKAT) + 20(ATTn — X-"KTATT)
+50(ATTn — STKTA% 4+ 20(ATTp — ZTKOATT)

60(Atp - XTK°AT) 4+ 60(ATp — X°KTAT) +40(ATTn — ZTKAT)
+40(ATTn — X°KTAT) 4+ 80(ATTp —» XTKTAT) =

30(Atp - ZTKTA%) +20(ATTn — X°K°ATT) 4 20(ATTn — X" KTATT)
+50(ATTn - XTKTA% +40(ATTp — ZTKATT) L 40(ATTp —» ZOKTATT)
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40(ATp - XTKTATT) 4+ 90(ATp —» ZTKTA%) + 20(ATTn — X KTATT)

+70(ATTn - ZTKTA%) 4 20(ATTp — ZTKOATH) =
60(Atp —» X°KTAT) 4 20(ATTn — X°K°ATT) 4 20(ATTn — XTK?AT)

+80(ATTn - XOKTAT) +100(ATTp - XTKTAT)

’Reaction type: TN — YK‘

20(r% — AKT) = 20(n%n — AK") = o(n7p — AK®) = o(ntn — AKT)

o(r™p — AK®) = 20(7°p — AK™)

The case of the reaction 7N — Y K is detailed in subsect. 3.3.
’ Reaction type: TN — Y K7 ‘

o(ntp - AK 1) =o(n n — AK°77) = o(7%p — AK°n ") = o(7 p — AK7")
=o(rtn — AKT7%) = o(7n — AKT77) = 20(7p — AKT1%) = 20(7"n — AK°70)
=o(np— AKTn7) =0o(rTn — AK 7 T)

o(n’p — AK°nT) = o(n"p — AK°70)

o(n"p— An"Kt)+o(ntp - AntTK™T) = 20(n°p — An°K™T) 4+ o(n°p — AnTK°)

4 4
é(7(7r+p — UTK% ) = ga(ﬂfn — Y Ktr) = gJ(ﬂ'er — DTKTr%) = go(ﬂfn — XK
=do(ntp - XK nt) =do(r n — X°K°77) = 20(n% — T K°7%) = 20(nn — - Kt7Y)

4
=20(1"p — XTKT7n7) = 20(7'n — X~ K") = ga(ﬂop — YOK %7t = ga(won — XOKTn7)

= §0(7r0p — SOK %) = §or(TrOn — YK = 20(n% — X" KT nt) = 20(7%n — YT K77)
= §c7(7r7p — YTK%7) = §0’(7T+TL — X Ktat) = go(ﬂ'fp — XOK97%) = 30(ﬂ+n — SOK 70

= go(ﬂfp — YKt n7) = %O’( tn— K =o(nTp - XK T) =o(ntn —» XTKTa7)

= §(7(7r7p — Y KTq% = §J(7r+n — STK70)
o(n7p = X m°Kt)+o(np— Xn°K®) +o(ntp - ITaKT) =
o(r’p - X 7T KT) + o(n’p —» X7t K% + o(n%p — Xtn—KT)

o(n"p =X 7tK) +o(np—- XTa K +o(ntp - XTatK%) =
o(r™p — X7°K®) 4 20(x°p — X°7°KT) 4+ o(7%p — X7 T K°) + o(n°p —» XT7°K?)

o(n"p—= X7 Kt)+o(np— X7n°K°) +o(ntp — X0nTKT) =
o(m’p - X nTKY) 4+ o(n’p — Xt Kt) + o(n’p — XT7°K°)



Eur. Phys. J. Plus (2018) 133: 436 Page 27 of 34

’Reaction type: TN — NKF‘

20(ntp — pKJrFO) =20(nn —-nK°K™) =40(rp — pKTK~) = 40(7°n — nKO?O)
= 4o (7% — pKOKO) =4o(m’n - nK+tK™) = o(r% — nK+fO) = o(n%n — pK°K ™)
=20(n"p— pK°K™) =20(7tn — nK+FO) =o(nTp—nK"K")=0o(rtn — pKOFO)

=o(r p— nKO?O) =o(rTn—pKTK™)

o(x"p = nK°K’) + o(n p - nKtK™) + o(n p — pK°K~) + o(ntp —» pKtK") =
20 (7% — nKTK") + 20(x°p — pK°K") + 20 (7% — pKtK ™)

’ Reaction type: TN — Y K7m ‘

olntp - AK 7t at) =o(nn - AKTn 77 ) =o(ntp - AK 77 7%) = o(n~n — AK7%77)
=20(1"p — AK°7rT7%) = 20(7°n — AK 7%77) = o(7% — AK 7t 77) = 0(2"n — AK 7T 77)
= 40(1%p — AK7197%) = 40(7%n — AK°7°7%) = o(n7p —» AK n 77 ) = o(ntn — AK T ntn™)

=20(1 p — AK°7°7%) = 20(n"n — AK 7%7%) = o(n7p — AKT7%77) = o(ntn — AK 7T x%)

o(n”p — AKTn%77) 4+ 20(n"p — AKnT77)
+o(ntp - AK 7% 4+ 20(ntp — AKntnt) =
40 (7°p — AKT7%°7%) 4+ 20 (7% — AKT 7 t77) 4+ 30(n°p — AK°n T 7°)

o(r"p —» AK°7°7%) + 20 (n°p —» AKT7°7°) + o(7°p — AK7T70) =
o(n7p — AK’7tn7) + o(ntp — AKntnT)

o(ntp = XtKtntn ) =o(rn — X KT n7) =do(ntp — STKT707%)
=do(rn — X K779 = 20(ntp — DK 770 = 20(n n — XOK 207 7)
=do(ntp - X KTatrt) =do(nn— TK'n 1) =o(ntp — STK 7 t7Y)
=o(nn— X K %) =do(ntp - X°K7t 1) =do(nn — K Tna7)

) =4

=20(r% — XTKT7r%7) a(ﬂ'on — X K%t 70 = 20(71'0p — XK Tatr)
) =4
)

- 2
=20(1'n — XOK 7t~ o(m%p — XK T7%7%) = 40 (70 — LK 7970)
=4o(rp - X K1 1%) = 4o(1°n — ETK277) = o(np — ETK 1T 7)
=o(r'n — X KTrtn7) = 4o(r% — XTK7%7%) = 40 (7" — X~ KTn%7)
=4o(1’p — XK 7t 71Y) = do(nn — KT n%77) = 20(7%p — XK 7t T)
=20(1'n - XTK 1) =do(n p— XK n 77 ) =4do(rTn — XKt xh)
=2 (n p— XK 7)) =20(ntn — K7 7%) =do(n7p - XK atn)
=do(ntn - XTK7 1) =do(n"p — XK 170 = do(nTn — T K770)
=2 (" p— XTK'7%77) =20(ntn - E"KTnt7%) = o(n7p — K7 Fa7)
=o(rtn — XK ntr™) =20(r p — X°K°7°7%) = 20(ntn — XOK T707Y)

=2 (n p— X K1) =20(ntn — ZTK 7% )
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o(n"p— X Kntn%) +o(n"p - XTK’ 2’77 ) 4+ o(n p — X" K770
+o(rp—= Y Ktntan )+o(np— XK a n7)+o(rtp — TTK'nT70)
+o(ntp - X Ktntat)+o(ntp - ETK 772 + o(ntp - XTKTatn™) =
o(n% - X" K°ntnt) + 20(n% —» XKt %) + o(n°p — XTK7O70)
+o(7% - XTK’7tn7) + o(7% —» XK tnT7°) 4 20(n°p — X°KT2070)
+20(7% —» X°Ktntn) 4 o(n’p —» ZTK %)

o(np—= X Ktrntn ) +o(n p— XTKTn n7)+o(n’p - X" KxtxT)
+o(n'p — Z’+K07r+7r_) + 0'(7r+p — Z‘_K+7r+7r+) +o(ntp — Z‘+K+7T+7r_) =
20(n p — X°K°n°70) 4+ o(n"p - XK 7’7 + o(n7p — XK T7%77)
+o(7% — XKt 70 + o(n°p — XTK°n%%%) + 20(n%p — XK T70%0)
+o(ntp - X°Ktatn%) +o(ntp - XTKT7%7Y)

o(n7p— X Ktn%7%) 4+ o(n’ — XKt xt) + o(n% — XK' 70)
+30(7% —» XTK°7%%%) + o(n°p — ETKnT7n7) + 20(7n% — X" Ktatx0)
+20(7%p —» X°KT7%%%) + 20(7% - XTKTn’n" )+ o(ntp - TTKT22%) =
20(n p— X°Knta ) +o(np— X Ktntn ) +o(np— XK 7%77)
+o(rnpoXtKtrn 7))+ 20(ntp - X°Kntat) +o(ntp - X KtataT)
+o(ntp - X°KTntn%) +o(ntp - XTKTntn7).

Appendix B. Parametrizations of elementary cross sections involving strange particles
(KK AX) for incident energies from threshold up to 15 GeV

Here we give for each considered new channel the full parametrization. If several cross sections are linked by a symmetry
only one of the cross section parametrization is given. See appendix A for a complete list of symmetries between the
cross sections.

In the following Pl,p is the momentum in the target nucleon frame of reference. Note that in INCL protons and
neutrons are considered to have the same mass inside the nucleus then formulae given below are valid for proton and
neutron targets.

Pions also have been given the same mass. Lambdas (anti)Kaons and Sigmas are considered with their real masses.
The threshold for every channels of the same reaction is the same (the highest one calculated with the INCL masses)
in order to remain consistent with the isospin invariance hypothesis.

Cross sections are always given in mb.

Appendix B.1. Elastic

Considering that data available for the elastic and quasi-elastic reactions YN — YN YN — AN and AN — XN are
very scarce and with big uncertainties the choice to consider them as equivalent to the AN — AN was made.

200 Py, < 145 MoV /e
o = { 869 exp(—Pap[MeV /] /100) 145 MeV /¢ < Py < 425 MeV /e , (B.1)
12.8exp(—6.2 107° Pap[MeV/c]) 425MeV /e < Py < 30GeV /e
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KN —- KN
12 Phab < 935 MeV /¢
17.4 — 3exp(6.3 104 Byp[MeV/c])  935MeV/c < Py, < 2080 MeV /¢
o= ,
832 Pap[MeV /] ~0-64 2080 MeV /e < Py, < 5.5GeV /e
3.36 5.5GeV /¢ < Py < 30GeV /e

KN — KN

—(Pap[GeV /c] — 0.9902)2
0.05558

0 = 6.132P.,[GeV /] 702437 1 12.98 exp

_ _ 2
2,998 exp (Pap[GeV/c] — 1.649)

+ 564.3 exp

—(Pap[GeV/c] + 0.9901)2

0.772 0.5995

Appendix B.2. Inelastic

In this section if non-specified momentum is in GeV/c.

NN — NAK

(Piap — 2.3393)1:0951
(Plab + 2.3393) 20958

NN — NYK

o(pp — nETK") = 6.38( Py, — 2.593)*! /1102 P, > 2.593 GeV /¢

o(pp — pAKt) = 1.11875 2.3393 < P, < 30GeV/c

NN — NNKE|

2.8722 >3< 2.8722
] s

0.8
> 2.872GeV
s[GeV? [GeVQ]) Va2 ¢

o(pp — ppKTK™) =3/38 <1 -

NN — NYK +anfz >3 and NN — NNKE +anlz > 1|

The 2 following formulae are coming from the results of the Fritiof model [27]:
o(pp) = 8.12(Pap, — 6)%1°7/P2333

2.157 | p2 333} Pap = 6 GeV
o(pn) = 10.15(Pap, — 6)° 7"/ Pij,

| AN — NNKEK]

2.8722 \° / 2.8722
o(ATTp — ppKJrFO) =6.6 (1 _ 28 ]> ( 87
S

s[GeV? [GeV?

o(r"p — AK®) = 0.3936 P37
— 6.052 exp(—(Plan — 0.7154)%/0.02026)
4 0.489 exp(—(Plap — 0.8886)/0.08378)
— 0.16 exp(—(Pjap, — 0.9684)%/0.001432)

0.8
]) Vs > 2.872GeV

Pp > 0911 GeV/e
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(B.3)

(B.6)

(B.7)

(B.8)

(B.9)
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(Pab — 1-0356)1~006
(Piab + 1.0356)0097832575

(Bab - 1.0428)2'869 (Plab + 1~0428)16'68
P19.1
lab
o(m7p — ZOKO) = 0.3474( Py, — 1.034)°07678 /pL62T  p > 1,034 GeV /e
o(r’p — XOKT) = 3.624(Rap — 1.0356) /By Rap > 1.0356 GeV /c

o(mr"p— EfKJr) = 4.352 Prap, > 1.0356 GeV /¢

o(rtp— XTK')=1897 10"

N — AKn

(Plab _ 1.147)1.996

+ AK 7t) = 146.2
o(n’p— AKTTT) (Prap + 1.147)5921

Pp > 1.147GeV/e

N — YK7

(Plap — 1.3041)2431
(F)lab)5.298

o(r™p— ¥ K%)= 8.139 Prap > 1.3041 GeV /e

N — AKnr

(Pap, — 1.4162)%297

+ o+ 0y
o(rTp — AK ") = 18.77 (P 5577

Plap > 1.4162 GeV /¢

3
=
I
N\l
=
3
3

(P, — 1.5851)-856
(Piap )92

o(ntp - XTKTntn™) =1376 Py > 1.5851 GeV /¢

7N — NKK

(Plap, — 1.5066)1-929
(Rab)3.582

o (' — nK+EK") = 2.996 Piap, > 1.5066 GeV /¢

7N —- YK +zrnjz >3 and 1N — NKK + x|z > 1

The 3 following formulae are coming from the results of the Fritiof model [27]:

(Piap, — 2.2)?
o(rtp) = 3.&"’)171311_]538286

(]Dlab _ 2.2)1.927

o(n’p) = 4.4755 T Phap > 2.2GeV/c

(}Dlab _ 2'2)1.854

1.904
‘Plab

(Piab — 0.664)%-4%8
(Pap) 2717

o(r"p)=5.1

o(pAd — XTn) =8.74

Plab > 0.664 GGV/C

Plab Z 1.0428 GGV/C

(B.10)

(B.11)

(B.12)
(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)
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0 100 Pp < 0.1GeV/e
8.23 P10 0.1GeV /e < P,

YN — N3

o(nX® — px) 0 Phap < 162MeV/c
oc(nZt — pzo)} - {13.79 P8 Py, > 162MeV/c
o(pX® — nX™) 200 Phap < 103.5MeV /c
o(py~ — nEO)} N {13.79131,&;‘181 Py > 103.5MeV /c

40.24 Piab < 86.636 MeV /c
0.97 P,}%**  86.636 MeV /c < Piap, < 500 MeV /c

(Pab — 0.749)?
0.0045
(Pab — 1.434)*
0.136

(Prap, — 0.957)2>

1.23 P %7 4+ 0.872exp (— Ik,

+2.337exp | —
o(pK~ — An°) = ) P <

+0.476 exp (— ) 500MeV/c < Pp < 2GeV/c

3P 2% 2GeV/e < Py

70.166 Piap, < 100 MeV /¢
Piap, — 0.747)2
(oK st = 1A P17 4+ 1.88exp (-W) Piap, > 100 MeV /¢
(Piab — 0.4)? (Piap, — 1.07)2
+8 exp ( W + 0.8 exp T
KN - KN’
0 Piap < 89.21 MeV /¢
(Prap, — 0.08921)0-5%81

0.4977 89.21 MeV /¢ < Py, < 0.2GeV/ec

2.704
‘Plab

0.02

_ -Plab —0.82 2
_ 23P %9 4+ 1.1exp | —05 <>
o(pK~ — nKO) = lab 0.04

Py — 1.04\?
+5 exp (0.5 (”’010> ) 0.73GeV/c < Py, < 1.38GeV /c

Prap, — 1.6\
2.5 Pt %% 4+ 0.7exp (—0.5 (”)02> )

Piab —2.3\°
+0.2exp (—0.5 (”’3> ) 1.38GeV/c < Py

Piab — 0.3962\°
2 P12 4 6.493 exp (0.5 <1b> > 0.2GeV /e < Py, < 0.73GeV/e

0.2

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)
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The following cross section results from the balance detailed of the previous cross section:

30

o(nfo —pK~) =

o(pK. — pK-nt) = 1013

2 Pt? 4 6.493 exp (—0.5 (

Plap, — 0.260)6-398

Py, < 100MeV/c

Hap — 0.3962

2
. < .
0.02 )) 0.1GeV/c < Pap < 0.73GeV /c

0. Py — 0.82) 2
23P994+1.1 0.5 ab — P02
3P, + exp < 0.5 ( 001 >
Py — 1.04) 2
+5exp ( 0.5 (01>
—~1.68 P — 1.6 2

Plab —-23 2
0.2 —05 22—~
+ exp( ( 03 ) )

0.73GeV/c < Pap < 1.38GeV/c

1.38GeV /e < Py,

KN — NKn

(Plab — 0.526)5'846

8.343
Plab

Piap > 526 MeV /¢

KN — Y

c(pK~ — Xtr%7) = 73.67.

p6.07
6364 lab

oc(pK~ = Ar"n7) =

P

463 ——2
(Plap, + 1)3565

o(pK~ — pK ntn™) =268

o(nK*t — pK°) =12.84

o(pK° — nK*) =12.84

o(pK® — pK*77) =116.8

26.41

(Plab + 0.260)9-732

(-Plab _ 0_812)7.138

Py, > 260M
0.00115 ) lap = 260 MeV/c

+
e
[N}
[
w
el
(=}
¢}

»

o

KN — Anm

—_

+2.158exp ( (Plab—0~395

2
0.01984 )) Plap < 970 MeV /c

2

Phap > 970 MeV /¢

=
=
!
=
=
3
3

(B, — 085)7

36]34 -Plab 2 850 MeV/C

KN — K'N’

(Piap — 0.0774)18:19
(]Dlab)20.41
(Piab + 0.0774)18-19
(Plap, + 0.1548)20-41

Pp > 77.4MeV/c

P, > 0MeV/c

KN — NKn

(Plab _ 0'53)6.874

10.11
‘Plab

Piap > 530 MeV /¢

=
=2
I
=
=
3
3

(]Dlab _ 0.812)9‘069

5337 812MeV/c < Py, < 1.744 GeV /c

lab

o(pK® — pKt7%n7) = { 1572

60.23

(Piap, — 0.812)5084

pi2aa 1.744GeV/c < Pap, < 3.728GeV/c

lab

3.728GeV/c < Pap.

6.72
})Iab

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)
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Appendix C. The nTp — KTX* Legendre coefficients with pion momentum from 1282 up
to 2473 MeV/c

In this appendix we summarize in table 6 the 9 first Legendre coefficients extracted from the differential cross sections
published in [50]. The reaction studied is 77p — KX with pion momentum from 1282 up to 2473 MeV /c. This
coefficients were determined using a ROOT minimization with a smoothness constraint.

Table 6. Legendre coefficients extracted from differential cross sections published in [50].

Heo Ao A As As A As Ao Ar As | x*/NDF
(MeV/e)
1282 | 0120 0030 —0.011 0121 0001 —0012 —0.026 0008  —0.008 | 1.476
1328 | 0144 —0.020 —0014 0135 0018 0007  —0.020 -0.004 —0.003 | 1.665
1377 | 0175  —0033 0006 0168 0032 0010  —0.003 0016  —0.004 | 1.240
1419 | 0203 —0.023 0004 0201 0058 0031  —0.025 0005 —0.028 | 1.330
1400 | 0247 0042 0111 0174 0142  —0015 0059  —0.027 —0.004 | 1.289
1518 | 0264 —0.043 0142 0189 0175  —0.003 0089  —0.055 —0.023 | 0.861
1582 | 0.247 0018 0138 0176  0.161 0008 0084  —0.031 —0.008 | 1177
1614 | 0266 —0.007 0174 081 0195 0039 0118  —0.003 —0.039 | 1.094
1687 | 0259 0015 0170 0165 0211 0075 0162  —0.036 —0.009 | 1.155
1712 | 0261 0021 0199 0158 0252 0088 0192  —0.003 —0.018 | 1.781
1775 | 0267 0037 0226 033 0260 0107 0170  —0.003 —0.007 | 1.201
1808 | 0256 0066 0231 0108 0269 0104 0180  —0.020  0.030 1.033
1879 | 0230 0076 0220 0102 0249 0072 0153  —0.063  0.002 1.914
1906 | 0262 0065 0202 0110 0233 0082 0185  —0.02 —0.031 | 1.194
1971 | 0265 0085 0218 0100 0263 0131 0165 0048 —0.015 | 1.108
1997 | 0238 0085 0207 0056 0224 0122 0154  —0.009 —0.027 | 0.981
2067 | 0250 0103 0186 0081 0203 0181 0148  —0.008 —0.063 | 1.011
2009 | 0.246  0.158 0183 0112 0200 0200 0114 0001  —0.085 | 0.779
2152 | 0242 0121 0224 0064 0209 0188 0174 0041  —0.086 | 1.339
2197 | 0248 0101 0230 0051 0218 0223 0211  —0.013 0058 | 1.491
2241 | 0252 0121 0246 0061 0186 0199 0161  0.044  —0.070 | 1.129
2291 | 0254 0154 023 0125 0170 0269 0208  0.092 0071 | 1324
2344 | 0264 0144 0279 0110 0242 0254 0215  0.087  —0.040 | 0911
2379 | 0245 0172 0246 0114 0206 0278 0237 0133  —0.040 | 1.239
2437 | 0.262 0167 0315 0106 0286 0249 0281 0150  0.016 1.308
2473 | 0281 0158 0347 0095 0344 0230 0345 0083  0.088 1.306
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