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Abstract. Despite the common use of anesthetics to modulate consciousness in
the clinic, brain-based monitoring of consciousness is uncommencah-

bined electroencephalographic measurement of brain activity with ridmeal
networks to automatically discriminate anesthetic states induced byf@ropo
Our results with leaveneparticipanteut-cross-validation show that convolu-
tional neural networks significantly outperform multilayer perceptiondis-
crimination accuracy when working with raw time series. Percepaonigved
comparable accuracy when provided with power spectral densitiese Tihd-

ings highlight the potential of deep convolutional networks for deraly au-
tomatic extraction of useful spatio-temporo-spectral features from hEEG@n

Keywords: ConsciousnesénesthesiaEEG, Deep learning

1 Introduction

In the United States alone, 60,000 people receive general anesthesia (GA) gvery da
for surgery [1]. Despite the obvious fact that GA fundamentally modulatain ac-

tivity, brain monitoring is not routine practice in the operating room,isifichited to
proprietary systems which have produced mixed results, in paroduensiderable
inter-individual variability [2]. Recent research into electroencephalograpBEG)E
signatures of propofol-induced unconsciousness have highlightepotkatial for
improved brain monitoring [1, 3].



One of the challenges encountered in deploying novel EEG metrics of conscious
ness at the bedside is automation, in that they require expert analysesnetation
of the data. To work towards addressing this challenge, we apply resehbpiments
in artificial intelligence research, deep neural networks in particular, to thergwlle
of fully automated feature learning from EEG to detect states of uncosseisidue
to propofol anesthesids there is no statef-the-art deep learning model or reference
dataset for EEG classificatipwe compare the performance of two widely used mod-
els, multilayer perceptrons (MLP) and convolutional neural networks (cNNhgin
ability to discriminate states of unconsciousness from only 1 secaa@&EG data.
With leave-one-participaraut-cross-validation, we show that cNNs achieve nearly
90% accuracy and significantly outperform MLPs, and generalize tordatephrtic-
ipants unseen during network training.

2 M ethods

2.1 Dataset Collection

The data used in this work were acquired from a propofol anesthesia[4tuih

which the experimental design is described in detail. Briefly, the studyap@sved
by the Ethics Committee of the Faculty of Medicine of the Universityiede, with

participants giving written informed consent. Moreover, physical examinatioh
medical history were obtained, in order to assure of any potential isstiieg aioes-
thesia (e.g. pregnancy, trauma, surgery, mental illness, drug addagibma, motion
sickness).

Fifteen-minute spontaneous high-density electroencephalography (hd-EHG,
channel Hydrocel GSN) was recorded from 9 participants (mean age 24 2
males) during propofol anesthesia, at three different levels of conscisus$res
fully awake, to mild sedation (slow response to command) and clinical wicoss
ness (no response), as depicted in Fig. 1. Sedation procedure was monitdled
computer-controlled intravenous infusion was used to estimate effect-site wancen
tions of propofol. The level of behavioral consciousness was confirmedthéth
Ramsay scale, see [4] for detalils.

Normal Wakefulness [] Spontaneous EEG recording (15 min)
A Blood assay

Baseline
Ramsey Scale 2

1.91 £ 0.52 mcg/ML Propofol
Ramsey Scale 3

3.87 + 1.39 mcg/ML Propofol
Ramsey Scale 5-6

Fig. 1. Experimental design of the propofol anesthesia study. Participantsuend@nesthetic
induction into progressively deeper states of unconsciousnesaregtéy behavior.



22 EEG Pre-processing

Minimal pre-processing steps were applied to the original data, in ordenutate a
real-world scenario where deep learning could be applied to EEG data immeal-
Although raw EEG recordings tend to be noisy, the selectioneofvtirkflow was
based on the notion of an automated feature extraction done byededpg, along
with a potential practical value of such implementation within a clinical context,
where manual intervention and a priori knowledge of the signal wamildfeasible.

Two different representations were extracted from the datasets, to compare the ef-
fects of using the raw time series versus a spectral representation. Theakaibéien
been used in similar studies as a useful feature in EEG classififati®n

Raw Data Representation. For reducing the computational complexity of the deep
learning pipeline, 20 electrodes of EEG data were examined, located as peRthe 10
system, namely: Fpl, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,£4 5[ P3, Pz, P4, T6,
01, Oz, and O2. Data were segmented into 1 second non-overlapping epdchs
band-pass filtered between 0.5-40 Hz using a window FIR design (fisaijpy). The
vertex (Cz) electrode was the online reference, which was replaced by theeaverag
activity of all the 19 channels. Finally, the time series were down{sdnp 100 Hz
resulting in 100 samples per epoch. No manual artefact or bad channisbmejes
performed other than the removal of the first 10 secondeaufrding, which con-
tained large unstable drifts. All pre-processing steps were implemeritegl the
MNE-python library with default settings, unless specified otherwise.

Power Spectral Density Representation. To generate spectral representation of the
EEG, raw data processed as above were submitted to the periodogram function
(scipy) to obtain the power spectral density (PSD) of each channel and. €91

points were used to compute the PSD, which resulted in 100 frequerscyohie-

sided spectrum, dc coefficient removed). Importantly, this ensuegdhé dimen-
sionality of the data was identical with both raw and PSD representationsestitie

ing dimension of each instance (epoch) vea20 x 100 (channels x time sam-
ples/frequency bins) 2D-array for both representations.

Finally, the data were normalized by epoch using the scikit-learn librayebiefed-
ing them into the deep learning networks. This can be thought asaliwing the
whole scalp activity for each epoch and participant independently. Althoaghdhe
many ways to normalize the data (e.g. by time sample or by chatiielay was
considered more appropriate in terms of its physical interpretation and prapfal
cation, as only data from the current epoch is required for applyimpth@lization.

2.3 Deep Learning Architectures

Two deep learning architectures were compared, as a way to investigate the guitabilit
of such algorithms in classifying states of consciousness and extresltrngnt fea-



tures from the EEG. Convolutional neural networks (cNN) are a cldssafforward
networks that have become very interesting for relhd EEG research (both for
analysis and interpretation of data) during the recent years. This architkatire
shown to be very efficient in analyzing raw data (mostly from Bsggas it reveals
spatial features across different levels of abstraction, using the convalpgoation
over local segments of the data [9]. In contrast, the Multilayer peoce(iLP) net-
work is a naive implementation of a deep learning model, which carsdikas a
baseline for comparison (cNN can be thought as an MLP with a specializedrsiruc
Our aim here was not to optimize each network for the given task, bet rat
compare them fairly, to reveal the computational advantages of each desiga. Hen
the two models were compared with respect to their architectural sizes, cahidie
thought as the number of neurons/trainable parameters within eatiofiahlayer.

Convolutional Neural Network. The architecture of the cNN is a sequential model
based on a simple design used in computer vision for hand-written digificktfon
(mnist example, Keras). The first functional layer (feature extractiondésjaence of
two convolutional layers, followed by a max-pooling and a dropowtrlayhe second
functional layer (classification), consists of a fully connected layer, feliowy a
dropout layer and three softmax units (one for each conscious #tata)reference
size, the original number of feature maps and hidden neurons werenageely 32
for the B! convolutional layer, 64 for the"2convolutional layer and 128 neurons for
the 3¢ dense layer. The patch window for max pooling was 2x2. Drogoes were
0.25 and 0.5, respectively. Convolution windows were chosenkeitimels 1x5 and
5x10 (1x1 strides), with the first layer only extracting temporalrinédion (no pad-
ding used). Finally, all activation functions were relu units (exceptublgger). The
model was trained using the categorical cross-entropy loss functicdheddladelta
optimizer. Initialization of network weights was done with the Xavier unifonitial-
izer. The cNN architecture is summarized in Fig. 2.
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Fig. 2. Convolutional neural network architecture (reference size) fosififasy the three
conscious states: wakefulness, sedation, loss of consciousnesEERaor PSD epochs were
used as an input tensor.



Multilayer Perceptron. We employed a sequential MLP model designed to match
the number of output neurons in each functional layer of the cNN (iththeequalis-

ing network layers). This ensured that the computational cost of each dessy
comparable in terms of training time. Both functional layers of thé Monsist of
fully connected layers, followed by a dropout laye¥ (ayer includes the three soft-
max units). The number of hidden units for thieldyer was based on the number of
neurons after the flattening in the cNN architecture (22016 for the refesge)e
while for the 29 layer was kept the same. Activation functions, dropout rates and
other model parameters during training were also kept the same with respeet to
cNN. The MLP architecture is summarized in Fig. 3.

22016 Fully Connected
Raw EEG o

00

128 Fully Connected

3 Softmax Units
plylx)

20 Channels

0000000Q

00000000000

Dropout i Dropout

o Time (lseq)
_ Time [1sec) =0.25 i =0.5

100 samples

20 Channels

QOO00000000000 -

100 bins
Input Dense Layer 1 Dense Layer 2 Output
Fig. 3. Multilayer perceptron network architecture (reference size) for clasgityia three
conscious states. Raw EEG or PSD epochs were used as input tetsofisttahing the2D-
array intoa 2000-dimensional vector.

2.4  Experiments

Twelve experiments were done in total for the 2 x 2 x 3 combinatibdata repre-
sentations (Raw vs PSD), deep learning architectures (MLP vs cNN) diffdrgnt
network sizes- small, reference and large, in order to compare performance of the
models. The number of feature maps and neurons of theclutigected layers for
each architecture and network size are listed below.

Table 1. Network Sizes

NetworkSize cNN MLP
Reference (32, 64,128) (22016, 128)
Large (64, 128, 256) (44032, 256)

To evaluate model performance, EEG data were divided into training and test sets.
Previous studies have divided data from each participant proportionallirairmg

and test sets [6, 10, 11]. However, an ideal but hard goal woulddenévalize and
predict states of consciousness in unseen participants. With this goaldnlesive-
one-participant-out cross validation (LOPOCV) was used for the training amfjtest



of the models, with each participant contributing 2700 instances on averpggi¢-
ipants, 3 states, 15x60si&e epochs = 24300 total instances). Each instance was la-
beled with one-hot encoding as the target vector, indicating one of the ¢digt®n
states. Training was done with a batch size of 100 and for 10 rurch&ptodels
were evaluated by themccuacy, computed as the percentage of epochs correctly
predicted in the left-out participant. All experiments were implemented tmoR\3
using Keras/Tensorflow on a CUDA NVIDIA GPU (Tesla P100).

3 Results

3.1 Architecture Comparison

The results from our 2 x 2 experimental design (Raw/PSD X cNN/MLP) sieritar
for all three network sizes, and are summarized below. Reported figuresamd-
cies are for the reference size networks depicted in Figs. 2 and 3.

Raw Data. With raw EEG input, the MLP achieved an average accuracy of 75.45%
across participants, with the cNN achieving 86.05% (Fig. 4). These accuraeies ar
significantly higher than the chance level accuracy of 33.33%ss@¥ntropy loss on

the test set did not significantly decrease after the first epoch. Overall, thevasIiN
able to achieve better accuracies for each state of consciousness and participant.
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Fig. 4. MLP vs cNN (reference size) comparison for raw EEG classificatidheothree con-
scious states. Cross validation accuracies, average model lossarsiozomatrices are shown
for each architecture.



As seen in Fig. 4, the confusion matrices suggest that Wakefulnes©&nhddre not
often confused. The intermediate state of Sedation was hardest to predictindiile to
vidual variability in response to propofol. However, this would not pres@nbblem

in the clinical context, where anesthetic induction is much more rapid [10]

Power Spectral Density. With PSD input, the two architectures were equally capable
in classifying states of consciousness (Fig. 5). In particular, the MLPrpeddetter
than when provided with raw time series as input, but the cNN did not:(BB.B%,
cNN: 87.35%). Importantly, cross-entropy loss revealed that the modelerged
faster using the PSD representation.
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Fig. 5. MLP vs cNN (reference size) comparison for EEG classificationeoftitee conscious
states, using the PSD representation.

To understand the changes in the underlying EEG signal drivingdbeseacies, we
visualized the PSDs in each state of consciousness (Fig. 6). As expectausemed
a decrease in alpha oscillations in Sedation, followed by the emergengh-@fipina
oscillations during LOC.
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Fig. 6. Power spectral density (4¥Hz, dB) of the EEG epochs, divided by the sedation phases
of the experiment. Representative frontal (Fz) and parietal (Pz) electrodesvame sho

3.2 Satigtical Analysis— ANOVA Model

As a final step, a three-way ANOVA (type 2) was performed on the aaiesrob-
tained in all twelve experiments across 2 architectures, 2 data representations and 3
model sizes, as summarized in Fig. 7 and detailed in Table 2.

100 - Data Representation = Raw _ Data Representation = Spectrum
95 - -
90 -
> 8- Model Size
£ Em Small
ﬁ 80 - I Reference
3 Large

75 -

70 -

65
MLP cNN MLP cNN

Architecture Architecture

Fig. 7. Three-way ANOVA for the comparison of the data representations, atcnée and
network sizes. Error bars indicate 95% confidence interval.

Table2. ANOVA Table

Sum sg df F Pr(>F)
Architecture 123094 1 10.601 0.0015
Data Representation 620.06 1 5.340 0.0229



Model Size 14.34 2 0.061 0.9401
Architecture-Data Representation 351.13 1 3.024 0.0852
Architecture-Model Size 6.21 2 0.026 0.9735
Data Representation-Model Size 6.18 2 0.026 0.9737
Architecture-Data Representation-Model Siz¢ 0.85 2 0.003 0.9963
Residual 11146.71 96

The results of the ANOVA indicated that network architecture (cNN/MLP) was the
strongest contributor to model performance (F = 10.6, p=0.00d#le data repre-
sentation (Raw/PSD) also had a significant but weaker effect (F = %684)229),
driven by the improved accuracy of MLPs with PSD data.

In terms of resource utilization, the cNN was also better than the MLP, ast¢he lat
had a significantly larger number of parameters to learn (e.g. 46/&7&5MLP vs
2,921,219 in cNN, for the reference network size). cNN was also fasteaitoby
~18%. Furthermore, a repetition of the above experiments with an alternative compar
ison using the same number of trainable parameters (rather than thesaimer of
neurons) in each architecture, gave a much more prominent differe@oeuracies,
with the MLP performing much worse. Finally, we also verified thatdasing epoch
size from 1s through to 10s did not improve performance of eitbdel.

4 Discussion

Our findings highlight the capability gfotential for deep learning of human EEG to

discover and utilize generalizable features for automatic identification of conscious-

ness during anesthesia. Further, we have shown that modern g¥iMisantly out-

perform fully connected MLPs, potentially due to their ability to extract refee-

tive spatio-temporo-spectral features from the raw signal. This notguported by

the fact that MLPs performed as well as ctNNs when given PSD data as input.
Though this study aimed to conduct a comparative analysis ratirehyparpa-

rameter optimization to maximize accuracy, the fact that cNNs were able to perform

very well given only with 1 second of raw EEG data despite the laclkabf aptimi-

zation suggests that they could find utility in real-world applicationsagsessment

and monitoring of consciousness.

Acknowledgements We acknowledge funding from the UK Engineering and Physical Ssen
Research Council [EP/P033199/1he Belgian National Fund for Scientific Research, the
European Commission, the Human Brain Project, the Luminous projedtreheh Speaking
Community Concerted Research Action, the Belgian American Educationab#iion, the
Wallonie-Bruxelles Federation, the European Space Agencylttieersity and University
Hospital of Liege (Belgium). This research was undertaken with the sugfpbe Alan Turing
Institute (UK Engineering and Physical Sciences Research Council Grant ER2981)0



10

References

10.

11.

Purdon, P.L., Pierce, E.T., Mukamel, E.A., Prerau, M.&lskV J.L., Wong, K.F.K.,
Salazar-Gomez, A.F., Harrell, P.G., Sampson, A.L., CimenseCling, S., Kopell,
N.J., Tavares-Stoeckel, C., Habeeb, K., Merhar, R., Brown, E.N.
Electroencephalogram signatures of loss and recovery of consessusom propofol.
Proc. Natl. Acad. Sci. (2013). doi:10.1073/pnas.1221180110

Avidan, M.S., Jacobsohn, E., Glick, D., Burnside, B.A.,nghd.., Villafranca, A.,
Karl, L., Kamal, S., Torres, B., O’Connor, M., Evers, A.S., Gradwohl, S., Lin, N.,
Palanca, B.J., Mashour, G.A.: Prevention of Intraoperative Awarémesbligh-Risk
Surgical Population. N. Engl. J. Med. (2011). doi:10.1056/NEJMoali304

Chennu, S., O'Connor, S., Adapa, R., Menon, D.K., Bekiasg T.A.. Brain
Connectivity Dissociates Responsiveness from Drug Exposure during Propofol
Induced Transitions of Consciousness. PLoS Comput. Biol. 127 1(2016).
doi:10.1371/journal.pcbi.1004669

Murphy, M., Bruno, M.-A., Riedner, B.A., Boveroux, P., Nomme, Q., Landsness,
E.C., Brichant, J.-F., Phillips, C., Massimini, M., Laureys, S., Tor@n Boly, M.:
Propofol Anesthesia and Sleep: A High-Density EEG Study. Sleep28&3+291
(2011). doi:10.1093/sleep/34.3.283

Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M.,
Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., Ball, Bp BErning
with convolutional neural networks for EEG decoding and visatdin. Hum. Brain
Mapp. 38, 53915420 (2017). d0i:10.1002/hbm.23730

Stober, S., Cameron, D.J., Grahn, J. a: Using Convolutional Neatelorks to
Recognize Rhythm Stimuli from Electroencephalography Recordings. INkura
Process. Syst. 2014-9 (2014)

Howbert, J.J., Patterson, E.E., Stead, S.M., Brinkmann, &glVy V., Crepeau, D.,
Vite, C.H., Sturges, B., Ruedebusch, V., Mavoori, J., LeydeSkeffield, W.D., Litt,

B., Worrell, G.A.: Forecasting seizures in dogs with naturally occurrpilgpsy.
PLoS One. (2014). doi:10.1371/journal.pone.0C&19

Park, Y., Luo, L., Parhi, K.K., Netoff, T.: Seizure predictigith spectral power of
EEG using cost-sensitive support vector machines. Epilepsia. (2011).
doi:10.1111/j.1528-1167.2011.03138.x

Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classificatigih Deep
Convolutional Neural Networks. Adv. Neural Inf. Process. Syst9 12012).
doi:http://dx.doi.org/10.1016/j.protcy.2014.09.007

Juel, B.E., Romundstad, L., Kolstad, F., Storm, J.F., Lar$a@: Distinguishing
Anesthetized from Awake State in Patients: A New Approach Using S2mend
Segments of Raw EEG. Front. Hum. Neurosci. (2018).
doi:10.3389/fnhum.2018.00040

Korshunova, |., Kindermans, P.-J., Degrave, J., VerhoeverBrihkmann, B.H.,
Dambre, J.: Towards improved design and evaluation of epilepticreseiredictors.
IEEE Trans. Biomed. Eng. 9294;11(2017). doi:10.1109/TBME.2017.2700086



