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ABSTRACT

The subtle and unique imprint of dark matter substructure on extended arcs in strong lensing systems

contains a wealth of information about the properties and distribution of dark matter on small scales

and, consequently, about the underlying particle physics. However, teasing out this effect poses a sig-

nificant challenge since the likelihood function for realistic simulations of population-level parameters

is intractable. We apply recently-developed simulation-based inference techniques to the problem of

substructure inference in galaxy-galaxy strong lenses. By leveraging additional information extracted

from the simulator, neural networks are efficiently trained to estimate likelihood ratios associated

with population-level parameters characterizing substructure. Through proof-of-principle application

to simulated data, we show that these methods can provide an efficient and principled way to simul-

taneously analyze an ensemble of strong lenses, and can be used to mine the large sample of lensing

images deliverable by near-future surveys for signatures of dark matter substructure. �
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1. INTRODUCTION

Dark matter (DM) accounts for nearly a quarter of

the energy budget of the Universe, and pinning down its

fundamental nature and interactions is one of the most

pressing problems in cosmology and particle physics to-

day. Despite an organized effort to do so through terres-

trial (e. g., Akerib et al. 2017; Cui et al. 2017; Aprile

et al. 2018), astrophysical (e. g., Albert et al. 2017;

Chang et al. 2018; Lisanti et al. 2018), and collider (e. g.,

Sirunyan et al. 2017; Aaboud et al. 2019) searches, no

conclusive evidence of interactions between the Stan-

dard Model (SM) and dark matter exists to-date.

ar
X

iv
:1

90
9.

02
00

5v
1 

 [
as

tr
o-

ph
.C

O
] 

 4
 S

ep
 2

01
9

http://orcid.org/0000-0003-3344-4209
http://orcid.org/0000-0001-9088-7845
http://orcid.org/0000-0002-1471-2063
http://orcid.org/0000-0002-2082-3106
http://orcid.org/0000-0002-5769-7094
https://github.com/smsharma/StrongLensing-Inference
mailto: sm8383@nyu.edu
mailto: johann.brehmer@nyu.edu


2 Brehmer and Mishra-Sharma et al.

Meanwhile, dark matter can also be studied directly

through its irreducible gravitational interactions. The

concordance Λ Cold Dark Matter (ΛCDM) framework of

non-relativistic, collisionless dark matter particles pro-

vides an excellent description of the observed distri-

bution of matter on large scales. However, many well-

motivated models predict deviations from ΛCDM on

smaller scales. Fundamental dark matter microphysical

properties such as its particle mass and self-interaction

cross-section can imprint themselves onto its macro-

scopic distribution in ways that can be probed by cur-

rent and future experiments (Buckley & Peter 2018;

Drlica-Wagner et al. 2019; Simon et al. 2019). As a

motivating example, if dark matter has a significant

free-streaming length, this would lead to its early de-

coupling from the cosmic plasma and an underabun-

dance of lower-mass subhalos today (Bond & Szalay

1983; Bode et al. 2001; Dalcanton & Hogan 2001; Boy-

anovsky et al. 2008; Boyanovsky & Wu 2011). Dark mat-

ter self-interactions (Spergel & Steinhardt 2000; Yoshida

et al. 2000; Davé et al. 2001; Coĺın et al. 2002; Vogels-

berger et al. 2012; Peter et al. 2013; Zavala et al. 2013;

Kaplinghat et al. 2014, 2016; Kamada et al. 2017; Elbert

et al. 2018; Vogelsberger et al. 2019; Kahlhoefer et al.

2019; Nishikawa et al. 2019; Robles et al. 2019) and dis-

sipative dynamics in the dark sector (Fan et al. 2013;

Agrawal et al. 2017; Agrawal & Randall 2017; Buckley

& DiFranzo 2018) are examples of scenarios that would

modify the structure of the subhalo density profiles in

addition to possibly depressing the abundance of lower-

mass halos as compared to CDM predictions in the lat-

ter case (Buckley et al. 2014; Schewtschenko et al. 2015;

Vogelsberger et al. 2016).

There exist several avenues for probing the distribu-

tion of dark matter on small scales. While the detection

of ultrafaint dwarf galaxies through the study of stel-

lar overdensities and kinematics (Koposov et al. 2008,

2015; Bechtol et al. 2015; Drlica-Wagner et al. 2015)

can be used to make statements about the underlying

dark matter properties, theoretical uncertainties in the

connection between stellar and halo properties (Nadler

et al. 2019; Wechsler & Tinker 2018) and the effect of

baryons on the satellite galaxy population (Errani et al.

2017; Garrison-Kimmel et al. 2017; Brooks 2018; Fitts

et al. 2018) pose a challenge. Furthermore, suppressed

star formation in smaller halos means that there exists

a threshold (. 108 M�) below which subhalos are ex-

pected to be mostly dark and devoid of baryonic activ-

ity (Efstathiou 1992; Fitts et al. 2017; Read et al. 2017).

This makes studying the imprint of gravitational inter-

actions the only viable avenue for probing substructure

at smaller scales. In this spirit, the study of subhalo-

induced perturbations to the kinematic phase-space dis-

tribution in cold stellar streams (Johnston et al. 1999;

Carlberg 2012; Carlberg & Grillmair 2013; Bonaca &

Hogg 2018; Bonaca et al. 2019), and in Galactic stel-

lar fields (Buschmann et al. 2018) have been proposed

as methods to look for low-mass subhalos through their

gravitational interactions in the Milky Way.

Complementary to the study of locally-induced grav-

itational effects, gravitational lensing has emerged as

an important technique for studying the distribution

of matter over a large range of scales. Locally, the

use of time-domain astrometry has been proposed as

a promising method to measure the distribution of lo-

cal substructure through correlated, lens-induced mo-

tions of background celestial objects due to foreground

subhalos (Van Tilburg et al. 2018). In the extragalac-

tic regime, galaxy-scale strong lenses are laboratories

for studying dark matter substructure. The typical sub-

structure abundance within galaxy-scale lenses has been

constrained through the measurement of positions and

flux ratios of multiple images in quasar lenses (Dalal

& Kochanek 2002; Hsueh et al. 2019) and lensed im-

ages of extended (Vegetti et al. 2010b,a, 2012; Hezaveh

et al. 2016b) as well as quasar sources (Fadely & Keeton

2012; Nierenberg et al. 2014, 2017; Gilman et al. 2019a)

have been used to set limits on the abundance of or

find evidence for individual subhalo clumps with masses

& 108 M�. Although these individual high-significance

detections can be used to derive constraints on sub-

structure abundance and the subhalo mass function,

searches for one (or a general fixed number of) subhalos

do not take into account covariances between models

with different numbers of subhalos and can leave un-

expressed the degeneracies between, e.g., the imprint of

several low-mass subhalos and that of a massive subhalo

perturber. Additionally, these detections by definition

probe the most massive subhalos in the lensing galax-

ies which, given the particle physics-motivated goal of

constraining small-scale structure, is the less interest-

ing regime compared to probing the fainter end of the

subhalo mass function.

Another approach relies on probing the collective ef-

fect of sub-threshold (i. e., not individually resolvable)

subhalos on extended arcs in strongly lensed systems. A

particular challenge here is that the properties of the

individual subhalos correspond to a high-dimensional

space of latent variables, which must be marginalized

to compute the likelihood. This complicated marginal-

ization integral makes the likelihood for population-

level parameters effectively intractable. Methods based

on summary statistics (Birrer et al. 2017a) and study-

ing the amplitude of spatial fluctuations on different
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scales through a power spectrum decomposition (Heza-

veh et al. 2016a; Cyr-Racine et al. 2016; Diaz Rivero

et al. 2018; Chatterjee & Koopmans 2018; Dı́az Rivero

et al. 2018; Cyr-Racine et al. 2019; Brennan et al. 2019)

have been proposed as ways to reduce the dimensional-

ity of the problem and enable substructure inference in

a tractable way. This class of methods is well-suited to

studying dark matter substructure since they can be sen-

sitive to the population properties of low-mass subhalos

in strongly lensed galaxies which are directly correlated

with the underlying dark matter particle physics.

Particularly promising in this regard are trans-

dimensional techniques like probabilistic cata-

loging (Brewer et al. 2016; Daylan et al. 2018) that

have been proposed to take into account covariances

between models with different numbers of subhalos in

a principled manner and can efficiently map out the

parameter space associated with multiple sub-threshold

objects in lensing systems. The output of such analyses

is a ensemble of posterior-weighted subhalo catalogs

which can be marginalized over to infer higher-level

parameters (hyperparameters) characterizing the popu-

lation properties of subhalos, potentially over multiple

lensing images. These results can be highly sensitive to

the assumed metamodel complexity however (Daylan

et al. 2018) and potentially computationally limited for

a large number of lenses as they require running an

independent analysis to produce a probabilistic catalog

for each image.

Current and near-future observatories like DES (Dark

Energy Survey Collaboration et al. 2016), LSST (LSST

Science Collaboration et al. 2009; Drlica-Wagner et al.

2019; Verma et al. 2019), and Euclid (Refregier et al.

2010) are expected to find hundreds to thousands of

galaxy-galaxy strong lenses (Oguri & Marshall 2010;

Treu 2010; Collett 2015), making substructure inference

in these systems (and high-resolution followups on a sub-

set) one of the key avenues for investigating dark mat-

ter substructure and stress-testing the Cold Dark Mat-

ter paradigm in the near future. This calls for methods

that can efficiently analyze large samples of lensed im-

ages to infer the underlying substructure properties with

minimal loss of information stemming from dimensional

reduction.

In recent years, a large number of methods have been

developed that train neural networks to estimate the

likelihood function, likelihood ratio function, or poste-

rior (Fan et al. 2012; Dinh et al. 2014; Germain et al.

2015; Jimenez Rezende & Mohamed 2015; Cranmer

et al. 2015; Dinh et al. 2016; Paige & Wood 2016; Papa-

makarios & Murray 2016; Thomas et al. 2016; Uria et al.

2016; van den Oord et al. 2016b,c,a; Tran et al. 2017; Pa-

pamakarios et al. 2017; Louppe & Cranmer 2017; Lueck-

mann et al. 2017; Gutmann et al. 2017; Chen et al.

2018; Dinev & Gutmann 2018; Grathwohl et al. 2018;

Huang et al. 2018; Kingma & Dhariwal 2018; Lueck-

mann et al. 2018; Papamakarios et al. 2018; Alsing et al.

2019; Hermans et al. 2019). These techniques can be

directly applied to population-level parameters, avoid-

ing an additional marginalization step. In contrast to

traditional simulation-based (or “likelihood-free”) ap-

proaches, namely Approximate Bayesian Computation,

they do not rely on summary statistics and instead learn

to extract information directly from the full input data,

which in our case corresponds to the observed lensed

images. Finally, some of these methods let us to amor-

tize the computational cost of the inference—after an

upfront simulation and training phase, inference for any

observed lensed image is efficient, enabling a simultane-

ous analysis of a large number of observations.

In this paper, we follow this approach and apply a

particularly powerful technique for simulation-based in-

ference introduced in Brehmer et al. (2018a,b,c); Stoye

et al. (2018) to the problem of extracting high-level sub-

structure properties from an ensemble of galaxy-galaxy

strong lensing images. This method extracts additional

information from the simulator, which is then used to

train a neural network as a surrogate for the likelihood

ratio function. The additional information increases the

sample efficiency during training and thus reduces the

computational cost. A calibration procedure ensures cor-

rect inference results even in the case of imperfectly

trained networks. We demonstrate the feasibility of this

method on a catalog of simulated lenses. After discussing

the information content in individual lensed images, we

switch to a simultaneous analysis of multiple observed

images and calculate the expected combined constraints

on population-level substructure parameters in both a

frequentist and a Bayesian setup.

This paper is organized as follows. In Section 2 we

briefly review the formalism of gravitational strong lens-

ing and describe our simulation setup, including the as-

sumptions we make about the population of background

sources and host galaxies, the substructure population,

and observational parameters. In Section 3 we describe

the simulation-based analysis technique used and its

particular application to the problem of mining dark

matter substructure properties from an ensemble of ex-

tended lensed arcs. We show a proof-of-principle appli-

cation to simulated data in Section 4 and comment on

how this method can be extended to more realistic sce-

narios in Section 5. We conclude in Section 6. In the

spirit of reproducibility, code associated with this paper

is available on GitHub � and we provide links below

https://github.com/smsharma/mining-for-substructure-lens
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each figure (6) pointing to the Jupyter notebooks used

to generate them.

2. STRONG LENSING FORMALISM AND

SIMULATION SETUP

In strong lensing systems a background light source is

gravitationally lensed by an intervening mass distribu-

tion, resulting in multiple localized images on the lens

plane (in the case of a point-like quasar source) or an

arc-like image (in the case of an extended galaxy source).

The latter provides the ability to probe substructure

over a relatively larger region on the lens plane. Addi-

tionally, young, blue galaxies are ubiquitous in the red-

shift regime z & 1 and dominate the faint end of the

galaxy luminosity function, resulting in a larger deliv-

erable sample of galaxy-galaxy strong lenses compared

to that of multiply-imaged quasars. For these reasons,

we focus our method towards galaxy-galaxy lenses—

systems with extended background sources producing

images with lensed arcs—although the techniques pre-

sented here can also be applied to samples of lensed

quasars.

We now briefly review the basic mathematical formal-

ism behind strong gravitational lensing before describing

in turn the models for the lensing galaxy, background

source, and dark matter substructure assumed in this

study. We also describe the mock observational parame-

ters assumed for the image sample as well as the popula-

tion properties of the host lenses. Taken together, these

define our lensing forward model.

2.1. Strong lensing formalism

Given a mass distribution with dimensionless pro-

jected surface mass density κ(θ) = Σ(θ)/Σcr, where

Σcr ≡ 1
4πGN

Ds

DlsDl
is the critical lensing surface density

and Dl, Ds, and Dls are the observer-lens, observer-

source, and lens-source angular diameter distances re-

spectively, the two-dimensional projected lensing poten-

tial is given by (e. g., Schneider et al. 1992; Bartelmann

& Schneider 2001)

ψ(θ) =
1

π

∫
dθ′ ln |θ − θ′|κ(θ′). (1)

The reduced deflection angle is given by the gradient of

the projected lensing potential,

φ(θ) = ∇ψ(θ) =
1

π

∫
dθ′ θ − θ′

|θ − θ′|2 κ(θ′) (2)

and can be used to determine the position of the lensed

source θ through the lens equation,

β = θ − φ(θ) (3)

where β is the position of the source. For an extended

source profile fs, the final lensed image f ′s can be ob-

tained as the source light profile evaluated on the image

plane (e. g., Daylan et al. 2018),

f ′s(θ) = fs (θ − φ(θ)) . (4)

Given a lens density profile, the deflection vector can

be computed using Equation (2), and analytic expres-

sions for many commonly considered profiles are avail-

able in the literature (e. g., Keeton 2001). The projected

lensing potential and mass density are related through

the Poisson equation ∇2ψ(θ) = 2κ(θ), and its linearity

implies that the combined projected potential due to

multiple perturbers can be written as the sum of indi-

vidual potentials, and the individual deflections can be

superimposed as a consequence. The total deflection can

then be used to calculate the lensed image for a given

source profile using Equation (4). For more details on the

gravitational lensing formalism see, e. g., Schneider et al.

(1992); Bartelmann & Schneider (2001); Treu (2010).

2.2. Lensing host galaxy

Cosmological N -body simulations suggest that the

dark matter distribution in structures at galactic scales

can be well-described by a universal, spherically sym-

metric Navarro-Frenk-White (NFW) profile. However,

strong lensing probes a region of the host galaxy much

smaller than the typical virial radii of galaxy-scale dark

matter halo, and the mass budget here is dominated by

the baryonic bulge component of the galaxy. Taking this

into account, the total mass budget of the lensing host

galaxy, being early-type, can be well-described by a sin-

gular isothermal ellipsoid (SIE) profile. Since neither the

dark matter nor the baryonic components are individu-

ally isothermal, this is sometimes known as the bulge-

halo conspiracy (Treu 2010). We consider the spherical

simplification of the SIE profile, the singular isothermal

sphere (SIS), with the density distribution given by (Ko-

rmann et al. 1994; Treu 2010)

ρSIS(r) =
σ2
v

2πGNr2
(5)

where σv is the central 1-D velocity dispersion of the

lens galaxy and q is the ellipsoid axis ratio, with q = 1

corresponding to the SIS profile. The Einstein radius

for this profile, defining the characteristic lensing scale,

is given by (Treu 2010)

θE = 4πσ2
v

Dls (zl, zs)

Ds (zs)
, (6)

where zl and zs are respectively the lens and source red-

shifts. We use the cosmology from Planck Collaboration
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et al. (2016) to compute cosmological distances through-

out this paper.

The deflection field for the SIE profile is given by (Kee-

ton 2001)

φx =
θEq√
1− q2

tan−1
[√

1− q2θx
χ

]
(7)

φy =
θEq√
1− q2

tanh−1
[√

1− q2θy
χ+ q2

]
(8)

with χ ≡
√
θ2xq

2 + θ2y and we explicitly denote our an-

gular coordinates as {θx, θy}.
Although the total galaxy mass (baryons + dark mat-

ter) describe the macro lensing field, for the purposes of

describing substructure we require being able to map the

measured properties of an SIE lens onto the properties

of the host dark matter halo. To do this, we relate the

central stellar velocity dispersion σv to the mass M200

of the host dark matter halo. Zahid et al. (2018) derived

a tight correlation between σv and M200, modeled as

log

(
M200

1012 M�

)
= α+ β

(
σv

100 km s−1

)
(9)

with α = 0.09 and β = 3.48. We model the host dark

matter halo with an NFW profile (Navarro et al. 1996,

1997)

ρNFW(r) =
ρs

(r/rs) (1 + r/rs)
2 (10)

where ρs and rs are the scale density and scale radius,

respectively. The halo virial mass M200 describes the

total mass contained with the virial radius r200, defined

as the radius within which the mean density is 200 times

the critical density of the universe and related to the

scale radius through the concentration parameter c200 ≡
r200/rs. Thus, an NFW halo is completely described by

the parameters {M200, c200}. We use the concentration

model from Sánchez-Conde & Prada (2014) to derive

the halo concentration for a given NFW virial mass.

The spherically-symmetric deflection for an NFW per-

turber is given by (Keeton 2001)

φr = 4κsrs
ln(x/2) + F(x)

x
, (11)

where x ≡ r/rs, κs ≡ ρs rs/Σcr, and

F(x) =





1√
x2−1 tan−1

√
x2 − 1 (x > 1)

1√
1−x2

tanh−1
√

1− x2 (x < 1)

1 (x = 1).

(12)

We described the population parameters used to

model the host velocity dispersion (and thus its Ein-

stein radius and dark matter halo mass) in Section 2.6

below.

2.3. Background source

We model the emission from background source galax-

ies using a Sérsic profile, with the surface brightness

given by (Sérsic 1963)

fs(θr) = fe exp

{
−bn

[(
θr
θr,e

)1/n

− 1

]}
, (13)

where θr,e is the effective circular half-light radius, n is

the Sérsic index, and bn is a factor depending on n that

ensures that θr,e contains half the total intensity from

the source galaxy, given by (Ciotti & Bertin 1999)

bn ≈ 2n− 1

3
+

4

405n
+

46

25515n2

+
131

1148175n3
− 2194697

30690717750n4
.

We assume n = 1 for the source galaxies, corre-

sponding to a flattened exponential profile and consis-

tent with expectation for blue-type galaxies at the rel-

evant redshifts. fe encodes the flux at half-light radius,

which can be inferred from the total flux (or magni-

tude) associated with a given galaxy as follows. For a

detector with zero-point magnitude M0, which speci-

fies the magnitude of a source giving 1 count s−1 in ex-

pectation, by definition the total counts are given by

Stot = 100.4(M−M0). Requiring the half-light radius to

contain half the expected counts, for n = 1 we have the

relation fe ≈ 0.526 texpStot/(2πθ
2
r,e) in counts arcsec−2,

where texp is the exposure time.

The treatment of the other Sérsic parameters, in par-

ticular the total emission and half-light radius, in the

context of population studies is described in Section 2.6
below.

2.4. Lensing substructure

The ultimate goal of our method is to characterize

the substructure population in strong lenses. Here we

describe our procedure to model the substructure contri-

bution to the lensing signal. Understanding the expected

abundance of substructure in galaxies over a large range

of epochs is a complex problem and an active ongoing

area of research. Properties of individual subhalos (such

as their density profiles) as well as those that describe

their population (such as the mass and spatial distri-

bution) are strongly affected by their host environment,

and accurately modeling all aspects of subhalo evolution

and environment is beyond the scope of this paper. In-

stead, we use a simplified description to model the sub-

structure contribution in order to highlight the broad
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methodological points associated with the application

of our method.

Λ Cold Dark Matter (ΛCDM), often called the stan-

dard model of cosmology, predicts a scale-invariant

power spectrum of primordial fluctuations and the exis-

tence of substructure over a broad range of masses with

approximately equal contribution per logarithmic mass

interval. We parameterize the distribution of subhalo

masses m200 in a given host halo of mass M200—the sub-

halo mass function—as a power law distribution with a

linear dependence on the host halo mass,

dn

d log m200

m200,0

=




α M200

M200,0

(
m200

m200,0

)β
(mmin

200≤m200≤mmax
200 )

0 (else) ,

(14)

where α encodes the overall substructure abundance,

with larger α corresponding to more substructure, and

the slope β < 0 encodes the relative contribution of

subhalos at different masses, with more negative β cor-

responding to a steeper slope with more low-mass sub-

halos. m200,0 and M200,0 are arbitrary normalization fac-

tors.

Theory and simulations within the framework of

ΛCDM predict a slope β ≈ −0.9 (Madau et al. 2008;

Springel et al. 2008), resulting in a nearly scale-invariant

spectrum of subhalos, which we assume in our fiducial

setup. We parameterize the overall subhalo abundance

α through the mass fraction within the lensing galax-

ies contained in subhalos, fsub, defined as the fraction

of the total dark matter halo mass contained in bound

substructure in a given mass range:

fsub =

∫m200,max

m200,min
dm200m200

dn
dm200

M200
. (15)

For a given {fsub, β} and host halo mass M200, this can

be used to determine α in Equation (14). The linear scal-

ing of the subhalo mass function with the host halo mass

M200 in Equation (14) is additionally described in Han

et al. (2016); Despali & Vegetti (2017). In our fidu-

cial setups, we take the minimum and maximum sub-

halo masses to be m200,min = 106 M� and m200,max =

0.01 M200 (Despali & Vegetti 2017; Hiroshima et al.

2018) respectively, and corresponding fiducial substruc-

ture mass fraction in this range of 5%, roughly consis-

tent with observations in Dalal & Kochanek (2002); Hi-

roshima et al. (2018); Hsueh et al. (2019).

With all parameters of the subhalo mass function

specified, the total number of subhalos ntot expected

within the virial radius R200 of the host halo can be

inferred as
∫m200,max

m200,min
dm200

dn
dm200

. Strong lensing probes

a region much smaller than this scale—the typical Ein-

stein radii for the host deflector are much smaller than

the virial radius of the host dark matter halos. In or-

der to obtain the expected number of subhalos within

the lensing observation’s region of interest (ROI), we

scale the total number of subhalos obtained from the

above procedure by the ratio of projected mass within

our region of interest θROI and the host halo mass M200

as follows. We assume the subhalos to be distributed

in number density following the host NFW dark mat-

ter profile. In this case, the enclosed mass function is

Menc(x) = M200 [ln(x/2) + F(x)] (e. g., Keeton 2001),

where x is the angular radius in units of the scale radius,

x ≡ θ/θs and F(x) is given by Equation (12) above. The

expected number of subhalos within our ROI is thus ob-

tained as nROI = ntot [ln(xROI/2) + F(xROI)]. We con-

servatively take the lensing ROI to enclose a region of

angular size twice the Einstein radius of the host halo,

θROI = 2 · θE .

Since strong lensing probes the line-of-sight distribu-

tion of subhalos within the host, their projected spatial

distribution is approximately uniform within the lens-

ing ROI (Despali & Vegetti 2017). We thus distribute

subhalos uniformly within our ROI. The density pro-

file of subhalos is assumed to be NFW and given by

Equation (10), with associated lensing properties as de-

scribed and the concentration inferred using the model

in Sánchez-Conde & Prada (2014).

We finally emphasize that we do not intent to capture

all of the intricacies of the subhalo distribution, such as

the effects of baryonic physics, tidal disruption of sub-

halos in proximity to the center of the host and redshift

evolution of host as well as substructure properties. Al-

though our description can be extended to take these

effects into account (see Section 5), their precise char-

acterization is still subject to large uncertainties, and

our simple model above captures the essential physics

for demonstration purposes.

2.5. Observational considerations

A noted above, our method is best-suited to analyz-

ing a statistical sample of strong lenses, such as those

that are expected to be obtained in the near future with

optical telescopes like Euclid and LSST, to quantify the

effect of substructure. Given the challenges associated

with the precise characterization of such a sample at the

present time, we describe here the observational charac-

teristics we assume in order to build up training and

testing samples to validate our inference techniques.

We largely follow the description of Collett (2015)

and use the associated LensPop package to character-

ize our mock observations. In particular, we use the

nominal detector configuration for Euclid, assuming a

zero-point magnitude mAB = 25.5 in the single opti-
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cal VIS passband, a 64 × 64 pixel grid with pixel size

0.1 arcsec, a Gaussian point spread function (PSF) with

FWHM 0.18 arcsec, individual exposures with exposure

time 1610 s, and an isotropic sky background with mag-

nitude 22.8 arcsec−2 in the detector passband.

These properties, in particular the exposure, sky back-

ground, and PSF shape, are expected to vary somewhat

across the lens sample. Additionally, a given region may

be imaged by multiple exposures over a range of color

bands. Although such variations can be incorporated

into our analysis, modeling these features is beyond the

scope of this study. We comment on these extensions in

Section 5.

2.6. Population properties of the lens and source

samples

The fact that the strong lens population is expected

to be dominated by higher-redshift (zs & 1) blue source

galaxies lensed by intermediate-redshift (zl ∼ 0.5–1) el-

liptical galaxies presents significant challenges for quan-

tifying the lens population obtainable with future obser-

vations. Specifically, planned ground-based surveys like

LSST and space telescopes like Euclid present comple-

mentary challenges for delivering images of strong lens-

ing systems suitable for substructure studies. LSST is

expected to image in six bands, allowing for efficient

separation between source and lens emission, but at the

cost of lower resolution by virtue of being a ground-

based instrument. Euclid imaging is expected be higher

in resolution but with a single optical passband (VIS).

Near-IR imaging from WFIRST may deliver a high-

resolution, multi-wavelength dataset that is more suit-

able for substructure studies, although potentially with

different lens and source samples from those deliverable

by optical telescopes.

In light of these uncertainties, we confine ourselves

to a setting where the main methodological points can

be made without detailed modeling of the detector ca-

pabilities and the deliverable lensing dataset, which is

outside of the scope of the current paper. For concrete-

ness, we simulate a sample of lenses with a simplified

subset of host galaxy properties consistent with those

deliverable by Euclid as modeled by Collett (2015). In

particular, we assume spherical lenses, with ellipticity

parameter q = 1 in Equation (5). We draw the cen-

tral 1-D velocity dispersions σv of host galaxies from

a normal distribution with mean 225 km s−1 and stan-

dard deviation 50 km s−1. Following Zahid et al. (2018),

Equation (9) is used to map the drawn σv to a dark

matter halo mass M200, and the host Einstein radius is

analytically inferred with Equation (6).

We draw the lens redshifts zl from a log-normal distri-

bution with mean 0.56 and scatter 0.25 dex, discarding

lenses with zl > 1 as these tend to have a small angular

size over which substructure perturbations are relevant.

The source redshift is fixed at zs = 1.5, its offsets ∆θx
and ∆θy are drawn from a normal distribution with zero

mean and standard deviation 0.2. These choices are con-

sistent with the lens sample generated from the LensPop

code packaged with Collett (2015). We show a sample of

simulated lensed images with these settings in Figure 1.

3. STATISTICAL FORMALISM AND

SIMULATION-BASED INFERENCE

Our goal is to infer the subhalo mass function pa-

rameters from a catalog of images of observed lenses. In

this section we will describe the challenges of this in-

ference problem and our approach of simulation-based

inference. For simplicity, we will use a more abstract no-

tation, distinguishing between three sets of quantities in

the lensing system:

Parameters of interest ϑ: The vector ϑ = (fsub, β)T

parameterizes the subhalo mass function given,

and our goal is to infer their values.

Latent variables z: A vector of all other unobservable

random variables in the simulator. These include

the mass M200, source-host offset (∆θx,∆θy), and

redshift zl of the lens, the number of subhalos in

the region of interest nROI, the position r and mass

m200 of each subhalo, and the random variables

related to the point spread function and Poisson

fluctuations.

Observables x: The observed lens images.

Unfortunately, the same symbols are used with different

meanings in astrophysics and statistics: note the differ-

ence between the parameters ϑ and the angular positions

θx, θy and the Einstein radius θE ; between the latent

variables z and the redshifts zs, zl; and between the ob-

served image x and the argument of the NFW profile

Menc(x) and F(x) used in the last section.

As described above, we have implemented a simulator

for the lensing process in the “forward” direction: for

given parameters ϑ, the simulator samples latent vari-

ables z and finally observed images x ∼ p(x|ϑ). Here

p(x|ϑ) is the probability density or likelihood function

of observing a lens image x given parameters ϑ. It can

be schematically written as

p(x|ϑ) =

∫
dz p(x, z|ϑ) , (16)

where we integrate over the latent variables z and

p(x, z|ϑ) is the joint likelihood of observables and latent
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Figure 1. A sample of simulated lenses. The cross markers show the offset between the host and source centers, the color
corresponding to the virial mass of the host dark matter halo. The simulated subhalos are shown as dots, the color again indicates
their masses. The greyscale images show the corresponding observed images. We show seven images randomly generated for
fsub = 0.05 and β = −0.9. 6

variables:

p(x, z|ϑ) = phost(M200,∆θx,∆θy, zl)

× Pois(nROI|nROI(ϑ))

nROI∏

i

[
pm(m200,i|ϑ) Uniform (ri)

]

× pobs(x|f(M200,∆θx,∆θy, zl; {(m200,i, ri)})) . (17)

Here phost(M200,∆θx,∆θy, zl) is the distribution of the

host halo parameters; nROI(ϑ) is the mean number of

subhalos in the region of interest as a function of the

parameters ϑ = (fsub, β)T , while nROI is the actually

realized number in the simulation; m200,i and ri are the

subhalo masses and positions; pm(m|ϑ) = 1/ndn/dm200

is the normalized subhalo mass function given in Equa-

tion (14); and in the last line pobs is the probability of

observing an image x based on the true lensed image

f(zl, {(m200,i, ri)}) taking into account Poisson fluctu-

ations and detector response through the point spread

function.

Standard frequentist and Bayesian inference methods

rely on evaluating the likelihood function p(x|ϑ). Unfor-

tunately, even in our somewhat simplified simulator each

run of the simulation easily involves hundreds to thou-

sands of latent variables, the integral in Equation (16)

over this enormous space clearly cannot be computed

explicitly. The likelihood function p(x|ϑ) is thus in-

tractable, providing a major challenge for both frequen-

tist and Bayesian inference. Similarly, inference with

Markov Chain Monte Carlo (MCMC) methods based di-

rectly on the joint likelihood function p(x, z|ϑ) requires

unfeasibly many samples before converging because the

latent space is so large. Systems defined through a for-

ward simulator that does not admit a tractable likeli-

hood are known as “implicit models”, inference tech-

niques for this case as “simulation-based inference” or

“likelihood-free inference”.

One way to tackle this issue is to estimate the den-

sity for observables x from samples from the simula-

tor, where the latent variables z are marginalized by

the sampling procedure. But traditional density esti-

mation techniques require reducing the dimensionality

of x with summary statistics v(x), for instance based

on power spectra (Hezaveh et al. 2016a; Cyr-Racine

et al. 2016; Diaz Rivero et al. 2018; Chatterjee & Koop-

mans 2018; Dı́az Rivero et al. 2018; Cyr-Racine et al.

2019; Brennan et al. 2019). The likelihood p(v|ϑ) in

the space of summary statistics can either be explic-

itly estimated through density estimation techniques

such as histograms, kernel density estimation, or Gaus-

sian processes, or replaced by a rejection probability

in an Approximate Bayesian Computation (ABC) tech-

nique (Rubin 1984). Substructure inference in quasar

and extended-arc lenses using ABC techniques was ex-

plored in Gilman et al. (2018) and Birrer et al. (2017a),

https://github.com/smsharma/mining-for-substructure-lens/blob/arXiv-v1/notebooks/1_simulations.ipynb


Inferring dark matter substructure with machine learning 9

respectively. While the compression to summary statis-

tics makes the analysis tractable, it typically loses in-

formation and hence reduces the statistical power of the

analysis.

Instead, the likelihood function or density can be ap-

proximated without any compression to summary statis-

tics with a neural network, which has to be trained only

once and can be evaluated efficiently for any parame-

ter point and observed image. Similarly, one can train

a neural network to estimate the likelihood ratio for a

fixed observation x between two different hypotheses or

parameter points. We will show how this turns the in-

tractable integral in Equation (16) into a tractable min-

imization problem and amortizes the marginalization

over z. This approach scales well to the expected large

number of lenses expected in upcoming surveys (Oguri

& Marshall 2010; Treu 2010; Collett 2015). Since the

full image is used as input, no information is lost due to

dimensionality reduction.

We use a simulation-based inference technique intro-

duced in Brehmer et al. (2018a,b,c) that extracts addi-

tional information from the simulation and uses it to im-

prove the sample efficiency of the training of the neural

network. Our inference strategy consists of four steps:

1. During each run of the simulator, additional infor-

mation that characterizes the subhalo population

and lensing process is stored together with the sim-

ulated observed image.

2. This information is used to train a neural network

to approximate the likelihood ratio function.

3. The neural network output is calibrated, ensuring

that errors during training do not lead to incorrect

inference results.

4. The calibrated network output is then used in ei-

ther a frequentist or Bayesian setting to perform

inference.

In the remainder of this section, we will explain these

four steps in detail.

3.1. Extracting additional information from the

simulator

In a first step, we generate training data by simulat-

ing a large number of observed lenses. For each lens, we

first draw two parameter points from a proposal distri-

bution, ϑ, ϑ′ ∼ π(ϑ). This proposal distribution should

cover the region of interest in the parameter space, but

does not have to be identical to the prior in a Bayesian

inference setting, which allows us to be agnostic about

the inference setup at this stage. Note that we use the

term “proposal distribution” to avoid confusion with the

prior, even though it is not a proposal distribution in the

MCMC sense.

Next, the simulator is run for the parameter point ϑ,

generating an observed image x ∼ p(x|ϑ). In addition,

we calculate and save two quantities: the joint likelihood

ratio

r(x, z|ϑ) =
p(x, z|ϑ)

pref(x, z)
(18)

and the joint score

t(x, z|ϑ) = ∇ϑ log p(x, z|ϑ) . (19)

The joint likelihood ratio quantifies how much more or

less likely a particular simulation chain including the

latent variables z is for the parameter point ϑ compared

to a reference distribution

pref(x, z) =

∫
dϑ′ π(ϑ′) p(x, z|ϑ′) , (20)

where we choose the marginal distribution of latent vari-

ables and observables corresponding to the proposal dis-

tribution π(ϑ). Unlike the distribution for a single refer-

ence parameter point, this marginal model has support

for every potential outcome of the simulation (Hermans

et al. 2019). The joint score is the gradient of the joint

log likelihood in model parameter space and quantifies

if a particular simulation chain becomes more or less

likely under infinitesimal changes of the parameters of

interest. Both quantities depend on the latent variables

of the simulation chain.

We compute the joint likelihood ratio and joint score

with Equation (17). Conveniently, the first and third line

of that equation do not explicitly depend on the param-

eters of interest ϑ and cancel in the joint likelihood ratio

and joint score; the remaining terms can be evaluated

with little overhead to the simulation code. We also cal-

culate the joint likelihood ratio r(x, z|ϑ′) and the joint

score t(x, z|ϑ′) for the second parameter point ϑ′ and

store the parameter points ϑ and ϑ′, the simulated im-

age x, as well as the joint likelihood ratios and joint

scores.

Our training samples consist of 106 images, with pa-

rameter points chosen from a uniform range in 0.001 <

fsub < 0.2 and −1.5 < β < −0.5.

3.2. Machine learning

How are the joint likelihood ratio and joint score,

which are dependent on the latent variables z, useful for

inference based on the likelihood function p(x|ϑ), which

only depends on the observed lens images and the pa-
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rameters of interest? Consider the functional

L[g(x, ϑ)] =

∫
dϑ

∫
dϑ′
∫

dx

∫
dz π(ϑ) π(ϑ′) p(x, z|ϑ)

×
[
−s log g−(1−s) log(1−g)−s′ log g′−(1−s′) log(1−g′)

+ α
{∣∣∣t−∇ϑ log 1−g

g

∣∣∣
ϑ

∣∣∣
2

+
∣∣∣t′ −∇ϑ log 1−g

g

∣∣∣
ϑ′

∣∣∣
2}
]
,

(21)

where we abbreviate s ≡ s(x, z|ϑ) ≡ 1/(1 + r(x, z|ϑ)),

s′ ≡ s(x, z|ϑ′) ≡ 1/(1 + r(x, z|ϑ′)), g ≡ g(x, ϑ),

g′ ≡ g(x, ϑ′), t = t(x, z|ϑ), and t′ ≡ t(x, z|ϑ′) for read-

ability. Note that the test function g(x, ϑ) is a function

of x and ϑ only. The first two lines of Equation (21) are

an improved version of the cross-entropy loss, in which

the joint likelihood ratio is used to decrease the variance

compared to the canonical cross-entropy (Stoye et al.

2018). The last line adds gradient information, weighted

by a hyperparameter α.

As shown in Stoye et al. (2018), this “ALICES” loss

functional is minimized by the function

g∗(x, ϑ) ≡ arg min
g

L[g(x, ϑ)] =
1

1 + r(x|ϑ)
, (22)

one-to-one with the likelihood ratio function

r(x|ϑ) ≡ p(x|ϑ)

pref(x)
=

1− g∗(x, ϑ)

g∗(x, ϑ)
. (23)

We demonstrate the minimization of this functional ex-

plicitly in Appendix A. This means that if we can con-

struct the functional in Equation (21) with the joint

likelihood ratio and joint score extracted from the simu-

lator and numerically minimize it, the resulting function

lets us reconstruct the (otherwise intractable) likelihood

ratio function r(x|ϑ)! Essentially, this step lets us inte-

grate out the dependence on latent variables z from the

joint likelihood ratio and score, but in a general, func-

tional form that does not depend on a set of observed

images.

This is why extraction of the joint likelihood ratio and

joint score has been described with the analogy of “min-

ing gold” from the simulator (Brehmer et al. 2018c)—

while calculating these quantities may require some ef-

fort and changes to the simulator code, through the min-

imization of a suitable functional they allow us to calcu-

late the otherwise intractable likelihood ratio function.

In practice, we implement this minimization with ma-

chine learning. A neural network plays the role of the

test function g(x, ϑ), the integrals in Equation (21) are

approximated with a sum over training data sampled ac-

cording to π(ϑ)π(ϑ′)p(x, z|ϑ), and we minimize the loss

numerically through a stochastic gradient descent algo-

rithm. The neural network trained in this way provides

an estimator r̂(x|ϑ) of the likelihood ratio function that

is exact in the limit of infinite training samples, suffi-

cient network capacity, and efficient minimization. Note

the “parameterized” structure of the network, in which

a single neural network is trained to estimate the like-

lihood ratio over all of the parameter space, with the

tested parameter point ϑ being an input to the network

(Cranmer et al. 2015; Baldi et al. 2016). This approach

is more efficient than a point-by-point analysis of a grid

of parameter points: it allows the network to “borrow”

information from neighboring parameter points, benefit

ting from the typically smooth structure of the param-

eter space.

Given the image nature of the lensing data, we

choose a convolutional network architecture based on

the ResNet-18 (He et al. 2016) implementation in Py-

Torch (Paszke et al. 2017). The parameters ϑ enter as

additional inputs in the fully connected layers of the net-

work. Compared to the original ResNet-18 architecture,

we add another fully connected layer at the end to ensure

that the relation between parameters of interest and im-

age data can be modeled. All inputs are normalized to

zero mean and unit variance. We train the networks by

minimizing the loss in Equation (21) with α = 2 · 10−3

over 100 epochs with a batch size of 128 using stochastic

gradient descent with momentum (Qian 1999), exponen-

tially decaying the learning rate from 0.01 to 0.0001 with

early stopping. We pretrain the model on data gener-

ated from a simplified version of the simulator, namely

the “fix” scenario described in Appendix B. This ar-

chitecture and hyperparameter configuration performed

best during a rough hyperparameter scan, though for

this proof-of-concept study we have not performed an

exhaustive optimization.

3.3. Calibration

In reality, the neural network might not learn the

likelihood ratio function r(x|ϑ) exactly, for instance

due to limited training data or inefficient training. To

make sure that our inference results are correct even

in this case, we calibrate the network output with his-

tograms (Cranmer et al. 2015; Brehmer et al. 2018b).

For every parameter point ϑ that we want to test,

we simulate a set of images {x} ∼ p(x|ϑ) from this

parameter point and calculate the network prediction

r̂ ≡ r̂(x|ϑ) for each image. We also simulate a set of

images {x} ∼ pref(x) from the reference model, again

calculating the network prediction r̂ for each lens. The

calibrated likelihood ratio is then calculated from his-
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tograms of the network predictions as

r̂cal(x|ϑ) =
p̂(r̂|ϑ)

p̂ref(r̂)
(24)

where the p̂(·) denote probability densities estimated

with univariate histograms.

This additional calibration stage comes with a certain

computational cost that increases linearly with the num-

ber of evaluated parameter points. However, it guaran-

tees that as long as the simulator accurately models the

process, the inference results will be perfect or conserva-

tive, but not too optimistic, even if the neural network

output is substantially different from the true likelihood

ratio.

We will show results both without and with calibra-

tion. Where calibration is used, it is based on histograms

with 50 bins, with bin boundaries determined automat-

ically to match the distribution of likelihood ratios.

3.4. Inference

After a neural network has been trained (and option-

ally calibrated) to estimate the likelihood ratio function,

it provides the basic ingredient to both frequentist and

Bayesian inference. Multiple observations can be com-

bined in a straightforward way: since all lens images are

assumed as identically distributed and independent (ex-

cept for the common dependence on the population-level

parameters), the combined likelihood of a set of images

is given by the product of likelihood ratios for each in-

dividual lens,

pcombined({x}|θ) =
∏

i

p(xi|θ) . (25)

For frequentist hypothesis tests, the most powerful

test statistic to distinguish two parameter points θ0 and

θ1 is the likelihood ratio (Neyman & Pearson 1933)

pcombined({x}|θ0)

pcombined({x}|θ1)
=
∏

i

r(xi|θ0)

r(xi|θ1)
≈
∏

i

r̂(xi|θ0)

r̂(xi|θ1)
, (26)

where in the last step we have replaced the exact like-

lihood ratio with the estimation from the (calibrated)

neural network. In addition, the asymptotic properties

of the likelihood ratio allow us in many cases to di-

rectly translate a value of the likelihood ratio into a

p-value and thus into exclusion limits at a given confi-

dence level (Wilks 1938; Wald 1943; Cowan et al. 2011).

For Bayesian inference, note that we can write Bayes’

theorem as

p(ϑ|{xi}) =
p(ϑ)

∏
i p(xi|ϑ)∫

dϑ′ p(ϑ′)
∏
i p(xi|ϑ′)

= p(ϑ)

[∫
dϑ′ p(ϑ′)

∏

i

p(xi|ϑ′)
p(xi|ϑ)

]−1

≈ p(ϑ)

[∫
dϑ′ p(ϑ′)

∏

i

r̂(xi|ϑ′)
r̂(xi|ϑ)

]−1
, (27)

where {xi} is the set of observed lens images and p(ϑ)

is the prior on the parameters of interest, which may

be different from the proposal distribution π(ϑ) used

during the generation of training data. The posterior

can thus be directly calculated given an estimator r̂,

provided that the space of the parameters of interest is

low-dimensional enough to calculate the integral, or with

MCMC (Hermans et al. 2019) or variational inference

techniques otherwise.

While our approach to inference is strongly based on

the ideas in Brehmer et al. (2018a,b,c); Stoye et al.

(2018), there are some novel features in our analysis

that we would like to highlight briefly. Unlike in those

earlier papers, we use a marginal model based on the

proposal distribution π(ϑ) as reference model in the de-

nominator of the likelihood ratio, which substantially

improves the numerical stability of the algorithm. This

choice also allows us to include the “flipped” terms

with s′ and g′ in the loss function in Equation (21); we

found that this new, improved version of the ALICES

loss improves the sample efficiency of our algorithms.

Both of these improvements are inspired by Hermans

et al. (2019). Finally, this is the first application of the

“gold mining” idea to image data, the first combination

with a convolutional network architecture, and the first

use for Bayesian inference. Although machine learning-

based methods have previously been proposed for infer-

ring strong lensing host parameters (Hezaveh et al. 2017;

Perreault Levasseur et al. 2017; Morningstar et al. 2018)

and for lensed source reconstruction (Morningstar et al.

2019), this paper represents the first proposed applica-

tion of machine learning for dark matter substructure

inference in strong lenses and, as far as we are aware,

for substructure inference in general.

4. RESULTS

After training the neural network using the simula-

tions described in Section 2 and the formalism described

in Section 3, we can run the inference step on a given

set of images to extract the likelihood ratio estimates

r̂(x|ϑ) associated with the substructure parameters of
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Figure 2. Four simulated lens images (upper panels) and the corresponding likelihood ratio maps estimated by the network
(lower panels, without calibration). The star marks the true point used to generate the images, the black line shows 95% CL
contours in parameter space based on each image. 6

interest {fsub, β}. We start by illustrating in Figure 2

inference on individual simulated lensed images realiz-

ing substructure corresponding to benchmark parame-

ters β = −0.9 and fsub = 0.05. The top row shows

example simulated images, with the corresponding in-

ferred 2-D likelihood surfaces shown in the bottom row.

The true parameter point is marked with a star and the

95% confidence level (CL) contours are shown.

Several interesting features can already be seen in

these results. The 95% CL contours contain the true

parameter point, with the overall likelihood surface be-

ing strongly correlated with the corresponding image. A

smaller projected surface area of the lensed arc, result-

ing from a smaller host halo or a larger offset between

the host and source centers, generally results in a flat-

ter likelihood surface. This is expected, since a smaller

host galaxy will contain relatively less substructure, and

a smaller host or larger relative offset will result in a

smaller effective arc area over which the substructure

can imprint itself. The first column of Figure 2 shows an

example of such a system. In contrast, the last columns

show a system with a relatively massive host and a small

offset, producing a symmetric image with a larger effec-

tive arc surface area over which the effects of substruc-

ture can be discerned. This results in a “peakier” in-

ferred likelihood surface, corresponding to a higher sen-

sitivity to fsub and β. The second and third columns of

Figure 2 correspond to systems with a small, centered

and a large, offset halo respectively, and show interme-

diate sensitivity to substructure properties.

In the spirit of stacking multiple observations, we next

consider a simultaneous analysis of multiple lensed im-

ages. As discussed in Section 3.4, the product of the

likelihood maps of the individual images defines the ap-

propriate test statistic. For the purpose of population-

level inference, these two-dimensional likelihood maps

are hence a good alternative way to define a probabilistic

catalog over individual observations, avoiding the com-

plications of prior dependence and of communicating

a complicated trans-dimensional posterior. In the left

panel of Figure 3, we show the expected log likelihood

ratio surface per-image in the asymptotic limit, with the

1-D slice corresponding to β = −0.9 shown in the right

panel. The 95% CL expected exclusion limits for 5, 20,

and 100 lenses are shown using the dotted, dashed, and

solid lines respectively. The procedure can easily be ex-

tended to an arbitrarily large collection of lenses.

We find that, at least within the simplifying assump-

tions of our simulator, an analysis of a few tens of

lenses is already sensitive to the overall substructure

abundance parameterized by fsub. A larger observed

lens sample provides a tighter constraint on substruc-

ture properties. Approximately 100 lens images are re-

quired to begin resolving β. The expected exclusion

contours are centered around the true values, confirm-

ing that our inference methods yield an unbiased es-

timate of the underlying substructure properties. Note

https://github.com/smsharma/mining-for-substructure-lens/blob/arXiv-v1/notebooks/2_inference_per_image.ipynb
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Figure 3. The expected per-lens likelihood ratio map assuming β = −0.9 and fsub = 0.05 in the two-dimensional parameter
space (left) and along a one-dimensional slice at β = −0.9 (right). The lines show expected 95% CL exclusion limits for 5
(dotted), 20 (dashed), and 100 (solid) observed lenses. While the colormap shows the network output without calibration, the
lines include the calibration procedure described in Section 3.3. 6

the “banana” shape of the expected exclusion limits,

which approximately traces the total deflection con-

tributed by substructure. We demonstrate this in Fig-

ure 4, where we show a proxy for the total subhalo-

induced deflection,
∑

subhalos 4κsrs, equal to the space-

independent part of Equation (11), and compare it to

the expected exclusion limits. In our particular substruc-

ture scenario, this proxy can be shown to approximately

scale like
∑

subhalosm
2/3
s . We note that this comparison

is schematic, as the subtle effects of substructure over

a wide range of masses cannot be quantified through a

single number (here, the total deflection).

With the likelihood ratio in hand, Equation (27) easily

admits a Bayesian interpretation. In the left panel of

Figure 5 we show the posterior for 100 lenses derived

from the expected likelihood ratio results, assuming a

Gaussian prior with mean −0.9 and standard deviation

0.1 on the slope β. This choice is intended to capture

a prior expectation on the subhalo mass function slope

consistent with the Cold Dark Matter scenario (e. g.,

Madau et al. 2008; Springel et al. 2008). As expected

from the likelihood maps, we find a posterior density

peaked around the true point.

The corresponding inferred subhalo mass function

(SHMF) per host halo mass, marginalized over the host

halo properties, is shown in the right panel of Figure 5.

We show the point-wise mean (solid line) and point-

wise 68 / 95% credible intervals (cyan and blue bands). A

comparison with the true simulated subhalo mass func-

tion (dotted line, also marginalized over the host halo

properties) shows excellent agreement.

5. EXTENSIONS

For the proof-of-concept analysis presented here our

lensing simulation makes a number of simplifying as-

sumptions in order to highlight the broad methodolog-

ical points in a computationally tractable setting. An

application of our method to real lensing data will invari-

ably require modifications to our simulation and infer-

ence pipelines to account for the vast physical diversity

in host and source galaxy morphologies, as well as ways

to deal with more realistic detector response. Modeling

substructure in a more involved setting than presented

here (e. g., to account for tidal evolution and/or suppres-

sion of small-scale structure), and accounting for sub-

structure along the line of sight is also desired. We will

now discuss these features and comment on how they

might affect our pipeline and the results presented here,

leaving implementation and application to real lensing

data to future work.

First, we currently fix all properties of the background

source as described in Section 2.3. It is straightforward

to instead draw and marginalize over the parameters as-

sociated with a chosen parameterization for the source

light distribution, with Gaussian and Sérsic (Sérsic

1963) profile models being common choices. For high-

fidelity images (e. g., those obtainable by targeted fol-

lowups or interferometric imaging) more complicated

features in the background galaxies such as outflows may

not be adequately captured by such a parameterization

and could introduce degeneracies with the effects of sub-

structure. Alternative parameterizations using shapelet

basis sets (Birrer et al. 2015; Tagore & Jackson 2016;

https://github.com/smsharma/mining-for-substructure-lens/blob/arXiv-v1/notebooks/3_6_expected_likelihood_map.ipynb


14 Brehmer and Mishra-Sharma et al.

0.00 0.05 0.10 0.15 0.20
fsub

-0.6

-0.8

-1.0

-1.2

-1.4

β

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
x
p

ec
te

d
∑

4κ
s
r s

[a
rc

se
c]

Figure 4. Expected proxy for the total subhalo-induced de-
flection (see Equation (11)) as a function of fsub and β. The
solid white lines show contours of constant deflection, while
the dotted black lines show the expected exclusion limits
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Birrer & Amara 2018), and methods based on regu-

larized linear inversion on grids (Warren & Dye 2003;

Suyu et al. 2006; Tagore & Keeton 2014; Nightingale

et al. 2018) have been introduced as ways to model more

complicated source features. For our purposes, genera-

tive / data-driven modeling of background galaxies could

easily be interfaced with our pipeline to account for the

variation in structure of the background sources (Morn-

ingstar et al. 2019).

Similarly, the host lens (and associated host dark mat-

ter halo) model can be made more realistic by relax-

ing the restriction to spherical host halos and including

more complicated profiles than the Singular Isothermal

Sphere considered here, drawing and marginalizing over

additional host parameters as required. External shear,

which models the fact that the local large-scale struc-

ture environment of the host galaxy can induce an ad-

ditional overall deflection field in a preferred direction,

can similarly be parameterized (e. g., Keeton et al. 1997;

Schneider 1997) and marginalized over.

A realistic simulator should also model the dynamical

evolution of subhalos (Despali & Vegetti 2017). Effects

associated with tidal disruption due to the large gradi-

ent of the galactic potential towards the center of the

host galaxy are expected to deplete the fraction of mass

bound in substructures there, leading to a depressed

overall subhalo abundance (Han et al. 2016) with pro-

file properties (e. g., concentration (Moliné et al. 2017)

and a truncation radius (Baltz et al. 2009)) that de-

pend on the distance from the host center. This could

easily be implemented within our framework by draw-

ing 3-D positions for the subhalos from the host center

and assigning properties consistent with more involved

modeling. Our subhalo mass function in Equation (14)

is independent of the lens redshift, but can easily be ex-

tended to include this dependency (Despali & Vegetti

2017; Hiroshima et al. 2018). A more complicated de-

pendence on the host halo than the linear one assumed

in Equation (14) is also easily admitted.

All of these effects are straightforward to implement

in our setup and only require modifications to the simu-

lation code. The inference algorithm is unaffected; since

these extensions do not explicitly depend on the param-

eters of interest, the likelihood terms associated with

them cancel in the calculation of the joint likelihood ra-

tio and the joint score. Nevertheless, these changes affect

the final observed image and therefore also the true like-

lihood function; the variance of the joint likelihood ratio

and score could therefore increase, requiring larger train-

ing samples before the network converges to the correct

likelihood ratio function.

With these extensions, the redshift of the back-

ground source and the lens will play a more important

role. Since these redshifts can potentially be measured

through spectroscopic follow-up observations, it is likely

that we can improve the performance of the inference

algorithm by using this information. We can treat both

the source and lens redshift, potentially with added un-

certainty to model measurement noise, as additional ob-

servables. The input to the neural networks then con-

sists of the observed lens image, the measured (poten-

tially noisy) redshifts, and the tested parameter point.

Except for a simple modification of the network archi-

tecture, the inference algorithm remains unchanged.

Including line-of-sight substructure can be somewhat

more involved, since it necessitates the introduction of

a separate line-of-sight halo mass function (Birrer et al.

2017b; Despali et al. 2018; Gilman et al. 2019b; Hsueh

et al. 2019). Depending on the specific model (and

whether foreground substructure is treated as a nuisance

effect or additional signal to be leveraged) its parame-

ters could depend on the parameters of interest, which

would require a modification of the calculation of the

joint likelihood ratio and joint score. Structurally this

is identical to our current modeling of subhalos within

the lens. Since the abundance of foreground substructure

is expected to be at most comparable to the substruc-

ture within the lensing galaxy (depending on the source

redshift), we expect that these additional factors in the

joint likelihood ratio and joint score will not slow down

the overall simulation significantly, and will not increase

the variance of the inference techniques too much while

https://github.com/smsharma/mining-for-substructure-lens/blob/arXiv-v1/notebooks/4_understand_the_banana.ipynb
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having the potential to improve the overall sensitivity of

the analysis to substructure abundance in the Universe.

Modification to the subhalo mass function parameter-

ization that we have considered may be desirable for

constraining specific particle physics scenarios. For ex-

ample, warm dark matter introduces a lower cutoff scale

in the subhalo mass function (Bode et al. 2001) which

can be parameterized and mapped onto the dark mat-

ter mass (Schneider et al. 2012; Lovell et al. 2014; Li

et al. 2016; Birrer et al. 2017a). This would also require

a straightforward modification of the joint likelihood ra-

tio and joint score calculation depending on the specific

parameterization.

It is expected that a sample of strong lenses will in-

clude image-to-image variations on the exposure, sky

background, and detector effects like the point spread

function depending on the specific scanning strategy of

the observatory. The sky background can be marginal-

ized over as usual. Rather than treating the exposure

and PSF model as nuisance parameters, passing them as

additional a priori known inputs to the network in addi-

tion to normalizing the network input to unit exposure

is likely to improve performance. Multiple color bands

can easily be modeled and included as inputs to the neu-

ral network as different color channels, something that is

commonly done when using the ResNet architecture we

consider. This can substantially improve discrimination

between light from the source, host, and sky background

which tend to have a degree of separation in color space.

While including these extensions in our simulation and

inference code is feasible, the detailed modeling is be-

yond the scope of the current paper. We thus leave the

implementation of these features and application to real

lensing data to future work.

6. CONCLUSIONS

Strong lensing offers a unique way to probe the prop-

erties and distribution of dark matter on sub-galactic

scales through the subtle imprint of substructure on

lensed arcs. The high dimensionality of the underly-

ing latent space characterizing substructure poses a sig-

nificant challenge, however. In this paper, we have in-

troduced a novel simulation-based inference technique

based on the ideas introduced in Cranmer et al. (2015);

Brehmer et al. (2018a,b,c); Stoye et al. (2018) for infer-

ring high-level population properties characterizing the

distribution of substructure in an ensemble of galaxy-

galaxy strong lenses and demonstrated its feasibility

through proof-of-principle examples.

Our results on simulated data demonstrate that this

method, based on calibrated likelihood ratio estimators

with a machine learning back end, offers a promising way

to analyze extended-arc strong lensing images with the

goal of inferring properties of dark matter substructure.

Our proposed method offers several combined advan-

tages over established techniques. In probing the collec-

tive effect of a large number of low-mass, sub-threshold

subhalos it can offer sensitivity to the faint end of the

https://github.com/smsharma/mining-for-substructure-lens/blob/arXiv-v1/notebooks/5_Bayesian_inference.ipynb
https://github.com/smsharma/mining-for-substructure-lens/blob/arXiv-v1/figures/live_inference_with_images_reverse_small.gif
https://github.com/smsharma/mining-for-substructure-lens/blob/arXiv-v1/notebooks/5_posterior_SHMF.ipynb


16 Brehmer and Mishra-Sharma et al.

subhalo mass function where deviations from the concor-

dance ΛCDM paradigm and the effects of new physics

are most likely to be expressed. It can naturally be ap-

plied to perform fast, principled, and concurrent anal-

yses of a large sample of strong lenses that share a

common set of hyperparameters describing the under-

lying substructure population properties. By efficiently

marginalizing out the individual subhalo properties and

directly inferring the population-level parameters of in-

terest we are able to sidestep the more expensive two-

step procedure of characterizing individual subhalos be-

fore using them to infer higher-level population parame-

ters. Population-level likelihood scans for individual im-

ages are thus a suitable alternative to probabilistic cat-

alogs over subhalos, avoiding both prior dependence as

well as the logistical complexity of communicating a

complicated trans-dimensional posterior. Furthermore,

rigorous selection of lensing images out of a large sam-

ple is not necessary within our framework since images

with a smaller effective arc area or low overall fidelity

simply do not contribute significantly to the simultane-

ous substructure analysis, and non-detections are just

as valuable as detections. Finally, our analysis is per-

formed at the level of image data without incurring loss

of information associated with dimensionality reduction.

Although we have focused on a simple proof-of-

principle example in this paper, extensions to more real-

istic scenarios—including more complicated descriptions

of the host, source, and substructure populations—are

easily admitted within our framework. The flexibility

of the proposed method allows for applications beyond

substructure population inference as well. For example,

a large lens sample can be used to perform cosmological

parameter estimation while accounting for substructure

effects and in particular to independently constrain the

Hubble constant (Chen et al. 2019; Wong et al. 2019)

through its dependence on the angular diameter distance

scales in lensing systems. In the spirit of Alsing & Wan-

delt (2018), these techniques can also be used to learn

powerful summary statistics (Brehmer et al. 2018c).

We are currently at the dawn of a new era in ob-

servational cosmology, when ongoing and upcoming

surveys—e. g., DES, LSST, Euclid, and WFIRST—are

expected to discover and deliver images of thousands

of strong lensing systems. These will harbor the subtle

imprint of dark matter substructure, whose characteri-

zation could hold the key to unveiling the particle nature

of dark matter. In this paper, we have introduced a pow-

erful machine learning-based method that can be used

to uncover the properties of small-scale structure within

these lenses and in the Universe at large. The techniques

presented have the potential to maximize the informa-

tion that can be extracted from a complex lens sample

and zero in on signatures of new physics.

The code used to obtain the results in this

paper is available at https://github.com/smsharma/

mining-for-substructure-lens �.
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APPENDIX

A. MINIMUM OF THE LOSS FUNCTIONAL

A central step in our inference technique is numerically minimizing the functional L[g(x, ϑ)] given in Equation (21)

to obtain an estimator for the likelihood ratio function. Here we will use calculus of variation to explicitly show that

the solution given in Equation (22) in fact minimizes this loss, closely following Brehmer et al. (2018b); Stoye et al.

(2018).

First consider the case of α = 0, i. e. the functional

L[g(x, ϑ)] =

∫
dϑ

∫
dϑ′
∫

dx

∫
dz π(ϑ)π(ϑ′)p(x, z|ϑ)

(
−s log g − (1− s) log(1− g)− s′ log g′ − (1− s′) log(1− g′)

)

=

∫
dϑ

∫
dx

[∫
dz π(ϑ)

(
p(x, z|ϑ) + pref(x, z)

)(
−s log g − (1− s) log(1− g)

)]

︸ ︷︷ ︸
≡F (x,ϑ)

, (A1)

where we use the shorthand notation s ≡ s(x, z|ϑ) ≡ 1/(1 + r(x, z|ϑ)), s′ ≡ s(x, z|ϑ′) ≡ 1/(1 + r(x, z|ϑ′)), g ≡ g(x, ϑ),

g′ ≡ g(x, ϑ′). The function g∗(x|ϑ) that minimizes this functional has to satisfy

0
!
=
δF

δg

∣∣∣∣∣
g∗

=

∫
dz π(ϑ)

(
p(x, z|ϑ) + pref(x, z)

)(
− s

g∗
+

1− s
1− g∗

)
(A2)

As long as π(ϑ) > 0, this is equivalent to

(1− g∗)
∫

dz
(
p(x, z|ϑ) + pref(x, z)

)
s = g∗

∫
dz
(
p(x, z|ϑ) + pref(x, z)

)
(1− s) (A3)

and finally

g∗(x|ϑ) =

∫
dz
(
p(x, z|ϑ) + pref(x, z)

)
s(x, z|ϑ)

∫
dz
(
p(x, z|ϑ) + pref(x, z)

)

=

∫
dz
(
p(x, z|ϑ) + pref(x, z)

)
1

1+p(x,z|ϑ)/pref (x,z)
∫

dz
(
p(x, z|ϑ) + pref(x, z)

)

=
pref(x)

p(x|ϑ) + pref(x)
=

1

1 + r(x|ϑ)
, (A4)

in agreement with Equation (22). Note that this result is independent of the choice of π(ϑ), as long as this proposal

distribution has support at all relevant parameter points.

Similarly it can be shown that the gradient term in the loss functional weighted by α is minimized when the gradient

of the log likelihood ratio estimated by the neural network is equal to the true score,

∇ϑ log r̂(x|ϑ) ≡ ∇ϑ log
1− g∗(x, ϑ)

g∗(x, ϑ)
= ∇ϑ log r(x|ϑ) . (A5)

We refer the reader to Brehmer et al. (2018b) for the derivation. While not strictly necessary for the inference technique,

including this term in the loss function substantially improves the sample efficiency of the algorithm, similar to how

gradient information makes any fit converge faster.

B. SIMPLIFIED SCENARIOS

In order to validate our setup and to disentangle the impact of different latent variables on the inference results

we consider three additional versions of our simulation. In the simplest one, which we call “fix”, all source and host
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Figure 6. Left: The expected 95% CL exclusion limits for 5 observed lenses for four different levels of complexity of the
simulator. Right: The expected likelihood ratio along a one-dimensional slice through the parameter space at β = −0.9 for the
same four simulator scenarios. In both panels we compare the “full” simulator discussed in Section 2, a scenario in which the
host mass is varied but the offset relative to the source is fixed at zero (“mass”), a case in which the source offset is varied but
the host halo mass is fixed (“align”), and a toy scenario in which both the offset and the mass of the host halo are fixed (“fix”).
The data was generated for β = −0.9 and fsub = 0.05. 6

properties are fixed to particular value, including the host halo mass and the offset between source and lens, which

is set to zero. In the “align” scenario we relax the restriction on the source offset variables ∆θx and ∆θy and draw

them from a Gaussian as described in Section 2. In the “mass” version, on the other hand, the offset is fixed at zero,

but the host halo mass is drawn from a distribution as described above. We train separate neural networks on lens

images generated in these three scenarios and calculated likelihood maps as described in Section 3, although to save

computation time we do not perform a calibration procedure.

The expected confidence limits for 5 observed lens images in the three simplified scenarios and our “full” setup are

compared in Figure 6. As expected, the more latent variables we keep fixed, the more the inference technique becomes

more sensitive to the parameters of interest. In particular fixing the source-host alignment substantially increases the

strength of the expected limits.
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