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Materials and Methods 

Mice 

All experiments were approved by the Geneva Cantonal Veterinary Authorities, Switzerland and 

the Austrian Federal Ministry of Science and Research in accordance with the Austrian and EU 

animal laws. CD1 WT mice were purchased from Charles River Laboratories and the embryonic 

day (E) 0 (three-hour time-mated females) or E0.5 (overnight-mated females) was established as 

the time of detection of the vaginal plug. In addition, the Eed-flox allele (49), Emx1-Cre (50) were 

used. MADM-GT and -TG cassettes (Chr. 7) were present in these lines (51) but this feature was 

not used here; the genetic background for these lines was mixed C57/Bl6, CD1. Both female and 

male animals were analyzed in this study.  

Genotyping of transgenic mice 

Biopsies were collected and DNA extraction and PCR amplification were performed using the 

Phire Animal Tissue Direct PCR Kit (Thermo Scientific, #F-140WH) and following 

manufacturer’s instructions. The following primers (5’-3’) were used: Eed for - GGG ACG TGC 

TGA CAT TTT CT; Eed rev - CTT GGG TGG TTT GGC TAA GA; Cre for - GTC CAA TTT 

ACT GAC CGT ACA CC; Cre rev - GTT ATT CGG ATC ATC AGC TAC ACC. Cre+/Eed+/+

animals were used as WT, and Cre+/Eed fl/fl as Eed cKO.  

In utero FlashTag injection 

FlashTag (FT) injections were performed between E12 and E15, as previously described (13). 

Briefly, pregnant females were anaesthetized with isoflurane, treated with Temgesic (Reckitt 

Benckiser, Switzerland) and the uterine horn was exposed following an abdominal incision. Half 

a microliter of 10 mM of a carboxyfluorescein succinimidyl ester (i.e. FlashTag, CellTraceTM 

CFSE, Life Technologies, #C34554) was injected into the lateral cerebral ventricle of the embryos. 

The abdominal wall was then closed and the embryos were let to develop until collection.  

Immunofluorescence 

Tissue processing: Embryonic brains were dissected in a phosphate-buffered saline (PBS) 

solution, fixed in 4% paraformaldehyde (PFA) overnight at 4°C then cryoprotected in PBS-sucrose 
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30% overnight at 4°C before embedding in OCT and freezing on dry ice. Postnatal mice were 

perfused with 4% PFA, brains were dissected and post-fixed in 4% PFA overnight at 4°C then 

stored in PBS. Coronal brain sections were performed using either a cryostat (embryonic brains; 

14 µm) or a vibrating microtome (postnatal brains; 70 µm).  

Immunofluorescence on brain sections: Brain sections were incubated 30min at 85°C in 

citrate buffer solution and washed 3 times in PBS prior to a 1-hour incubation in blocking solution 

(10% horse serum - 0,5% Triton X-100 diluted in PBS) at room temperature. Slides were then 

incubated overnight at 4°C with primary antibodies. Next, slides were washed 3 times in PBS and 

incubated 2 hours at room temperature with respective secondary antibodies (1:500). When 

applied, EdU was revealed following the manufacturer’s instructions using Click-it chemistry 

(Invitrogen). Finally, slides were mounted with Fluoromount (Sigma). In Fig. 6A, the H3K27me3 

image intensity range was normalized to the brightest juxtaventricular VZ cells at each embryonic 

age.  

Immunofluorescence on in vitro culture: Cells were fixed in 4% PFA for 15 min, treated 

with 0.25% Triton X-100 for 20 min and blocked in 0.5% BSA, 0.25% Triton X-100 for 1 hour at 

room temperature. Primary antibody incubations were performed overnight at 4° C, and secondary 

antibody incubations were performed 1 hour at room temperature. Coverslips were mounted on 

slides using Fluoromount (Sigma). 

Antibodies: rat anti-BrdU (1:200, Abcam, #AB6326), goat anti-BRN2 (1:500; Thermo 

Scientific, #PA5-1904), rat anti-CTIP2 (1:500, Abcam, #AB18465), rabbit anti-FITC (1:500, 

Abcam, #AB19491), rabbit anti-H3K27me3 (1:500, Millipore, 07-449 or Diagenode, 

C15410195), mouse anti-KI67 (1:200, Abcam, #AB15580), mouse anti-SOX2 (1:200, Santa Cruz; 

sc-365823), rabbit anti-pH3 (1:300, Abcam, #AB5176),  rat anti-TBR2 (1:300, Invitrogen, #14-

4875-82). Secondary antibodies were used at 1:500 (Life Technologies). 

Cell cycle length  

Cell cycle length experiment was conducted following previously published paradigm (32). 

Briefly, at t0 pregnant females were injected peritoneally with BrdU (10mg/ml; 50 µl/10g) then at 

t1h30 with EdU (5mg/ml; 50µl/10g) and at t2h embryos were collected.  
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At least 3 sections per brain at each stage were quantified. The cell-cycle and S-phase duration 

were determined as follow: S-phase = 1.5 x (SOX2+BrdU+EdU+ / SOX2+BrdU+EdU-); total cell 

cycle = S-phase x (SOX2+/ SOX2+EdU+) (32). 

 

Electrophysiology  

Four hundred m-thick coronal slices were prepared from E12.5, E13.5, E14.5, E15.5 and E16.5 

CD1 mice embryos and kept 30 minutes at 33°C in artificial cerebrospinal fluid (aCSF) containing 

125 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 2.5 mM CaCl2, 1.25 mM NaH2PO4, 26 mM NaHCO3 

and 11 mM glucose, saturated with 95% O2 and 5% CO2. Slices were then transferred in the 

recording chamber, submerged and continuously perfused with aCSF. The internal solution used 

for the experiments contained 140 mM potassium methansulfonate, 2 mM MgCl2, 4 mM NaCl 0.2 

mM EGTA, 10 mM HEPES, 3 mM Na2ATP, 0.33 mM GTP and 5 mM creatine phosphate (pH 

7.2, 295 mOsm). Cells in immediate proximity to the ventricular wall (i.e. putative APs) were 

patched and clamped at -70mV. A baseline stable holding current was first measured for 4 minutes, 

after which a 10-minute bath of 100 M of the glutamate transporter antagonist DL-TBOA (DL-

threo- -Benzyloxyaspartate) (52) was applied and finally washed out. TBOA-induced currents 

were blocked by application of 25 M NBQX and 50 M D-APV (data not shown), consistent 

with activation of ionotropic glutamate receptors by increased extracellular levels of Glu (52). 

Recorded currents were amplified (Multiclamp 700, Axon Instruments), filtered at 5kHz, 

digitalized at 20kHz (National Instrument Board PCI-MIO-16E4, IGOR WaveMetrics), and stored 

on a personal computer for further analyses (IGOR PRO WaveMetrics). The net amplitude of 

TBOA induced currents was determined after subtraction of baseline holding current.  

In vitro experiments 

 

Embryos were injected with FT at E12 or E15 and collected 1 hour or 4 days after injection in ice-

cold HBSS (Gibco; #14175-053). The dorsal pallium was microdissected under stereomicroscopic 

guidance (Leica, #M165 FC) using a microscalpel. Tissue from 5-6 littermates was pooled and 

incubated in 400 µl TrypLE (Gibco; #12605-010) for 5 minutes at 37°C. TrypLE was inactivated 

by adding HBSS containing 0.1% BSA and the tissue was mechanically dissociated by pipetting 

the suspension 6-8 times with a 1 ml pipette. Cells were filtered through a 70 µm cell strainer, 

centrifuged (150 rpm, 5 minutes) and resuspended in FACS buffer (L15 medium, Gibco; #21083-
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027, containing 2 mg/ml glucose, 0.1% BSA, 1:50 citrate phosphate dextrose, 10 units/ml DNase 

I and 1 µM MgCl2). The top 10% brightest FT positive cells were sorted on an S3e Cell Sorter 

(BioRad) or a BD FACS Aria II flow cytometer (BD Biosciences) and collected in ice-cold FACS 

buffer. Sorted cells were centrifuged (150 rpm, 5 minutes) and resuspended either in Neurobasal 

media (Gibco; #21103-049, supplemented with 500 mM Glutamax-I, 2% of B27 (Gibco; 17504-

044), and 1% of penicillin/streptomycin antibiotic) or DMEM/F12 (Gibco; #31331-028, 

supplemented with 1× N2, Gibco; #A13707-01, FGF2; Sigma; #SRP4038-50UG, 2% of B27, and 

1% of penicillin/streptomycin antibiotic). Sorted cells were plated on previously coated coverslips 

with poly-L-lysine (0.1mg/ml) and laminin (0.33μg/ml). Cells were maintained at 37° C with 5% 

CO2 for 2 hours (in vivo arm) or 4 days in vitro. Following BRN2 and CTIP2 immunostaining, 

cells were imaged and the fluorescence intensity in the nucleus was calculated for both markers 

using R software. Cells with an intensity value for both markers below 25% to the maximum 

intensity per condition and cells with saturated intensity values for both markers were not 

considered for analysis. To mitigate potential artefactual staining, the thresholds were determined 

based on the in vivo condition: for the quantifications in fig. S8B, cells with a CTIP2/BRN2 ratio 

above 2.5 were considered as CTIP2+ while cells with a CTIP2/BRN2 ratio below 1 were 

considered as BRN2+.  

 

Cell cycle exit  

Pregnant females at E14.5 or E15.5 were injected i.p by a single pulse of EdU (1mg/ml; 50µl/10g) 

and embryos were collected 24 hours later. At least 3 sections per brain in each condition (n = 3 

brains/condition) were quantified. The cell cycle exit rate was determined by dividing the number 

of KI67+EdU+ by the total number of EdU+ cells.  

 

Sm-FISH  

Twelve µm-thick coronal sections were prepared from fresh frozen embryonic brains at E12, E13, 

E14 and E15 and incubated at room temperature for 1 hour. Sections were then fixed with 4% PFA 

for 15 min and processed according to the manufacturer’s instructions, using the RNAscope 

Multiplex Fluorescent kit (Advanced Cell Diagnostics) for fresh frozen tissue. Briefly, sections 

were dehydrated using 50%, 70% and 100% successive baths of ethanol. A 10 min treatment in 

SDS (4% in 200 mM sodium borate) was added in the protocol after Protease IV incubation as 
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proposed in (9). The probes were then incubated on sections during 2 hours at 40°C and processed 

for amplification steps. Finally, sections were counterstained with DAPI and mounted with 

Mowiol medium. The following probes were used: Nes (Acdbio, #313161-C3), Fn1 (Acdbio, 

#316951-C2) and Clu (Acdbio, #427891). For quantifications, images were processed using a 

custom script that identifies each molecule of mRNA and transformes it as a pixel. Pixels were 

then automatically counted in the VZ (delineated by the expression of Nestin mRNA). Three 

embryos per age were analyzed.  

 

Imaging  

Images were acquired using a LSM 700 confocal laser scanning microscope (Carl Zeiss), a Nikon 

A1r spectral line scan confocal or an inverted LSM800 confocal microscope (Carl Zeiss). For brain 

sections, the putative primary somatosensory (S1) cortex was used as a region of study. The Zeiss 

Zen Blue, ImageJ, Photoshop (Adobe) and R softwares were further used for downstream image 

processing and analyses.  

  

Quantifications 

In fig. S1B top, % SOX2+KI67+/FT+ was calculated, with an n = 3 for each stage. Values ± SEM 

are: E12: 98.6 ± 1.5; E13: 96.2 ± 1.9; E14: 98.9 ± 1.11; E15: 98.6 ± 1.11. In fig. S1B bottom, % 

TBR2+KI67+/TBR2+ was calculated. Values ± SEM are: E12: 71.7 ± 6.3; E13: 79.2 ± 7.5; E14: 

56.0 ± 17.5; E15: 16.8 ± 5.9. 

In Fig. 2H, S-phase and total cell cycle length were calculated as mentioned above, with an n = 3 

for each stage. For S-phase, values ± SEM are: E12: 4.3 ± 0.24; E13: 3.5 ± 0.6; E14: 3.7 ± 0.4; 

E15: 4.3 ± 0.4. For total cell cycle length, values ± SEM are: E12: 8.6 ± 0.3; E13: 9.4 ± 1.11; E14: 

10.8 ± 1.1; E15: 12.0 ± 1.0. The values ± SEM for the fraction of S-phase APs in fig. S9C are: 

E12: 49.5 ± 1.1; E15: 35.7 ± 0.6.  

In Fig. 2I, the net amplitude of GLAST-induced current was calculated. Values ± SEM are: E12: 

1.6 ± 0.8 (n = 6); E13: 1.2 ± 0.8 (n = 10); E14: 2.6 ± 0.9 (n = 8); E15: 6.7 ± 2.4 (n = 6); E16: 24.8 

± 4.6.  

In fig. S8B, % of BRN2+ and CTIP2+ cells were calculated as mentioned above. For the in vivo 

dataset (E12 n = 2; E15 n = 3), values ± SEM are: E12, BRN2+: 88.1 ± 7.0; E12, CTIP2+: 11.9 ± 
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7.0; E15, BRN2+: 99.8 ± 0.1; E15, CTIP2+: 0.40 ± 0.03. For the in vitro dataset (n = 3 per stage), 

values ± SEM are: E12, BRN2+: 92.0 ± 6.2; E12, CTIP2+: 12.1 ± 8.1; E15, BRN2+: 99.6 ± 0.4; 

E15, CTIP2+: 1.3.  

In Fig. 6A (H3K27me3 staining) the H3K27me3 image intensity range was normalized to the 

brightest juxtaventricular VZ cells at each embryonic age.  

In Fig. 6C, VZ thickness delimited by the SOX2 staining was calculated (n = 3 brains per 

condition). Values ± SEM are: E14 WT: 97.8 ± 1.2; E14 Eed cKO: 78.5 ± 0.6; E15 WT: 84.7 ± 

0.9.  

In Fig. 6D, cell cycle exit rate was calculated as mentioned above (n = 3 brains per condition). 

Values ± SEM are: E14 WT: 6.2 ± 0.6; E14 Eed cKO: 9.5 ± 0.8; E15 WT: 17.0 ± 1.0.  

In Fig. 6E, % of BRN2+/FT+ cells was calculated (n = 3 brains per condition). Values ± SEM are: 

WT: 36.8 ± 2.6; Eed cKO: 53.4 ± 4.8.  

 

In situ hybridization image processing  

All in situ hybridizations were retrieved from the Allen Developing Mouse Brain Atlas 

(www.brain-map.org) and uniformly zoomed to the putative S1 neocortical region. For the 

illustrations in Fig. 1E and figs. S3, S6C and S7C, the images were aligned and stacked. The mean 

intensity level of the Z projection was calculated on ImageJ and the resulting layout was artificially 

colored using the “Fire” mode of ImageJ. In fig. S6C, semi-quantifications were performed by 

assigning a score to the strength of the signal in the juxtaventricular VZ (0 = absent, 1 = weak, 2 

= medium, 3 = strong) for each gene. Genes were then grouped into early (i.e. belonging to 

dynamics 1-3) or late (i.e. belonging to dynamics 4-6) dynamics types and scores were averaged 

and normalized to the highest value across embryonic age. This scoring was performed blindly 

with regard to the gene identity. 

 

scRNAseq experiment  

Cell dissociation and FAC-sorting: Pregnant females were sacrificed either 1, 24 or 96 hours 

after FT injection. As previously described (13), embryonic brains were extracted in ice-cold 

HBSS, embedded in 4% agar low-melt and sectioned coronally at 300 µm using a vibrating 

microtome (Leica, #VT100S). The putative S1 cortical region was microdissected under a 
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stereomicroscope and incubated in 0.05% trypsin at 37°C for 5 minutes. Following tissue 

digestion, fetal bovine serum was added to the mix and cells were manually dissociated via up-

and-down pipetting. Cells were centrifuged 5 min at 300 G and the pellet was suspended in 1 ml 

of HBSS then passed on a 70 µm cell strainer. FT+ cells, gated to include only the top 5% brightest 

cells (12,13), were finally FAC-sorted on a MoFloAstrios device (Beckman).  

Single-cell RNA capture and sequencing: FAC-sorted FT+ cells (18 µl) were mixed with the 

C1 Suspension Reagent (2 µl; Fluidigm) yielding a total of 20 µl of cell suspension mix with ~500 

cells / μl. The cell suspension mix was loaded on a C1 Single-Cell AutoPrep integrated fluidic 

circuit (IFC) designed for 10- to 17-µm cells (HT-800, Fluidigm #100-57-80). Batch effects were 

mitigated by distributing cells in the different conditions within single chips (i.e. E12 with E14 

and E13 with E15) and by normalizing the number of reads per chip. cDNA synthesis and 

preamplification was processed following the manufacturer’s instructions (C1 system, Fluidigm) 

and captured cells were imaged using the ImageXpress Micro Widefield High Content Screening 

System (Molecular Devices®). Single cell RNA-sequencing libraries of the cDNA were prepared 

using Nextera XT DNA library prep kit (Illumina). Libraries were multi-plexed and sequenced 

according to the manufacturer’s recommendations with paired-end reads using HiSeq2500 plat-

form (Illumina) with an expected depth of 1M reads per single cell, and a final mapping read length 

of 70 bp. All the single cell RNA capture and sequencing experiments were performed within the 

Genomics Core Facility of the University of Geneva. 

The sequenced reads were aligned to the mouse genome (GRCm38) using the read-mapping 

algorithm TopHat. Unique Molecular Identifiers (UMI) sequenced in the first reads were used to 

correct for cDNA PCR amplification biases. Duplicated reads were identified and corrected using 

the deduplication step from the UMI-tools algorithm (53). The number of reads per transcript was 

calculated with the open-source HTSeq Python library. All the analyses were computed on the 

Vital-It cluster administered by the Swiss Institute of Bioinformatics. 

 

scRNAseq analysis  

         Cell filtering: Doublet cells identified on the Fluidigm C1 plate images were excluded before 

initial analysis. A total of 2,906 FT+ single cells were obtained (FT +1 h: E12: 202 cells, E13: 211, 

E14: 135, E15: 304; FT +24 h: E12: 284 cells, E13: 286, E14: 232, E15: 217; FT + 96 h: E12: 246 

cells, E13: 278, E14: 262, E15: 249). Cells expressing < 1000 genes or > 17% of mitochondrial 
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genes were excluded. After this step, 2,756 cells remained for analysis (FT +1 h: E12: 189 cells, 

E13: 207, E14: 134, E15: 301; FT +24 h: E12: 268 cells, E13: 223, E14: 219, E15: 213; FT +96 

h: E12: 244 cells, E13: 267, E14: 254, E15: 237).  

Type specific transcripts: The AP, BP and N score used in Fig. 1B correspond to the mean 

transcript expression of the top 20 genes for AP, BP and N previously characterized (12): AP: 

Aldoc, Pdpn, Vim, Ednrb, Ddah1, Ldha, Peg12, Wwtr1, Tspan12, Mfge8, Uhrf, Ncaph, Ndrg2, 

Mt1, Hk2, Psat1, Sp8, Sdc4, Dnmt3a, Notch2, Psph. BP: Btg2, Eomes, Abcg1, Kif26b, Mfap4, 

Coro1c, Myo10, Mfng, Rprm, Chd7, Ezr, Gadd45g, Slc16a2, Heg1, Celsr1, Tead2, Cd63, Rhbdl3, 

Mdga1, Arrdc3. N: Myt1l, Unc5d, 1700080N15Rik, Nos1, Satb2, Ank3, Scn3a, Dscam, Cntn2, 

Plxna4, 9130024F11Rik, Lrrtm4, Ptprk, Nrp1, Celsr3, Rbfox1, Flrt2, Kcnq3, Kcnq2, Gm36988.  

Clustering analysis was performed using the Seurat bioinformatics pipeline 

(https://github.com/satijalab/seurat) and is summarized here. We first created a “Seurat object” 

including all 2,756 cells and all genes. To remove sequencing depth biases between cells, we 

normalized and scaled the UMI counts using the NormalizeData (normalization.method = 

"LogNormalize", scale.factor = 100000) combined with the ScaleData function (vars.to.regress = 

c("nGene","nUMI")). A cell cycle phase was further assigned to each single cell using the Seurat 

pipeline. Gene expression was not normalized with regard to the cell cycle phase as this process is 

physiologically relevant in the temporal progression of cortical progenitors identity. We then 

determined the most variable genes by plotting transcripts into bins based on X-axis (average 

expression) and Y-axis (dispersion). This identified 4,016 transcripts. Parameters and cutoffs were 

set as follow: mean.function = ExpMean, dispersion.function = LogVMR, x.low.cutoff = 0.1, 

x.high.cutoff = 8, y.cutoff = 0.7. Next, we identified the statistically significant principal 

components and used the top 20 as input for t-Distributed Stochastic Neighbor Embedding 

dimensional reduction, using the TSNEPlot function. To identify cellular clusters, we adopted a 

graph-based clustering approach using FindClusters function with a 1.8 resolution. The robustness 

of the clustering was validated using an in-silico downsampling approach. Briefly, cells were 

randomly sampled down and re-clustered and the stability of the cellular cluster was estimated, 

and compared to a random clustering. Finally, a multiclass SVM model (implementation from R 

package bmrm) was trained on all cluster- assigned cells and genes were ranked according to their 

linear weights. For each class (i.e. clusters), genes with a significant linear weight (Z-test, FDR ≤ 

0.05) were considered as enriched genes.  
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Pseudotime projection: APs, N1d and N4d cells at all embryonic ages identified in the cell 

clustering analysis were processed. Basal progenitors were not included in this analysis because 

N1d and N4d are overwhelmingly directly born from APs when using FT labeling (12,13). The 

pseudotime alignment method performed was previously described (24) and is summarized 

hereafter. In Fig. 2 and figs. S5 and S6, we restricted the datasets to the high variable genes (n = 

4,016) and performed dimensionality reduction using the prcomp function of R software. Taking 

into consideration the significant principal components (PCs) explaining at least 2% of the total 

variance and using the R package princurve, we fitted a curve that described the maturation route 

(i.e. pseudo-birthdate or pseudo-differentiation) along which cells are organized. The beginning of 

the curve was established as the side where cell expressing the highest level of Sox2 (AP) for 

pseudo-differentiation or the highest level of Hmga2 (E12) for pseudo-birthdate. A maturation 

score reflecting the distance between the beginning of the curve and the cell was attributed to each 

cell and normalized between 0 to 1. This pseudotime alignment method was also validated on the 

AP population using the Monocle bioinformatic pipeline (14).We then restricted the dataset to the 

top 500 genes for each PCs and performed a “Partitioning Around Medoids” analysis using the 

PAM R package (K = 6, span = 0.6) and each gene expression dynamics was normalized between 

-1 and 1 to identify clusters of transcripts with similar dynamics along the pseudo-differentiation 

(Fig. 2A, fig. S5) or pseudo-birthdate (Fig. 2D, fig. S6). This approach was previously described 

elsewhere (24).  

Ordinal regression models: We used a regularized ordinal regression method to predict on 

one hand the birthdate and on the other hand the differentiation status of each cell. We restricted 

the analysis to the high variable genes (n = 4,016) defined earlier. As the cells are expected to be 

organized within a differentiation and a birthdate continuum, we used and adapted a previously 

described ordinal regression model (54) implemented in the bmrm R package. In our context, a 

single linear model is optimized to predict cell differentiation status irrespectively of the date of 

birth and conversely. The linear weight of the models is used to rank the genes according to their 

ability to predict each cell category and the best 100 genes (top 50 and bottom 50) in each model 

were considered. The ordinal regression models were then re-optimized on these subsets of genes. 

In the ordinal regression model, the prediction scores are defined by the linear combination of the 

core genes expression. Since the values of the prediction score per se are arbitrary, the minimum 

and maximum values were replaced with AP / E12 and N4d / E15, respectively, in the 
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differentiation and birthdate models. All reported predictions were obtained by 10-fold cross-

validation. For the birthdate prediction of the human embryo neocortical cell dataset (7),  we first 

isolated APs and newborn neurons using the annotations provided by the authors.  The dataset was 

then restricted to the human orthologs of the birthdate core genes identified in the current study 

and the pseudo-birthdate of these cells was calculated using the aforementioned birthdate ordinal 

regression model. The expression dynamics of the ortholog core genes were plotted along this 

pseudo-birthdate for both APs and their newborn progeny.   

Transcriptional maps (Fig. 5): Cells were organized on a 2D grid based on their birthdate 

and differentiation status score. For this purpose, the data were linearly adjusted so that the average 

predicted values for each cardinal feature was aligned on the relative knot of the grid. The gene 

expression at a given coordinate of the 2D space was further estimated as the average expression 

of its 15 nearest neighbors. All transcriptional landscapes were normalized to the maximum value. 

For low-level expression genes (maximum value < 1 log), the maximum value was artificially set 

to 1 log, which correspond to a baseline noise threshold.  The transcriptional landscapes of the 

most variable genes (n = 4,016) were further clustered by projecting genes onto a 2D t-SNE space 

and submitted to a k-means clustering (K = 12). The average expression pattern was calculated for 

each cluster and the transcriptional maps of all remaining genes (n = 12,425) were correlated to 

these 12 patterns. Select examples in Fig. 5C correspond to genes directly assigned or most highly 

correlated to the corresponding cluster. 

 

Softwares  

All single cell RNA sequencing analysis were perfomed using the R software with publicly 

available packages. GeneGo portal (https://portal.genego.com) was used to investigate the 

enriched gene ontology processes in Fig. 2. Cytoscape platform (55) associated with its plugin (56) 

was used to construct the enrichment gene ontology processes network in supplementary fig. S10. 

For this purpose, the latest version of gene ontology (go-basic.obo) and gene association 

(gene_association.mgi) from the Gene Ontology Consortium website (www.geneontology.org) 

were given as input in Bingo. The string database (http://string-db.org) implemented in Cytoscape 

platform was used to determine the protein-protein interactions in figs S5, S6 and S7. 
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Table S1: Selection of characterized genes from the birthdate model    

          

Gene 
symbol  

Enriched 
in 

Gene 
weight  Function  References (PMID) 

Hmga2 Early -6.25 DNA-binding, chromatin-related. KO in early-stage cortical progenitors reduces neurogenic 
potential 22797695 / 18957199 

Tbr1 Early -3.65 TF. Instructs the laminar location and identity of deep layer neurons 16858776 / 20615956  

Top2a Early -3.36 DNA topoisomerase. KO leads to laminar dysruptions in the cerebral cortex  12773624 

Bcl11b Early -3.13 CTIP2, a TF. Marker of L5B neurons 15664173 / 18678899   

H2afz Early -2.91 Histone protein. KO results in enhanced proliferation of progenitors and reduced differentiation. 29294103 

Gadd45g Early -2.78 DNA demethylation. Direct target of Pax6.  19521500 

Hes1 Early -2.58 Transcriptional repressor. Represses precocious neuronal commitment of cortical progenitors  10627606 

Filip1 Early -2.24 Filamin-interacting protein. Controls the radial migration of newborn cortical neurons  12055638 

Sox5 Early -2.15 TF. Control the timing of sequential generation of corticofugal neurons subtypes  18215621 / 18840685 

Ptprz1 Late 2.73 Receptor  tyrosine phosphatase.  In human oRGs; development of OPCs.  26406371 / 21969550  

Cttnbp2 Late 2.85 Dendritogenesis 23015759 

Sparcl1 Late 2.88 Surface protein. Terminal migration of neurons. Astrocyte marker  14715135 

Glra2 Late 2.91 Glycin receptor subunit. Regulates BP generation 24926615 

Trim9 Late 3.02 Ubiquitin ligase. Netrin1 signaling-associated; regulates neuronal morphogenesis  28701345 

Nr2f1 Late 3.09 TF, COUP-TFI. Neuronal differentiation 25476200 

Trim2 Late 3.36 Regulates axonal mrophogenesis  20796172 

Tnc Late 3.86 Extracellular matrix protein. oRG marker 26406371 

Chl1 Late 3.92 ECM and cell adhesion protein. Inhibits Erk1/2- MAPK signaling and reduces progenitor 
proliferation 

15504324 / 20933598 / 
18077678   

Unc5d Late 4.36 Netrin receptor. Expressed in L4 neurons; mediates neuronal survival 21216843 / 18469807 

Sema3c Late 5.36 Semaphorin. Required for migration of superficial layer neurons  26182416 

Zbtb20 Late 7.04 Regulator for the generation of layer-specific neuronal identities; neuronal maturation 27282384 / 24828045  
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Table S2: Selection of characterized genes from the differentiation model 

Gene 
symbol  

Enriched 
in 

Gene 
weight  Function References (PMID) 

Vim AP -4.85 Intermediate filament protein. Classical marker of radial glia cells  Multiple references 

Ccnd2 AP -3.43 Cylin D2. Required for generation of BPs from APs  19641124 

Chd7 AP -3.17 Chromatin remodeler. Regulates AP proliferation; interacts with Sox2 27955690 / 21532573 

Boc AP -3.10 SHH co-receptor. Regulates neuronal differentiation from cortical progenitor cells  27871935 

Cdon AP -3.07 SHH co-receptor.  Regulates cortical progenitor proliferation and neuronal differentiation  16648472 

H2afz AP -2.98 Histone protein. KO results in enhanced proliferation of progenitors and reduced differentiation. 29294103 

Hes1 AP -2.88 Transcriptional repressor. Represses precocious neuronal commitment of cortical progenitors  10627606 

Nes AP -2.65 Intermediate filament protein. Classical marker of radial glia cells  Multiple references 

Rapgef6 AP -2.59 GTPase. Reported to maintain the apical surface adherens junction in cortical progenitors.  27390776 /  28917843  

Bcl11b AP -2.55 CTIP2, a TF. Marker of L5B neurons 15664173 / 18678899 

Nfia AP -2.51 TF. Represses Notch pathway to initiate neuronal differentiation  20610746 

Hmga2 AP -2.31 DNA-binding, chromatin-related. KO in early-stage cortical progenitors reduces neurogenic potential 22797695 / 18957199 

Qk AP -2.30 Involved in neuron-glia fate decisions 9778149 

Arx AP -2.11 TF. Regulates AP proliferation and generation of BPs 23968833 / 18509041  

Unc5d N 3.06 Netrin receptor. Expressed in L4 neurons; mediates neuronal survival 21216843 / 18469807 

Aff2 N 3.08 TF, transiently expressed in SVZ. Reported role in lymphcyte differentiation 12079280 

Sparcl1 N 3.10 SVZ protein; obligatory binding partner of the neurite outgrowth-promoting factor pleiotrophin 28823557 

Syt4 N 3.23 Syntaxin 4, retrograde synaptic signalling  23522040 

Celf2 N 3.25 Regulation of RNA splicing 11158314 

Nlgn3 N 3.28 Neuroligin 3, synaptic adhesion molecule 26235839 

Sox11 N 3.30 TF, interacts with LHX2  28053041 

Trim67 N 3.36 KO has CNS defects including decreased size of callosum 26235839 

Nrxn1 N 3.37 Neurexin 1, synaptic protein 28013231 

Zbtb18 N 3.40 Disruption of superficial cortical layers in KO 28053041 

Dkk3 N 3.52 Wnt pathway inhibitor 18719393 

Dpysl3 N 3.56 Axonal guidance and outgrowth 10504203 

Bcl11a N 3.63 TF. Controls the migration of cortical neurons with Sema3c; settles identity of corticofugal neurons 26182416 / 25972180  

Sema3c N 3.76 Semaphorin. Required for migration of superficial layer neurons  26182416 

Neurod6 N 3.88 TF. Classical neuronal marker Multiple references 

Satb2 N 3.88 TF. Regulates differentiation of callosal projection neurons; mutually repressive interactions with 
Fezf2 

26324926 / 25037921 / 18255031/ 
18255030  

Dcx N 3.98 Microtubule associated protein. Critical for neuronal migration and proper cortical layering  10399932 / 10399933 / 14625554 / 
12764037 

Clstn2 N 4.11 Excitatory synapse transmission 12498782 / 28912692 

Tuba1a N 4.11 Tubulin-related. Mutation causes lisencephaly 20466733 

Arpp21 N 4.23 RNA-binding; controls neuronal excitability and dendritic morphology in neocortex  29581509 

Gpm6a N 4.34 Neuronal differentiation and migration of neuronal stem cells 19298174 

Smarca2 N 4.37 Chromatin-remodeling; activation of Neurod2 and Ngn  11134956 / 15576411 

Rtn1 N 4.38 ER-related; involved in neuronal differentiation; used as a marker 9560466 

Neurod2 N 4.46 Neuronal specific genes, induces premature exit from cell cycle 26940868 

Zbtb20 N 4.51 Regulator for the generation of layer-specific neuronal identities; neuronal maturation 27282384 / 24828045  

Gria2 N 4.57 AMPA receptor subunit Multiple references 

Tubb3 N 4.63 Tubulin-related. Mutation causes abnormal cortical development 30016746 

Mef2c N 5.37 Activity-dependent TF. Regulates synaptogenesis 27989458 
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Fig. S7. 2D modelization of corticogenesis. (A) Birthdate and differentiation scores obtained from the 
two models for each condition. (B) Analysis of protein-protein interactions using the STRING 
database (http://string-db.org) suggests that gene products interact based on their temporal dynamics 
(left) or cellular specificity (right). Unassigned genes are not displayed. (C) Overlay of ISH from the 
Allen Developing Mouse Brain Atlas (www.brain-map.org) confirming the proper spatio-temporal 
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experimental setup. In both the in vivo and in vitro arm, staining is performed on 
dissociated cells to allow for direct comparison of CTIP2 and BRN2 expression. 
Center and right: neurons born from E12 and E15 APs can still be 
distinguished by their relative expression of CTIP2 and BRN2 in vitro, as is the 
case in vivo. Abbreviations: FT: FlashTag, N4d: 4-day-old neurons. *** P < 
0.001, Fisher’s exact test (for bar graph); Kolmogorov-Smirnov test (for 
cumulative plots).  
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Data S1: Top 10 enriched genes for each cell cluster (related to Fig. 1D). 

Data S2: Differentiation waves gene list (related to Fig. 2B). 

Data S3: Differentiation waves biological processes (related to Fig. 2B,C). 

Data S4: AP gene dynamics list (related to Fig. 2E). 

Data S5: AP gene dynamics biological processes (related to Fig. 2E,F). 

Data S6: Core genes of the models (related to Fig. 3A). 

Data S7: Clustering of transcriptional maps (related to Fig. 5C). 

Data S8: Biological processes associated with transcriptional maps clusters (related to Fig. 5D). 
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