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Abstract

Significant advances have been made in the behavioral assessment and clinical
management of disorders of consciousness (DOC). In addition, functional
neuroimaging paradigms are now available to help assess consciousness levels
in this challenging patient population. The success of these neuroimaging
approaches as diagnostic markers is, however, intrinsically linked to un-
derstanding the relationships between consciousness and the brain. In this
context, a combined theoretical approach to neuroimaging studies is needed.
The promise of such theoretically based markers is illustrated by recent find-
ings that used a perturbational approach to assess the levels of consciousness.
Further research on the contents of consciousness in DOC is also needed.
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Vegetative state
(VS)/unresponsive
wakefulness
syndrome (UWS):
patients who are
aroused but not aware
of themselves and their
surroundings

Minimally conscious
state (MCS): patients
who are aroused and
show fluctuating signs
of awareness without
being able to
functionally
communicate

Disorders of
consciousness
(DOC): refers to
patients with severe
acquired brain injuries
in an altered state of
consciousness;
includes coma,
VS/UWS, and MCS

EMCS: emergence of
the minimally
conscious state (i.e.,
functional
communication or
object use)
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INTRODUCTION

Clinical and neuroimaging studies have made significant progress in the differential diagnosis,
treatment, and ethical management of patients in a coma, in a vegetative state/unresponsive wake-
fulness syndrome (VS/UWS), and in a minimally conscious state (MCS) (Giacino et al. 2014). In
this review, we discuss the state of the science for clinical assessment of disorders of consciousness
(DOC) and the potential use of neuroimaging to diagnose consciousness.

Following severe damage to the brain, caused by trauma, stroke, or anoxia, patients can
fall into a coma. Coma is a transient state characterized by a complete absence of wakefulness
and awareness (Plum & Posner 1983). The recovery of wakefulness without signs of awareness
heralds a transition to VS/UWS (Laureys et al. 2010, Multi-Society Task Force on PVS 1994a).
In contrast, patients in MCS show reproducible nonreflexive behaviors but remain unable to
communicate (Giacino et al. 2002). The MCS entity has been divided into MCS+ and MCS−,
depending on the complexity of behavioral responses (i.e., presence or absence of language
functions, respectively) (Bruno et al. 2012). Emergence of MCS (EMCS) occurs when patients
regain accurate communication and/or functional use of objects. Finally, locked-in syndrome
(LIS) patients can be misdiagnosed as DOC despite preserved awareness because of a complete
paralysis of voluntary muscles, except vertical eye movements (Bauer et al. 1979). Table 1
summarizes diagnostic criteria for DOC and related states.

CLINICAL ASSESSMENT OF CONSCIOUSNESS

The clinical assessment of the level of consciousness is based primarily on observation of sponta-
neous and stimulus-evoked behaviors. Arousal is measured by eye-opening, whereas awareness is
assessed by patient’s command-following or the assessor’s search for other nonreflexive behaviors.
Misdiagnosis of unawareness is very frequent (up to 40%) when diagnosis is based solely on clinical
consensus, without use of appropriate behavioral scales (Schnakers et al. 2009). The most sensitive
scale to differentiate MCS from VS/UWS is, to date, the revised version of the Coma Recovery
Scale (CRS-R) (Giacino et al. 2004, Seel et al. 2010). In the intensive care unit, a routine use of
the Full Outline of Unresponsiveness scale, which is faster to administer, is also recommended
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Table 1 Diagnostic criteria for patients with severe acquired brain injuries

Clinical entities DOC Definition
Coma (Plum & Posner 1983) Yes No wakefulness

No awareness of self or environment
Vegetative state/unresponsive
wakefulness syndrome (Laureys et al.
2010, Multi-Society Task Force on
PVS 1994a)

Yes Wakefulness
No awareness of self or environment
No sustained, reproducible, purposeful behavioral responses to external
stimuli

No language comprehension or expression
Relatively preserved hypothalamic and brain stem autonomic functions
Bowel and bladder incontinence
Variably preserved cranial-nerve and spinal reflexes

Minimally conscious state (Bruno
et al. 2011b, Giacino et al. 2002)

Yes Wakefulness
Fluctuating awareness with reproducible, purposeful behavioral responses to
external stimuli

Minimally conscious state minus Yes Visual pursuit
Reaching for objects
Orientation to noxious stimulation
Contingent behavior

Minimally conscious state plus Yes Following commands
Intentional communication
Intelligible verbalization

Emergence from minimally conscious
state (Giacino et al. 2002)

No Functional communication
Functional object use

Locked-in syndrome (American
Congress of Rehabilitation Medicine
1995)

No Wakefulness
Awareness
Aphonia or hypophonia
Quadriplegia or quadriparesis
Presence of communication through the eyes
Preserved cognitive abilities

DOC, disorders of consciousness.

Locked-in syndrome
(LIS): patients who
are aroused and aware
but who cannot move
except to make eye
movements

Coma Recovery
Scale-Revised
(CRS-R): behavioral
scale developed to
assess the levels of
consciousness in
patients recovering
from coma, and
especially to
differentiate conscious
from unconscious
patients

(Wijdicks et al. 2005). Specific assessment material should also be employed to increase sensitivity
(see sidebar, Clinical Assessment). On the patient side, some factors potentially causing decreased
responsiveness should be noted: motor impairment, aphasia, agnosia, blindness or deafness, fluctu-
ation of vigilance, and the presence of pain (Schnakers 2012). Other medical complications (e.g., in-
fections) and sedating medications may also complicate the assessment of DOC (Whyte et al. 2013).
These elements should be investigated. The sidebar Clinical Assessment provides our recommen-
dations concerning clinical assessment of DOC. The sidebar Clinical Management describes how
recent advances in clinical diagnosis have affected treatment, prognosis, and ethical issues in DOC.

Even if the border zone between patients in VS/UWS and MCS is, at present, well delimited,
bedside assessment of consciousness is intrinsically gated by behavioral responsiveness. It is now
increasingly more recognized that the absence of observed purposeful behaviors at the bedside
cannot be taken as definitive proof of the absence of consciousness. If persistent doubts concerning
a patient’s consciousness level exist, neuroimaging techniques such as positron emission tomogra-
phy (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG)
can be useful to complement behavioral diagnosis.
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ACTIVE NEUROIMAGING PARADIGMS

As previously mentioned, there is a significant risk that decreased behavioral responsiveness in
brain-damaged patients may be due at least partially to motor impairment. In this context, neu-
roimaging paradigms that identify nonreflexive brain activation patterns in response to commands,
while bypassing motor output, may be helpful. A positive response to these paradigms could, in
principle, be considered reasonable evidence for the presence of consciousness in a given patient.

CLINICAL ASSESSMENT

1. What to know before starting?
• The terminology of DOC (see Table 1)
• The signs of MCS: reproducible responses to command, visual pursuit, automatic motor response (e.g.,

scratching, grabbing objects), adapted emotional behavior, localization to noxious stimulation, intelligible
verbalization, object recognition and localization, nonfunctional communication, resistance to eye-opening
(Giacino et al. 2002, van Ommen et al. 2013)

• The signs of EMCS: functional communication and object use (Giacino et al. 2002)
• Reflex behaviors: auditory startle, blinking to threat, flexion withdrawal/stereotyped to pain, yawning, oral

reflexes (Giacino et al. 2002)
• Debated behavior: visual fixation (Bruno et al. 2010), localization to sound (Cheng et al. 2013)

2. What to do before starting?
• Collect patient’s past and current medical history: sensory deficits, cause of coma, time since onset, localized

pain, sedative medication
• Always consider the patient conscious even if apparently unresponsive. Explain the aim of the exam and the

need for full collaboration
• Place the patient in sitting position
• All limbs must be visible
• Ensure enough light and quiet environment with a period of rest before starting
• Apply arousal protocol if needed (Giacino et al. 2004)
• Perform a few minutes of observation of spontaneous behavior

3. What to do during the assessment?
• Assess all modalities: audition, vision, motricity/tactile stimulation, oromotor behavior, communication,

arousal
• Use the Coma Recovery Scale-Revised
• Use specific tools: mirror for visual pursuit (Vanhaudenhuyse et al. 2008), own name for auditory localization

(Cheng et al. 2013), oral and written commands, colorful objects, meaningful/emotional stimuli
• Way to assess: assess the most reactive part of the body (from medical history, spontaneous behavior),

ask several command-following questions based on spontaneous behaviors, use finger for blinking to threat,
evaluate visual pursuit in horizontal and vertical planes

• Give encouragement to the patient
• If signs of fatigue: break and/or arousal protocol

4. Other recommendations
• Repeat assessments combining morning and afternoon evaluations, minimum 5 times total for a final

diagnosis
• Extended evaluation time (20–60 min) needed
• Qualified and trained assessor
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CLINICAL MANAGEMENT

Advances in the understanding of brain function in noncommunicative severely brain-damaged patients go hand
in hand within their clinical management. There is currently no standard of care to guide clinical management of
patients with DOC. Once signs of consciousness are detected at the bedside (Seel et al. 2010) or via neuroimaging
(Stender et al. 2014), the next step is to find a way for these patients to communicate. Standardized protocols search-
ing for reliable responses to commands can be used to develop a binary code (Whyte et al. 1999). Communication-
enabling brain computer interfaces can also be used via active paradigms in EEG and fMRI (Chatelle et al. 2012a,
Lulé et al. 2013), or even by measuring changes in pupil size (Stoll et al. 2013).

Pharmacological treatments such as amantadine (Giacino et al. 2012) and zolpidem (Thonnard et al. 2014,
Whyte et al. 2014) should be systematically tried in DOC patients because they can potentially improve patients’
levels of awareness (Gosseries et al. 2013). Amantadine has been correlated with an increased metabolism in the
frontoparietal network in an MCS patient (Schnakers et al. 2008a), whereas Zolpidem decreased low-frequency
EEG activity in several patients with DOC (Williams et al. 2013). If signs of discomfort are observed, using for
instance the Nociception Coma Scale-Revised (Chatelle et al. 2012b), pain medication should be given (Schnakers &
Zasler 2007). This scale has been shown to selectively capture residual activity in pain matrix regions (e.g., anterior
cingulated cortex) in severely brain-damaged patients (Chatelle et al. 2014). In some cases, trials of therapeutic
interventions including invasive thalamic brain stimulation (Schiff et al. 2007), spinal cord stimulation (Yamamoto
et al. 2013), and noninvasive transcranial direct current stimulation are indicated (Thibaut et al. 2014).

Patients in MCS have more chance of recovery than do patients in VS/UWS (Luauté et al. 2010, Noé et al.
2012). Other prognostic factors are the CRS-R total score on admission (i.e., >6) (Estraneo et al. 2013), a young
age (Howell et al. 2013), a traumatic etiology (Multi-Society Task Force on PVS 1994b), an early time since onset
(Whyte et al. 2009), the presence of pupillary light reflexes (Fischer et al. 2006), the absence of medical complications
(Whyte et al. 2013), and specialized early treatment (Seel et al. 2013). VS/UWS patients who show preserved fMRI
activation of associative cortices also have higher chances to recover (Di et al. 2008, Vogel et al. 2013). Finally, the
presence of long-latency event-related potential components in response to stimuli (Estraneo et al. 2013, Fischer
et al. 2006, Steppacher et al. 2013, Xu et al. 2012) or preserved default mode network (DMN) connectivity (Norton
et al. 2012) are also indicative of a better recovery.

Advances in clinical diagnosis and detection of residual cognitive function in patients with DOC also raise new
ethical questions about withdrawal of nutrition and hydration in this patient population (Fernández-Espejo & Owen
2013, Kitzinger & Kitzinger 2014). Legal precedence in several countries has established the right of the medical
team to withdraw artificial nutrition and hydration from patients in VS/UWS, but not those in MCS (Ferreira
2007, Manning 2012). Opinions on these end-of-life decisions vary, however, depending not only on the diagnosis
of the patient, but also on the profession and the cultural background of the clinicians (Demertzi et al. 2011).
Moreover, caregivers who consider that VS/UWS patients likely feel pain are more often opposed to withdrawal of
life-sustaining therapy (Demertzi et al. 2009, 2013). Another ethical concern is the quality of life in chronic DOC
patients. This question is difficult to address in the absence of communication with the patient. In this context, it is
striking to note, however, that most LIS patients report subjective near-to-normal quality of life (Bruno et al. 2011a).

Positron emission
tomography (PET):
invasive neuroimaging
technique that
measures brain
metabolism energy
turnover

To be able to draw such strong inferences, however, these active paradigms must select only
positive responses in nonreflexive brain activation patterns following task instruction. Indeed, if a
reflex, involuntary brain activation led to a positive response in these paradigms, they would lose
their value as a diagnostic tool for willful response to command and, hence, for the presence of
consciousness in noncommunicative brain-damaged patients. Thus, validation studies should be
performed to ensure that the passive listening of the instruction to perform a task cannot elicit
a brain activity pattern similar to the one from a voluntary response. The most effective control
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Functional magnetic
resonance imaging
(fMRI): noninvasive
neuroimaging
technique that
measures neuronal
activation based on
blood-oxygen-level-
dependent (BOLD)
changes

Electroencephalo-
graphy (EEG):
noninvasive technique
that allows
practitioners to record
electrical activity in
the brain through
electrodes placed on
the scalp

Active paradigm:
procedure that
requires the subject to
perform a specific task
on request

would be to ask subjects to listen to the task instruction while being told beforehand not to per-
form the task. Ideally, two different commands should also be tested and different reproducible
responses should be obtained for each.

An appropriately controlled diagnostic test is the tennis imagery paradigm (Boly et al. 2007,
Monti et al. 2010, Owen et al. 2006) and its variants (Bardin et al. 2011). In this fMRI paradigm,
patients are instructed to repetitively alternate 30 s of motor imagery (i.e., playing tennis) or
spatial navigation mental imagery (i.e., walking in your house) with 30 s of rest. To obtain a
brain response to command, fMRI data are analyzed by detecting task-specific motor or spatial
navigation neural activation during the periods in which the patient was instructed to perform the
task, as compared with periods of rest. The 30-s imagery task duration ensures that the response
assessed is not simply due to passive processing of verbal instruction. Validation studies have also
been performed to verify that no activation is seen when an assessor instructs the patient not to
perform the task. Moreover, comparing brain activation patterns in response to the instruction to
imagine spatial navigation assesses specificity. In another recent properly controlled fMRI task,
investigators used an increase in brain activation during attention to the words “yes” or “no”
presented in a stream of numbers as a patient’s response to a command (Naci & Owen 2013). In a
separate experiment, this task was controlled for the absence of reflexive activation and, thus, for
its specificity to detect only conscious responses (Naci et al. 2013). In addition, the search for a
differential response to attention to “yes” or “no” ensures that brain activity patterns are specific
to the question asked, which further corroborates the nonreflexivity of the response.

Some properly designed EEG paradigms are currently available to clinicians who seek
command-following without motor output in brain-damaged patients. A paradigm designed by
Schnakers et al. (2008c) uses differential EEG responses during attention to names as a response to
command. In this paradigm, sequences of names containing the patient’s own name are presented,
in both passive and active conditions. In the active condition, the patients are instructed to count
her or his own name or to count another target name. The search for a difference between active
and passive conditions as well as between runs with attention to the patient’s own name and runs
with attention to another name offers a control for both the presence of nonreflexive responses
and for specificity. Finally, Cruse et al. (2011) designed an EEG paradigm to detect oscillatory
changes after the instruction to imagine squeezing one’s hand or moving one’s feet. Here again
a control experiment shows no response when the subjects are instructed not to do the task. In
addition, the comparison of the EEG activity differences for the imagery of moving the hand
versus that of moving the foot ensures specificity.

In all the previously cited active paradigms, a positive response can be considered as a reasonable
surrogate for the presence of consciousness in brain-damaged patients. Thus, these tasks may
be used as additional diagnostic tools in the clinical assessment of consciousness. In fact, these
paradigms have already allowed investigators to identify behaviorally VS/UWS answering to
command using brain activity (Cruse et al. 2011, Monti et al. 2010, Naci & Owen 2013, Owen
et al. 2006) (see also Figure 1). Once identified, these patients are not to be considered unconscious
anymore but should switch to a diagnostic category of functional MCS (Vogel et al. 2013) or MCS∗

(Gosseries et al. 2014, Stender et al. 2014).
The main limitations of the active paradigm are that negative findings occur often in DOC

and that they are uninterpretable. Recent cohort studies have indeed shown that only a minority,
about 20%, of DOC patients can positively respond to this approach (Monti et al. 2010, Stender
et al. 2014). Negative results obtained with command-following approaches could be due not to
patient unconsciousness, but to other reasons such as aphasia, apraxia, fluctuating vigilance, or
simply the patient’s unwillingness to collaborate. Thus, negative findings in the active paradigm
can never exclude the possibility that the patient has retained awareness.
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fMRI –

resting state 

MRI – DTI

PET –

resting state

     fMRI –

mental image

VS/UWS MCS ControlVS/UWS

Figure 1
Multimodal diagnosis assessment in disorders of consciousness. Illustrative neuroimaging results in two vegetative state/unresponsive
wakefulness syndrome (VS/UWS) patients, one minimally conscious state (MCS) patient, and one healthy control showing possible
dissociations between active and passive paradigms and how they usefully complement each other in the evaluation of patients. This
figure demonstrates, for example, that fMRI mental imagery tasks (motor imagery on the left, navigation imagery on the right) show
positive results in the control subject and in the second VS/UWS patient. PET and fMRI resting-state results typically show a strong
decrease in brain activity and anatomy [here, diffusion tensor imaging (DTI)] in the first VS/UWS patient and show partially preserved
brain activity in the second VS/UWS patient as in the MCS patient. Negative responses to active paradigms in MCS patients
frequently occur. Figure adapted from Gosseries et al. (2014).

Passive paradigm:
procedure without any
specific instruction
where the subject does
not do anything in
particular

Neuroimaging assessment of DOC should encompass not only active paradigm but also gen-
eral measures of brain function (the so-called passive approaches). A global assessment of brain
function is generally useful and can be especially helpful in the presence of negative results in active
paradigms. In the next section, we review potential uses of these passive neuroimaging assessment
studies for consciousness diagnosis in DOC.

NEURAL CORRELATE OF CONSCIOUSNESS

In the past few years, numerous studies identified distinct patterns of brain activity in VS/UWS as
compared with MCS (Laureys & Schiff 2012). These state-of-the-art studies held to the following
safeguards to ensure an accurate clinical diagnosis as well as an appropriate design to draw infer-
ences about group-level differences in a given population study. First, clinical diagnosis should
be performed using repeated CRS-R testing by trained assessors (Giacino et al. 2004, Seel et al.
2010). Second, a sufficient number of patients should be studied to obtain a representative sam-
ple of each population. It is indeed common that about 20% of patients in VS/UWS present an
atypical brain activity pattern. To increase sensitivity, quantitative statistical group analyses can
also be used. We now review general patterns of brain function demonstrated in recent studies of
VS/UWS and MCS patient populations.
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Default mode
network (DMN):
a network of brain
regions that are active
when the awake
subject is at rest

Spontaneous Brain Activity

There are three common ways to measure spontaneous regional brain activity using neuroimaging.
PET measures regional brain metabolism, whereas fMRI and EEG quantify oscillations at the
second and millisecond scales, respectively. Early PET studies identified decreased metabolism
in frontoparietal cortices in VS/UWS patients as compared with controls (Beuthien-Baumann
et al. 2003, Laureys et al. 1999a), resuming to normal after recovery of consciousness (Laureys
et al. 1999b). In MCS patients, lateral frontoparietal area metabolism is preserved (Figure 2a)
(Thibaut et al. 2012). In addition, MCS+ patients show preserved metabolism in language and
sensorimotor areas (Bruno et al. 2012).

EEG studies reported higher delta power in VS/UWS (Lehembre et al. 2012) and more fre-
quent high delta power microstates in VS/UWS as compared with MCS patients (Figure 2c)
(Fingelkurts et al. 2012b). These results are in line with other studies that show lower bispectral
index values (Schnakers et al. 2008b) and decreased spectral entropy in VS/UWS (Gosseries et al.
2011). Moreover, in contrast with MCS, VS/UWS patients do not present with preserved EEG
sleep-wake patterns (Landsness et al. 2011). Finally, the amplitude of low-frequency fluctuations
of resting-state fMRI signals in the precuneus is higher in MCS as compared with VS/UWS
(Figure 2b) (Huang et al. 2013).

Response to Stimuli

For regional spontaneous activity, brain reactivity to sensory stimuli can be evaluated with PET,
fMRI, or EEG. PET studies suggest that VS/UWS patients typically activate only primary sensory
cortices in response to noxious or auditory stimuli (Laureys et al. 2000a, 2002). In contrast, MCS
patients show preserved higher-order areas of activation, encompassing the frontoparietal cortices
(Figure 2d ) (Boly et al. 2005, 2004). Likewise, most VS/UWS patients display fMRI activation
of only low-level cortices in response to sensory stimuli (Coleman et al. 2009, Di et al. 2007).
In contrast, MCS patients typically recruit a more widespread set of associative sensory cortices.
Default mode network (DMN) activation in response to self-referential stimuli is also stronger
in MCS as compared with VS/UWS patients (Figure 2e) (Huang et al. 2013, Qin et al. 2010).
Finally, DMN deactivation is also preserved in MCS patients but is virtually absent in VS/UWS
patients (Crone et al. 2011).

The mismatch negativity (MMN), an early negative waveform elicited by a deviant tone in a
repetitive series, has been one of the most widely studied EEG components in patients with DOC.
MMN, as with other long latency components, is found more often in individual MCS patients
than in VS/UWS patients (Fischer et al. 2010, Höller et al. 2011, Qin et al. 2008). Another long-
latency positive component, the P3, is also found more consistently in MCS (Bekinschtein et al.
2009, Faugeras et al. 2012), although it can be detected in some VS/UWS patients (Perrin et al.
2006). Likewise, statistical group analyses suggested that MMN and P3 amplitude are higher in
MCS (Boly et al. 2011, Faugeras et al. 2012). The higher amplitude of long latency components
in MCS patients as compared with VS/UWS patients could be linked to preserved function in
cerebral backward connections (Figure 2f ) (Boly et al. 2011).

Functional Connectivity

Functional connectivity studies assess how different brain areas interact with each other.
These studies have been performed with numerous conditions in healthy subjects and patient
populations. They have now been successfully applied in several ways to differentiate MCS
patients from VS/UWS patient populations. These studies assume that if brain areas causally
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interact, the time course of their activity should be correlated. This claim usually but not
always rests on the assumption of direct anatomical connectivity between the regions studied
(Greicius et al. 2009). PET functional connectivity studies assess the correlation in metabolic
activity between different brain areas during rest or during sensory stimulation. These studies
revealed impaired frontoparietal cortico-cortical and thalamo-cortical connectivity in VS/UWS
patients as compared with healthy volunteers (Laureys et al. 1999a, 2000b). As compared with
VS/UWS patients, MCS patients show preserved PET functional connectivity in frontoparietal
cortices (Figure 2g) (Boly et al. 2004). Functional MRI resting-state connectivity studies assess
correlations in blood-oxygen-level-dependent (BOLD) signal magnitude among brain regions
over the course of a single task-free acquisition session. These resting-state fMRI studies
identified preserved connectivity in both lateral and medial frontoparietal areas in MCS patients
as compared with VS/UWS patients (Figure 2h) (Huang et al. 2013; Kotchoubey et al. 2013;
Ovadia-Caro et al. 2012; Soddu et al. 2011a,b; Vanhaudenhuyse et al. 2010). Finally, EEG
functional connectivity studies assess similarities in signal amplitude or oscillatory phase (in
given frequency bands) between scalp electrodes or between brain regions if performed in source
space. Coherence and cross-approximate entropy EEG studies confirmed stronger frontoparietal
connectivity in MCS patients as compared with VS/UWS patients (Figure 2i) (Lehembre et al.
2012, Wu et al. 2011). The organization of oscillatory brain connectivity in interacting modules
is also preserved in MCS patients as compared with VS/UWS patients (Fingelkurts et al. 2013),
especially in the DMN (Fingelkurts et al. 2012a). Overall, functional connectivity studies suggest
a link between preserved cerebral functional interactions and higher consciousness level (e.g.,
arousal and/or cognitive functions) in MCS patients as compared with VS/UWS patients.

Individual Results Analysis

As illustrated above, virtually any available neuroimaging technique can reveal different group
patterns of brain function in VS/UWS and MCS patients. Even if group separation is clear,
at the individual level outliers exist. The interpretation of outliers can be problematic. Com-
bining different techniques may be helpful to better document a patient’s general brain func-
tion (see Figure 1); however, even multimodal assessments may not provide an ultimate
solution.

Let us consider this concept in more detail using an example. Suppose we use PET to assess
10 patients unambiguously diagnosed at the bedside as VS/UWS. In our experience, out of these
10 patients, 7 will show a classical frontoparietal hypometabolic PET pattern, and 3 will have
preserved metabolism of PET. Among the 3 latter patients, typically only 1 will show a positive
response to fMRI or EEG active paradigms. Two out of these 3 will not. What do we do then? What
can we infer if the patient does not respond to the active paradigm but has a relatively normal PET?
Is high PET metabolism always a definitive marker of the presence of consciousness? If a given
neuroimaging measure was a definitive marker of consciousness, it should be consistent in other
states of unconsciousness, such as sleep, anesthesia, or seizures. And we know that during epileptic
seizures, PET metabolism can be normal, or even increased, even though subjects are unconscious
(Engel et al. 1982). Preserved brain metabolism at PET is thus not necessarily definitive proof of
the presence of consciousness. Table 2 illustrates that, to date, none of the classical neuroimaging
techniques mentioned above are sufficient to diagnose consciousness. To identify a definitive brain
signature of consciousness, developing a theoretical framework to define the mechanisms that
link consciousness and the brain is a necessary step (see sidebar, On the Nature of Consciousness,
and Figure 3). We describe the concrete application of such a theoretical framework to the
neuroimaging-based diagnosis of consciousness in the next section.
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Table 2 Comparison of neuroimaging findings in different states of unconsciousness

Techniques
VS/UWS >

MCS Alike in other states Different in other states
PET metabolism Decrease (FP) Propofol anesthesia (Fiset et al. 1999),

sleep (Braun et al. 1997, Maquet et al.
1990)

Epilepsy (Engel et al. 1982), K complex
(Picchioni et al. 2009)

fMRI: oscillation
(ALFF)

Decrease
(precuneus)

Isoflurane anesthesia (Wang et al. 2011) Sleep, midazolam anesthesia (Kiviniemi
et al. 2005)

EEG: oscillations
(delta)

Increase Sleep (Mascetti et al. 2011) Epilepsy (Blumenfeld 2005)

PET: response to
stimuli

Decrease Propofol anesthesia (Bonhomme et al.
2001)

TBD

fMRI: response to
stimuli

Decrease Propofol anesthesia (Gosseries et al. 2012,
Vanhaudenhuyse et al. 2012)

K complex (Dang-Vu et al. 2011)

EEG: response to
stimuli

Decrease Propofol anesthesia (Heinke et al. 2004) Burst suppression anesthesia (Kroeger &
Amzica 2007)

PET: functional
connectivity

Decrease (FP) Isoflurane, halothane anesthesia
(White & Alkire 2003)

TBD

fMRI: functional
connectivity

Decrease (FP) Propofol (Boveroux et al. 2010),
sevoflurane anesthesia (Martuzzi et al.
2011)

Sleep (Boly et al. 2012b, Horovitz et al.
2008)

EEG: functional
connectivity

Decrease Propofol, sevoflurane, ketamine
anesthesia (Boly et al. 2012a, Lee et al.
2013)

Sleep (Langheim et al. 2011), propofol
anesthesia (Barrett et al. 2012, Murphy
et al. 2011)

Abbreviations: ALFF, amplitude of low-frequency fluctuations; EEG, electroencephalography; fMRI, functional magnetic resonsance imaging;
FP, frontoparietal cortices; MCS, minimally conscious state; PET, positron emission tomography; TBD, to be determined; VS/UWS, vegetative
state/unresponsive wakefulness syndrome.

Brain island

Figure 3
Brain island. See sidebar, On the Nature of Consciousness, for references.

www.annualreviews.org • Measuring Consciousness 467

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
14

.3
7:

45
7-

47
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
 o

n 
10

/1
7/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



NE37CH23-Laureys ARI 30 June 2014 9:42

ON THE NATURE OF CONSCIOUSNESS

To develop a mechanistic account of the relationship between consciousness and the brain, forging a comprehensive
theory of consciousness is a necessary step. Developing a theory of consciousness is not only useful at a conceptual
level, but would also have direct practical implications for assessing patients with DOC. A thoroughly validated
theory of consciousness is ultimately the only way to make strong inferences about the presence or absence of
consciousness in unresponsive brain-damaged patients where all the other approaches fail.

Let us consider a hypothetical example of an unresponsive brain-damaged patient, whose PET scan shows
an island of preserved activity in the right posterior parietal cortex (Figure 3). The patient shows only reflexive
spontaneous behavior, no behavioral response to command, and no ability to communicate. He also does not follow
commands on active paradigms. Moreover, afferent pathways are damaged, impairing the recruitment of cortical
areas in response to sensory stimulation. Strikingly, however, brain anatomy, resting metabolism, and fast EEG
activity are well preserved in the right posterior parietal cortex.

What can we infer about the presence or absence of consciousness in such a patient? Is anybody home? Is the
presence of a well-functioning parietal cortex alone enough for some amount of consciousness (even though, of
course, it would be lacking some attributes)? And if so, what could we infer about the contents of consciousness?
Would there be any visual, auditory, or verbal content? Would he feel any pain? Would he have any degree of self-
awareness? Answering such questions exclusively on the basis of empirical data would clearly not be possible because
one cannot directly ask an isolated parietal cortex if it is conscious. Instead, one needs a theory of consciousness that
starts from the fundamental features of consciousness itself, provides general principles concerning the necessary and
sufficient conditions for consciousness, leads to measures of consciousness that are generally applicable, and provides
some guidance about how the quality of experience is determined by the neuroanatomical and neurophysiological
organization of brain structures. Thus, in our view, the science of coma and the science of consciousness go hand
in hand.

Transcranial
magnetic stimulation
(TMS): technique
that allows
investigators to
stimulate the brain
noninvasively, which
induces neuronal
depolarization and
discharge of action
potentials

NREM: non–rapid
eye movement sleep

REM: rapid eye
movement sleep

FROM EXPLORATORY TO EXPLANATORY NEURAL
CORRELATES OF CONSCIOUSNESS

In the past two decades, several neuroscientific theories hypothesized about the relationships
between the brain and consciousness (Block 2011, Dehaene & Changeux 2011, Lamme 2006, Lau
& Rosenthal 2011, Tononi 2008, Tononi & Edelman 1998). Such theories can help identify brain
markers of the presence or absence of consciousness using neuroimaging. We illustrate this point
using the integrated information theory of consciousness (IITC) (Tononi 2012).

IITC states that consciousness is related to a system’s capacity for information integration
(Tononi 2008, 2012). In the case of the brain, the theory predicts that consciousness-supporting
networks should present an optimal balance between functional integration and differentiation
(Boly et al. 2009). This hypothesis has recently been tested using transcranial magnetic stimu-
lation (TMS) coupled with high-density EEG. This technique allows investigators to directly
measure effective connectivity responses (i.e., TMS-induced causal interactions between distant
brain areas) with EEG (Massimini et al. 2009). Our group, in collaboration with Massimini (from
the University of Milan) and Tononi (from the University of Wisconsin-Madison), has applied
TMS-EEG to assess brain function during sleep, under anesthesia, and in brain-damaged patients.
Results of these studies show clear-cut differences in TMS-EEG responses between conscious and
unconscious subjects in all conditions. During non–rapid eye movement sleep (NREM), under
general anesthesia (e.g., midazolam), and in VS/UWS patients, TMS typically triggers a stereo-
typical slow wave that stays local, which indicates a breakdown of effective connectivity (Ferrarelli
et al. 2010, Massimini et al. 2005, Rosanova et al. 2012). In contrast, during normal wakefulness,
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VS/UWS MCS

TMS TMS TMS

TMS TMS TMS

EMCS

100 ms

Day

CRS-R

34

2 2 3 3
5

9
7

35 38 41 45 46 5447

16

Figure 4
TMS-EEG responses during recovery from coma. TMS-EEG measurements in a patient evolving from
vegetative/unresponsive wakefulness syndrome (VS/UWS, black arrow) to a minimally conscious state (MCS,
blue arrow), then to emergence of MCS (EMCS, red arrow). The figure illustrates both the spreading and
time courses of cortical currents evoked by TMS when stimulating parietal (top) and frontal (bottom) cortices
(white crosses). In VS/UWS patients, the response stays local and stereotyped and becomes widespread and
differentiated in MCS and EMCS patients. Other abbreviations: CRS-R, Coma Recovery Scale-Revised;
EEG, electroencephalography; TMS, transcranial magnetic stimulation. Figure adapted from Rosanova
et al. (2012).

PCI: perturbational
complexity index

in MCS, EMCS, and LIS patients, or during rapid eye movement (REM) sleep, brain activation
patterns to TMS are always complex, i.e., widespread and differentiated (Figure 4) (Massimini
et al. 2005, 2010; Rosanova et al. 2012).

We recently designed a new empirical measure known as the perturbational complexity in-
dex (PCI) to quantify in one number the difference in TMS-EEG responses present between
states of consciousness and states of unconsciousness (Casali et al. 2013). PCI estimates both
the information content and the integration of brain activations through the computation of the
normalized Lempel-Ziv complexity (Lempel & Ziv 1976) of the significant EEG spatiotemporal
responses to TMS. According to our current results, PCI is remarkably reliable to differentiate
consciousness from unconsciousness within and across subjects and conditions: It is always high
(i.e., above 0.31) in healthy awake subjects, in MCS, EMCS and LIS patients, as well as during
REM sleep, but is invariably low (i.e., below 0.31) during NREM sleep, in patients in VS/UWS
and under anesthesia-induced unconsciousness (using midazolam, propofol, or xenon) (Figure 5).
PCI also allows a clear-cut differentiation between patients in VS/UWS and those who recovered
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a  PCI in wakefulness, sleep, and anesthesia
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e
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TMS targets TMS intensity ConditionsBA08
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BA19
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NREM sleep/anesthesia

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 51525323130292827262524232221

0.4
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NREM sleep Midazolam Xenon Propofol

(V/m) 16585

b  PCI in severe brain damage
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Patients

VS/UWS MCS EMCS LIS

TMS targets

Figure 5
Perturbational complexity index (PCI) as a marker of consciousness. (a) PCI in wakefulness, sleep, and anesthesia. PCI calculated
during wakefulness ranges between 0.44 and 0.67, whereas PCI calculated during unconsciousness [i.e., non-rapid eye movement
(NREM) sleep and midazolam, xenon, or propofol anesthesia] ranges between 0.12 and 0.31. The histograms display the distributions
of PCI across subjects during conscious (dark gray bars) and unconscious (light gray bars) conditions. (b) PCI in severe brain damage.
PCI follows the level of consciousness assessed with the Coma Recovery Scale-Revised (CRS-R). It progressively increases from
vegetative state/unresponsive wakefulness syndrome (VS/UWS) to minimally conscious state (MCS) and emergence of the MCS
(EMCS). VS/UWS values are in the same range as those observed during NREM sleep and general anesthesia. PCI for EMCS and
locked-in (LIS) patients are in the same range as healthy awake subjects. Patients in MCS show intermediate PCI values but never
below the threshold of unconsciousness (gray dashed line, PCI = 0.31). Other abbreviation: TMS, transcranial magnetic stimulation.
Figure adapted from Casali et al. (2013).
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consciousness (i.e., MCS, EMCS and LIS) at the single-subject level. Further studies on larger
samples should confirm these inaugural results. In sum, the highly promising aspect of this theo-
retically based index of consciousness levels motivates interest in a theoretical framework to help
design clinically applicable diagnostic tools for consciousness.

CONTENTS OF CONSCIOUSNESS: WHAT IS IT
LIKE TO BE IN AN MCS?

Previous sections discuss progress concerning the diagnosis of the level of consciousness in DOC.
However, another outstanding question remains essentially unaddressed: What is the content of
consciousness in MCS or in behaviorally VS/UWS patients reclassified by neuroimaging as MCS∗?
What is it like to be in an MCS? Contents of consciousness are usually assessed by obtaining
subjects’ reports. In MCS patients, no report can be obtained because no accurate communication
is possible. Generalizing neural correlates of conscious content observed in healthy volunteers to
interpret MCS brain findings is also problematic because of the presence of the brain lesions and
the possible ensuing reorganization. Studies of cognition in MCS using EEG and fMRI active
paradigms could help address this question, at least in part. Making inferences about the content
of consciousness in noncommunicative patients is a question that can only be addressed fully
if empirical studies are complemented by a general theoretical framework (see sidebar, On the
Nature of Consciousness, above).

CONCLUSIONS

Recent years witnessed numerous advances in the diagnosis and understanding of brain function
in DOC. Research combining clinical, neuroimaging, and theoretical approaches will likely lead
to continued fruitful advances in the diagnosis and treatment of these patients.

We offer a few take-home messages:

1. Consciousness is tricky to diagnose clinically; consider the patient as conscious until all
evidence is collected.

2. Active paradigms, when properly designed, can successfully probe evidence of the presence
of consciousness in unresponsive patients; caution in interpreting negative results is needed,
however.

3. Neuroimaging and electrophysiological studies have identified consistent group differences
in brain activity patterns in MCS patients as compared with VS/UWS patients. Single-
subject level interpretation of these results is nevertheless often limited.

4. Theoretically based neuroimaging approaches (such as PCI) are highly promising to identify
reliable single-subject level markers of consciousness. Larger population studies of PCI as a
consciousness meter are ongoing.

5. More research on the contents of consciousness in DOC patients is needed.
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Luauté J, Maucort-Boulch D, Tell L, Quelard F, Sarraf T, et al. 2010. Long-term outcomes of chronic

minimally conscious and vegetative states. Neurology 75:246–52
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