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1. Random processes

The input noise x(t) applied to the low-pass filter below is modeled as a WSS,

white, Gaussian random process, with a zero mean and two-sided PSD
N0

2
[W/Hz].

Let y(t) denote the random process at the output of the filter.

1. Find and sketch the power spectral density of y(t).

2. Find and sketch the autocorrelation function of y(t).

3. What are the average DC level and the average power of y(t)?

4. Does the correlation function of y(t) depend on the fact that x(t) is Gaussian?
However, when the input is Gaussian, is y(t) then Gaussian? Why?

5. Is y(t), the LPF output, a correlated process?

6. Suppose that the output noise is sampled every Ts seconds to obtain the noise
samples y(kTs) (where k = 0,1,2, · · ·). Find the smallest values of Ts so that
the noise samples are statistically independent. Explain.

7. If the input noise is still white but not Gaussian anymore, does the noise
samples y(kTs), with Ts chosen as in the previous question, remain statistically
independent?
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2. Digital modulation and matched filter

A PCM wave, obtained after quantization, is then modulated by a PAM-4 modu-
lator with the following characteristics:

Symbol Probability Voltage [V]

00 0.15 -2.5

01 0.35 -1.0

10 0.35 1.0

11 0.15 2.5

the waveform is a rectangular signal with an unitary amplitude going from 0 to Tb

where Tb is the bit duration for the PCM wave and T = 2Tb .

1. When the symbol are not correlated, determine the PSD of the PAM-4 signal.

2. Compute the power of the modulated signal in [dBW] and [dBm].

3. When the signal arrive at the receptor, we decode 0111100010. Sketch
the signal at the matched filter output (by integration and convolution) that
allowed to build the given binary sequence.

Reminder: The PSD is γg ( f ) = ‖Φ( f )‖2 1
T

[
σ2

A +µ2
A ∑

+∞
m=−∞

1
T

δ

(
f − m

T

)]
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3. Modulation

A particular version of AM stereo uses quadrature multiplexing. Specifically the
carrier Ac cos(2π fct) is used to modulate the sum signal

m1 (t) =V0 +ml (t)+mr (t)

where;

• V0 is a DC offset included for the purpose of transmitting the carrier compo-
nent,

• ml (t) is the left-hand audio signal,

• mr (t) is the right-hand audio signal.

The quadrature carrier Ac sin(2π fct) is used to modulate the difference signal

m2 (t) = ml (t)−mr (t)

1. Show that an envelope detector may be used to recover the sum ml (t)+mr (t)
from the quadrature-multiplexed signal. How would you minimize the signal
distortion produced by the envelope detector?

2. Show that a coherent detector can recover the difference ml (t)−mr (t)?

3. ( How are the desired left- and right-handed audio signal finally obtained? )
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4. Radio systems

A geostationary satellite (d = 36000 [km]) exchange with a terrestrial station at
4 [GHz] frequency. This satellite uses a parabolic antenna whose diameter is equal
to 50 [cm] and whose efficiency is equal to 0.6. The antenna misalignment at
transmission αT is equal to θ3[dB]/2. The antenna misalignment at the reception is
neglected. The atmospheric losses are estimated to 0.4 [dB]. The losses in electric
circuits at the transmission and reception are equal to 1.2 [dB]. The transmission
power is equal to 100 [W].

1. Determine the free space losses.

2. Determine the minimum reception gain knowing that the receptor sensitivity
is −140 [dB]. The sensitivity is the minimum signal value at the input of the
receptor for this latter to work correctly.

3. Determine the 3 [dB] aperture angle and the effective area for the transmission
antenna.

4. Define and determine the EIRP (Equivalent Isotropic Radiating Power).
5. Determine the maximum bandwidth usable if the signal to noise ratio at the

receptor has to be equal to 10 [dB] minimum. The spectral density of noise

estimated at the considered frequency is
N0

2
= 5×10−24[W/Hz].

Reminder:

θ3 [dB] = 70
λ

D
[◦]

Gmax =
4π

λ 2 Ae f f

LE,R = 12

(
αE,R

θ3 [dB]

)2

[dB]
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1. Hilbert Transform

Direct transform:
g̃(t) =

1
π

∫ +∞

−∞

g(τ)
t− τ

dτ

Inverse transform :

g(t) =−1
π

∫ +∞

−∞

g̃(τ)
t− τ

dτ

Link with the Fourier transform:

g̃(t) = g(t)⊗ 1
πt

But
1
πt


− j sign( f )

So, we derive
G̃ ( f ) =− j sign( f ) G ( f )
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Properties :

1. Module ∥∥∥G̃ ( f )
∥∥∥= ‖G ( f )‖

2. Energy ∥∥∥G̃ ( f )
∥∥∥2

= ‖G ( f )‖2

3. Transform of the transform

˜̃g(t) =−g(t)

4. Orthogonality ∫ +∞

−∞

g(t) g̃(t) dt = 0
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2. Analytic signal

Let g(t) real and g(t)
 G ( f ).

Definition of analytic signal :

ga (t) = g(t)+ j g̃(t)

Fourier transform:

Ga ( f ) =


2G ( f ) f > 0
G (0) f = 0

0 f < 0
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3. Complex envelope

Let g(t) real and narrow-band, i.e.

G ( f )
{
6= 0 fc−W < | f |< fc+W
= 0 otherwise

Definition of the complex envelope (baseband signal) of g(t):

eg (t) = ga (t) e−2π j fct

This could also be noted

eg (t) = gI (t)+ j gQ (t)

gI (t) = inphase component

gQ (t) = quadrature component

Canonical form of g(t) :

g(t) = Re [ga (t)] = Re
[
eg (t) e2π j fct]

= gI (t) cos(2π fct)−gQ (t) sin(2π fct)
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Other form for the complex envelope :

eg (t) = a(t) e jφ(t)

a(t) and φ (t) are real and baseband.

a(t) = natural envelope of the signal g(t)

φ (t) = signal phase

We may write

g(t) = Re [ga (t)]

= Re
[
eg (t) e j2π fct]

= Re
[
a(t) e jφ(t) e j2π fct

]
= a(t) cos [2π fct +φ (t)]
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4. Bandpass systems

Let x(t) a signal real and narrow-band :

x(t) = xI (t) cos(2π fct)− xQ (t) sin(2π fct)

Let h(t) the impulse response of a narrow-band linear system :

h(t) = hI (t) cos(2π fct)−hQ (t) sin(2π fct)

Let y(t) (bandpass) the signal at the system output. It can be shown
that

ey (t) =
1
2
[eh (t)⊗ ex (t)]

where ey (t) is the complex envelope of y(t).
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5. Exercises

1. Determine the Hilbert transform of the following signals:
(a) δ (t)
(b) sin(2π fct)

2. Determine the analytic signal ga (t) and the complex envelope eg (t) for the signal
g(t) = [1+ k cos(2π fmt)] cos(2π fct).

3. Show that the following circuit is able to extract the inphase and quadrature components
of the narrow-band signal g(t) :

?

+π

2

g(t)

cos(2π fct)

sin(2π fct)

?

Then, show that

GI ( f ) =
{

G ( f − fc)+G ( f + fc) −W ≤ f ≤W
0 otherwise

and

GQ ( f ) =
{

j [G ( f − fc)−G ( f + fc)] −W ≤ f ≤W
0 otherwise
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4. The signal

x(t) =
{

A cos(2π fct) 0≤ t ≤ T
0 otherwise

is supplied to a filter whose impulse response is given by

h(t) = x(T − t)

Assuming that fc� 1/T , determine the filter response.

5. Show that the signal

s(t) =
1
2

Ac m(t) cos(2π fct)−
1
2

Ac m̃(t) sin(2π fct)

correspond to the SSB modulation (we keep the upper lateral bands -> USB) of the
modulating signal m(t). How could you modify s(t) to keep the lower lateral bands?

6. Let s(t) the signal corresponding to the SSB modulation (USB) of a modulating signal
m(t). Show that

m(t) =
2
Ac

[s(t) cos(2π fct)+ s̃(t) sin(2π fct)]

And deducts from it a circuit allowing to demodulate a signal USB.

7. Let the following modulated signal

s(t) = Ac cos(2π fct)+m(t) cos(2π fct)− m̃(t) sin(2π fct)

Assuming that Ac� |m(t)| and Ac� |m̃(t)|, show that an ideal envelope detector delivers
a good approximation of the modulating signal m(t).

8. Let the modulating signal m(t) = Am cos(2π fmt). Determine the Hilbert transform of
the corresponding FM-modulated signal.
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Answers

1. (a) 1/(πt).
(b) −cos(2π fct).

2.
ga(t) = e j2π fct [1+ k cos(2π fmt)]

eg(t) = 1+ k cos(2π fmt)

3. –

4. 
A2t
2 cos(2π fct) si 0≤ t < T

A2(2T−t)
2 cos(2π fct) si T ≤ t < 2T

0 otherwise
5. –

6. –

7. Envelope detector output ' Ac +m(t).

8. s̃(t) = Ac sin [2π fct +β sin(2π fmt)].
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1. Noise figure

input

1

1 2

2

linear

quadripole output

ZS

E

V

Spot noise figure:

F0 =
γNO ( f )

G( f )γNS ( f )

Matched impedance (maximum power transfer ZL = Z∗( f )) :

Z∗ ( f ) = R( f )+ jX ( f )

PS ( f ) =

[
V0

2R( f )

]2

R( f )

=
V 2

0

4R( f )

Power at the output of the two-port element:
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PO ( f ) = G( f )PS ( f )

F0 =
PS ( f )γNO ( f )W

G( f )PS ( f )γNS ( f )W

=
PS ( f )γNO ( f )W
PO ( f )γNS ( f )W

=
ρS ( f )
ρO ( f )

Signal to noise ratio:

ρS ( f ) =
PS ( f )

γNS ( f )W

ρO ( f ) =
PO ( f )

γNO ( f )W

Mean noise figure:

F0m =

∫ +∞

−∞
γNO ( f )d f∫ +∞

−∞
G( f )γNS ( f )d f
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2.Noise temperature

4kBT RsB

2

2

quadripole

Rs
Rin = Rs

γaN1( f ) = 1
2kBT0

γaN2( f ) = G( f )γaN1( f )+ γaNq( f )

linear

1

1

F0( f ) =
γaN2( f )

G( f )γaN1( f )
=

G( f )γaN1( f )+ γaNq( f )
G( f )γaN1( f )

But we can model the internal noise at the entrance:

F0( f )=
G( f )γaN1( f )+ γaNq( f )

G( f )γaN1( f )
⇐⇒ γaNq( f )= [(F0( f )−1)γaN1( f )]G( f )
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γaNq( f )

G

G

γaN2( f ) = G( f )γaN1( f )+ γaNq( f )

γaN1( f )

γaN1( f )

γaN2( f ) = G( f )F0( f )γaN1( f )

(F0( f )−1)γaN1( f )
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3. Merit figure

WARNING: Not normalized

If Ts 6= T0

The internal noise of a two-port circuit is independent of the input
temperature.

Link between Fand F0

γaNq( f ) = (F0−1)
1
2

kBT0G( f ) = (F−1)
1
2

kBTsG( f )

F = 1+
T0

Ts
(F0−1)

The effective noise temperature:

Te = (F0−1)T0

is the additional temprature required for an input source to produce
the same available power at the output.
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4. Attenuator

Let an attenuation circuit described by an attenuation factor L

G =
1
L

F0 = F = L

Te = (L−1)Ts

For an attenuator with a factor L, the amount of noise is always
unaffected.
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5. Cascading two-port elements

(F2−1)N1

+

+

(F1−1)N1

N1
+

+

G1

F1

G2

F2

F1G1N1

F0 =
F01G1N1G2+(F02−1)N1G2

N1G1G2

F0 = F01+
F02−1

G1

F0 = F01+
F02−1

G1
+

F03−1
G1G2

+
F04−1

G1G2G3
+ · · ·

Te = Te1+
Te2

G1
+

Te3

G1G2
+

Te4

G1G2G3
+ · · ·

It is helpful to take G1�
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6. Summary

G
 indep. of 
 indep. of 

G
 indep. of 
 indep. of 

G

depend of 

depend of 

G

Passive element at thermal equilibrium 
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7. Exercises

1. Let a receiving antenna connected to a receiver. The receiver has a 10 [dB] noise figure, a
80 [dB] gain and a 6 [MHz] bandwidth. The input signal power, Si, is 10−11 [W].
(a) The antenna noise temperature, Ta is equal to 150 [K]. Determine:

i. the output noise temperature of the receiver,
ii. the output noise temperature of the system (antenna + receiver),
iii. the noise power at the output of the receiver and
iv. the signal to noise ratio at the input and at the output of the receiver.

(b) A pre-amplifier is inserted between the antenna and the receiver, in order to enhance
the signal to noise ratio at the output. It has a 3 [dB] noise factor, a 13 [dB] gain and
a 6 [MHz] bandwidth. Determine the effective noise temperature and the noise figure
of the group (pre-amplifier & receiver), the effective noise temperature of the global
system, the noise power at the output of the receiver and the signal to noise ratio at
the output.

(c) Repeat steps (a) and (b) when the effective noise temperature of the antenna Ta is
now equal to 8000 [K].

2. A micro-wave receiver used for spatial telecommunications contains the following elements
in sequence: the antenna, a MASER (microwave amplification by stimulated emission of
radiation), a TWT (travelling wave tube) and a mixer ampli IF, described by the following
parameters:
• antenna temperature: Ta = 14 [K]
• MASER: G = 30 [dB] and T = 4 [K]
• TWT: G = 100, F0 = 6 [dB]
• mixer ampli IF: G = 40 [dB], F0 = 12 [dB]

Compute the noise figure of the se-
quence.
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3. (May 2004) Let an antenna with a 200 [K] noise temperature. The receiving
system consists of an antenna, an insulator, a wave guide, an amplifier and
a demodulator. We suppose that the wave guide and the insulator may
be considered as resistive attenuators only, with a 1 [dB] attenuation factor.
the receiver bandwidth is 6 [MHz]. The signal power at the input of the system is −80 [dBW].

AMPLI

1 dB 1 dB

G2 = 26 dB

Tphys = 200K Tphys = 270 K Tphys = 300 K

F1 = 3 dB F2 = 2 dB

G1 =200

DEMODULATEUR

(a) Compute the noise temperature of the system.
(b) Compute the noise figure and the merit figure of the system.
(c) Compute the ratio between the noise power at the input and the noise power at the

output of the system. Compute also the signal to noise ratio at the input and the
output of the system.

(d) What do you think of the order of the amplifier and the demodulator in the chain? Is
this order optimal? Explain your answer with computation.
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Answer

1. (a) Te receiver = 2610 [K], Tesystem = 2760 [K], Nout = 22,9 [µW],(
S
N

)
in
= 29,1 [dB]

(
S
N

)
out

= 16,4 [dB]

(b) Tepre-ampli+receiver = 419,5 [K], Fpre-ampli+receiver = 2,45,
Tesystem = 569,5 [K], Nout = 94,1 [µW],(

S
N

)
out

= 23,3 [dB]

(c) Part (a): Tesystem = 10610 [K], Nout = 87,8 [µW],(
S
N

)
out

= 10,6 [dB]

Part (b): Tesysteme = 8419,5 [K], Nout = 1,4 [mW],(
S
N

)
out

= 11,6 [dB]

2. F = 1,01794.
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1. Digital modulations definition

Let m(t) a baseband signal (NRZ typically).

Modulated digital signal :

s(t) = Re
{

ψ [m(t)] e j(2π fct+ϕc)
}

where ψ(.) = ψI(.)+ j ψQ(.) defines the modulation type.

Other form for the modulated signal:

s(t) = ψI [m(t)] cos(2π fct +ϕc)

−ψQ [m(t)] sin(2π fct +ϕc)

or
s(t) = ‖ψ [m(t)]‖ cos(2π fct +ϕc+argψ [m(t)])
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Generally, we may distinguish two modulation types :

• Linear modulations :

ψ [m(t)] = linear fonction of m(t)

• Angular modulations :

ψ [m(t)] = e jϕ[m(t)]

where ϕ [m(t)] = linear function of m(t).

Linear digital modulations :

s(t) = Re

{
e j(2π fct+ϕc)

+∞

∑
k=−∞

dk (t) e j(θk−2π fckT )

}

where the dk (t) signals contain the information to be transmitted and
θk is a constant phase.

Two types of linear modulations :

• Classic modulations : θk = 2π fckT

• Offset modulations : θk = 2π fckT + kπ

2
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2. Classic linear modulations

Modulated signal :

s(t) = Re
{

es (t) e j(2π fct+ϕc)
}

Complex envelope of the modulated signal :

es (t) =
+∞

∑
k=−∞

dk (t)

=
+∞

∑
k=−∞

Dk gk (t− kT )

where

• gk (t) = real modulating waveform signal. For the sake of
simplicity, we will choose gk (t) = g(t) , ∀k.

• Dk = complex random variable which contains the digital infor-
mation to be transmitted : Dk = Ak + j Bk
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Where
es (t) = sI (t)+ j sQ (t)

So,

sI (t) =
+∞

∑
k=−∞

Ak g(t− kT )

sQ (t) =
+∞

∑
k=−∞

Bk g(t− kT )

Other form for the modulated signal :

s(t) = sI (t) cos(2π fct +ϕc)− sQ (t) sin(2π fct +ϕc)

Or

s(t) =

[
+∞

∑
k=−∞

Ak g(t− kT )

]
cos(2π fct +ϕc)

−

[
+∞

∑
k=−∞

Bk g(t− kT )

]
sin(2π fct +ϕc)

→ Quadrature modulation for two digital baseband signals (NRZ
type).
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2.1 Power spectral density (PSD)

Reminder : X (t) is wide sense stationary (WSS) if :

• µX independent of t, and

• ΓXX(t, t− τ) = E{X(t)X∗(t− τ)} depends only on τ → ΓXX(τ)

PSD of the modulated signal S(t)

Such that, s(t) non-stationary :

S (t) = Re
{

M (t) e j2π fct}
We have to stationarize :

S (t) = Re
{

M (t) e j(2π fct+Θ)
}

where Θ = Uniform random variable on [0,2π[.
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We showed that
µS = 0

ΓSS(t, t− τ) =
1
2

Re{ΓMM(t, t− τ)e j2π fcτ}

→ If M (t) is WSS, then S (t) is WSS.

We can write

ΓSS(τ) =
1
4
[
ΓMM(τ)e j2π fcτ +Γ

∗
MM(τ)e− j2π fcτ

]
we deduce finally

γS ( f ) =
γM ( f − fc)+ γ∗M (− f − fc)

4
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PSD of the complex envelope M(t)

M (t) =
+∞

∑
k=−∞

Dk g(t− kT )

Dk is characterized by

• its mean : µD = E{Dk}
• its variance : σ 2

D = E{(Dk−µD)(Dk−µD)
∗}= E{||Dk||2}

If the random variables Dk are not correlated, then

γM ( f ) =
‖G ( f )‖2

T

[
σ

2
D+ ||µD||2

+∞

∑
m=−∞

1
T

δ

(
f −m

T

)]

which is real and symmetric.

We can write

γS ( f ) =
γM ( f − fc)+ γM ( f + fc)

4
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2.2 Amplitude digital modulation
(ASK: Amplitude Shift Keying)

Caracteristics

• Dk purely real (Bk ≡ 0). So,

es (t) = sI(t) =
+∞

∑
k=−∞

Ak g(t− kT )

purely real (sQ(t) = 0).

• Rectangular modulating waveform impulse :

g(t) = rect(0,T ) (t)
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Envelope and phase of the modulated signal

We remind ourselves that,

es (t) = a(t) e jϕ(t)

We can then write
Ak = |Ak|e j π

2 (1−sign(Ak))

So,

a(t) =
+∞

∑
k=−∞

|Ak|rect(0,T ) (t− kT )

ϕ (t) =
+∞

∑
k=−∞

π

2
(1− sign(Ak)) rect(0,T ) (t− kT )

Observations :

• The signal envelope is not constant.
• Phase jumps of π → discontinuous phase.
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Exemple: ASK-2 Modulation{
Ak ∈ {+A,−A}

T = Tb

→ constant envelope.

Constellation diagram ≡ Complex plan of es(t)

(A,0)(−A,0)
sI

sQ
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Signals

1

0
1I(t)

sI(t)

sQ(t)

+1

−1

+A

−A

T = Tb

1 1 1 1 1 1 1
0 0 0 0 0 0

t
a(t) +A

t
ϕ(t)

t

t

t

Tb

1 1
0

1 1
0 0

1
0

1 1
0

π π π0 0 0 0 0 0 0 0π π π
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Power spectral density

Hypothesis : both signals ±A have an equal probability.

Mean
µD = E{Dk}= 0

Variance
σ

2
D = E{||Dk||2}= E{A2

k}= A2

Modulating waveform signal

g(t) = rect(0,Tb)(t)
 G ( f ) = e− j2π f
Tb
2 Tb sinc( f Tb)

PSD of the complex envelope

γes ( f ) = A2Tb sinc2 ( f Tb)

PSD of the modulated signal

γs ( f ) =
A2Tb

4
{

sinc2 [( f − fc)Tb]+ sinc2 [( f + fc)Tb]
}
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2.3 Digital phase modulation
(PSK: Phase Shift Keying)

Characteristics

General shape for the modulated signal

s(t) = A
+∞

∑
k=−∞

rect(0,T ) (t− kT ) cos(2π fct +ϕc+ψk)

where ψk = constant random variable on[kT,(k+1)T [ :

ψk ∈
{

ψ|ψ = ϕ0+ i
2π

M
, i = 0, ...,M−1

}
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Shaping of the modulated signal

s(t) = A
+∞

∑
k=−∞

rect(0,T ) (t− kT )

[cos(2π fct +ϕc)cosψk− sin(2π fct +ϕc)sinψk]

=

[
+∞

∑
k=−∞

Acosψk rect(0,T ) (t− kT )

]
cos(2π fct +ϕc)

−

[
+∞

∑
k=−∞

Asinψk rect(0,T ) (t− kT )

]
sin(2π fct +ϕc)

So,

es (t) = sI (t)+ j sQ (t)

= A
+∞

∑
k=−∞

rect(0,T ) (t− kT ) (cosψk + j sinψk)

→ Classic linear digital modulation with

Dk = Ae jψk

g(t) = rect(0,T ) (t)
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Envelope and phase of the modulated signal

a(t) = A
+∞

∑
k=−∞

rect(0,T ) (t− kT )

ϕ (t) =
+∞

∑
k=−∞

ψk rect(0,T ) (t− kT )

Observations :

• Constant signal envelope.
• Phase jump → discontinuous phase.
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Exemple: PSK-2 or BPSK modulations

ψk ∈ {0,π}

→ Dk ∈
{

Ae j0,Ae jπ}

BPSK ≡ ASK-2 → Identical constellation diagram

Power spectral density

Identical to the ASK-2 modulation:

γs ( f ) =
A2Tb

4
{

sinc2 [( f − fc)Tb]+ sinc2 [( f + fc)Tb]
}
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2.4 Quadrature phase digital modulation
(QPSK: Quadrature Phase Shift Keying)

Characteristics

• Phase modulation with 4 states (PSK-4) :

ψk ∈ {−3π/4,−π/4,+π/4,+3π/4}

→ Dk ∈
{

Ae− j 3π
4 ,Ae− j π

4 ,Ae j π
4 ,Ae j 3π

4

}

• Rectangular modulating waveform impulse :

g(t) = rect(0,T ) (t) = rect(0,2Tb) (t)
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Constellation diagram

sI(t)

(+ A√
2
,+ A√

2
)

(+ A√
2
,− A√

2
)

00

01

(− A√
2
,+ A√

2
)

(− A√
2
,− A√

2
)

11

10

sQ(t)
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Inphase and quadrature components

Let

I (t) =
+∞

∑
k=−∞

Ik δ (t− kTb)

where

Ik =

{
+1 for the bit 1
−1 for the bit 0

We build the two sequences

sI (t) =
A√
2

+∞

∑
k=−∞

I2k g(t− kT ) =
+∞

∑
k=−∞

Ak g(t− kT )

sQ (t) =
A√
2

+∞

∑
k=−∞

I2k+1 g(t− kT ) =
+∞

∑
k=−∞

Bk g(t− kT )

where T = 2Tb, and

Ak = I2k
A√
2
→ even bits for the sequence Ik

Bk = I2k+1
A√
2
→ odd bits of the sequence Ik
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Modulated signal envelope and phase

es (t) = sI (t)+ j sQ (t)

=
+∞

∑
k=−∞

(Ak + j Bk) rect(0,T ) (t− kT )

=
A√
2

+∞

∑
k=−∞

(I2k + j I2k+1) rect(0,T ) (t− kT )

We can then write

a(t) =
√

s2
I (t)+ s2

Q (t)

=
A√
2

+∞

∑
k=−∞

√
I2
2k + I2

2k+1 rect(0,T ) (t− kT )

= A
+∞

∑
k=−∞

rect(0,T ) (t− kT )

and

ϕ (t) =
+∞

∑
k=−∞

rect(0,T ) (t− kT ) arctan
(

I2k+1

I2k

)
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Observations :

• Constant. signal envelope

• Phase jumps of π or π/2 → discontinuous phase.

Signals

ϕ(t)

t

+A

t
3π

4−π

4
3π

4
3π

4−π

4
3π

4
π

4

t

t

t

Tb

1 1
0

1 1
0 0

1
0

1 1
0 0

1

1 1 1
0 0 0 0

1 1 1 1 1
0 0

I(t)

sI(t)

sQ(t)

+1

−1

+ A√
2

− A√
2

T = 2Tb

+ A√
2

− A√
2

a(t)
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Modulation QPSK
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−1

0

1

(b
)
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−1

0

1

(c
)

0 2 4 6 8 10 12
−1

0

1

(d
)

0 2 4 6 8 10 12
−1

0

1

(e
)

0 2 4 6 8 10 12

−1

0

1

(f
)

(a) Binary sequence I(t)

(b) sI(t)

(c) sQ(t)

(d) sI (t) cos(2π fct)

(e) sQ (t) sin(2π fct)

(f) Modulated signal s(t)
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QPSK Modulator

I(t)

−π

2

cos(2π fc)t

sin(2π fc)t

sQ(t) sQ(t)sin(2π fct)

parallèle

sI(t) sI(t)cos(2π fct)

+

−
s(t)

série

QPSK Demodulator

1
2sI(t)

−π

2

Filtre adapté et décision

Filtre adapté et décision

série

parallèle
1
2I(t)

cos(2π fc)t

s(t)

sin(2π fc)t

1
2sQ(t)
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Power spectral density

Hypothesis : The four states have an equal probability.

Dk =

(
± A√

2
,± A√

2

)

Mean
µD = E{Dk}= 0

Variance
σ

2
D = E{||Dk||2}= A2

Modulating waveform signal

g(t) = rect(0,2Tb)(t)
 G ( f ) = 2Tb e− j2π f Tb
b sinc(2 f Tb)

Complex envelope signal

γes ( f ) = 2A2Tb sinc2 (2 f Tb)

Modulated signal PSD

γs ( f ) =
A2Tb

2
{

sinc2 [( f − fc)2Tb]+ sinc2 [( f + fc)2Tb]
}
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3. Exercises

1. Consider a classic linear modulation characterized by the following constellation diagram

3A/4

010 000

001011

A/2 A 

101

100110

111

A/4

The modulating waveform impulse is rectangular and extend from 0 to T . The carrier
frequency is given by fc.
(a) Represent graphically the temporal evolution of the inphase component, the

quadrature component, the amplitude and the phase of the modulated signal for the
binary sequence: 101111010011000.

(b) If the symbols beginning by 0 have a probability two times higher than those
beginning by 1, compute the power spectral density of the modulated signal.

(c) If a bit has a 10 µs duration, determine the bit rate Rb and the bandwidth of the
modulated signal.
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2. We achieve a classic linear digital modulation with a circuit comprising an 8-ways switch
activated every 3Tb seconds depending on the binary sequence to be transmitted (Tb is the
inverse of the bit rate Rb). The 8 inputs of the switch receive signals s000(t), s001(t), ...
derived from the carrier cos(2π fct) ;

s000(t) = 2cos
(

2π fct +
5π

6

)
s001(t) =

√
3cos(2π fct−π)

s010(t) = −2sin
(

2π fct−
4π

3

)
s011(t) = sin(π−2π fct)

s100(t) = 2sin
(

2π

3
−2π fct

)
s101(t) = −

√
3sin

(
2π fct−

π

2

)
s110(t) = −2cos

(
2π fct−

5π

6

)
s111(t) = 3cos

(
2π fct +

π

2

)
The switch delivers an output signal s(t) which is the modulated digital signal.
(a) Determine and draw the constellation diagram for this modulation. What is the

number of states in this constellation?
(b) Draw the inphase component, the quadrature component, the envelope and the phase

of the modulated signal for the following binary sequence : 011001101011000010111.
(c) Expressed, in terms of Rb, the bandwidth of the modulated signal.
(d) Determine the power spectral density of the modulated signal if the symbols have the

same probability and are not correlated.
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3. Let the classic linear modulation with the following constellation diagram

01

1[V]

1[V]

10

00

11

The emission probability for the symbols are p(00) = p(11) = 1/6 , p(10) = p(01) = 1/3
and the symbols are not correlated. The modulating waveform is a rectangular impulse
with an unit amplitude and a duration of 2Tb where Tb is the bit duration.
The resulting modulated signal can be written s(t) = I(t)−Q(t) with{

I(t) = sI(t)cos(2π fct +ϕ)

Q(t) = sQ(t)sin(2π fct +ϕ)

where sI(t) and sQ(t) are respectively the inphase and quadrature components of the
modulated signal and ϕ is a random variable with an uniform probability density function
on the interval [0,2π].
(a) Compute the value of the inphase and quadrature components for the modulated

signal for the following binary sequence: 01011110000110.
(b) Compute, in terms of the bit rate Rb (=1/Tb), the bandwidth of the modulated signal.
(c) Compute the power spectral density of the modulated signal s(t).
(d) Compute the power spectral density of the signals I(t) and Q(t).
(e) With the help of the two previous points, determine the relation between the spectral

density γI ( f ), γQ ( f ) and γs ( f ). What’s your conclusion concerning the correlation
between the signals I(t) and Q(t)?.
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4. Let the classic linear digital modulation 16-QAM (or 16-QASK) whose constellation
diagram is given by

0110

1000

1001

1011

1010

0000

0001

0011

0010

1100

1101

1111

1110

0100

0101

0111

The modulating waveform impulse is a 4Tb duration rectangular signal.

(a) For the binary sequence 1011001011011001, determine the inphase and quadrature
components, the envelope and the phase of the modulated signal.

(b) Determine the power spectral density of the modulated signal (hypothesis : all
symbols have an equal probability).

(c) Determine the bandwidth of s(t) (in terms of of Rb) and the spectral efficiency η .
(d) Determine the type of modulation.
(e) What do you think of the repartition of the symbol in the constellation diagram? Is it

wise in terms of bandwidth, power consumption and/or error probability?
(f) If the modulated signal is expressed by s(t) = I(t)−Q(t) with{

I(t) = sI(t)cos(2π fct +ϕ)

Q(t) = sQ(t)sin(2π fct +ϕ)

What is the relation between γI ( f ), γQ ( f ) and γs ( f ). Are they correlated?
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5. The signal 010011001011 is transmitted with a classic linear modulation and the inphase
(p(t)) and quadrature (q(t)) components are depicted in the following diagram:

(a) Draw the amplitude and phase of the modulated signal.
(b) Draw the constellation diagram of this modulation.
(c) Compute, in terms of the bit rate Rb (=1/Tb), the bandwidth of the modulated signal.
(d) If all symbols have the same probability, compute the power spectral density of the

modulated signal s(t).
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Answer

1. (a) –
(b)

γs( f ) = 10Tb
{

sinc2[4Tb( f − fc)]+ sinc2[4Tb( f + fc)]
}

(c) B = Rb
4 , η = 4 [b/s/Hz]

(d) Hybrid modulation
(f)

γI( f ) = γQ( f ) = 5Tb
{

sinc2[4Tb( f − fc)]+ sinc2[4Tb( f + fc)]
}
=

1
2

γs( f )

So I(t) and Q(t) are not correlated

2. (a) –
(b)

γs( f ) =
11A2

32
Tb
{

sinc2[3Tb( f − fc)]+ sinc2[3Tb( f + fc)]
}

(c) Rb = 100 [kb/s], B = 33.3 [kHz]

3. (a) 8 states
(b) –
(c) B = Rb

3
(d)

γM ( f ) = 3Tbsinc2[3Tb f ]

[
69
16

+
1
16

+∞

∑
m=−∞

1
3Tb

δ

(
f − m

3Tb

)]
and

γS ( f ) =
γM ( f − fc)+ γM ( f + fc)

4
4. (a) –

(b) B = Rb
2

(c)

γs( f ) =
3Tb

2
{

sinc2[2Tb( f − fc)]+ sinc2[2Tb( f + fc)]
}

(d)

γI( f ) =
4Tb

3
{

sinc2[2Tb( f − fc)]+ sinc2[2Tb( f + fc)]
}

γQ( f ) =
Tb

6
{

sinc2[2Tb( f − fc)]+ sinc2[2Tb( f + fc)]
}

(e)
γs( f ) = γI( f )+ γQ( f )

So γI ( f ) and γQ ( f ) are not correlated.

Exercise session 4 : Digital modulations (part 1) 58



Digital modulations (part 2)

Outline:

1. Reminder

2. Offset modulation

2.1 Power spectral Density (PSD)

2.2 OQPSK modulation

2.3 MSK modulation

3. Exercises
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1. Reminder

Linear digital modulation:

s(t) = Re

{
e j(2π fct+ϕc)

+∞

∑
k=−∞

dk (t) e j(θk−2π fckT )

}

where the dk (t) signals contain the information to be transmitted and
θk is a constant phase.

Two types of linear modulation:

• classic modulations: θk = 2π fckT

• offset modulations: θk = 2π fckT + kπ

2
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2. Offset modulation

Modulated signal :

s(t) = Re
{

es (t) e j(2π fct+ϕc)
}

Complex envelope of the modulated signal:

es (t) =
+∞

∑
k=−∞

dk (t) e jk π
2

=
+∞

∑
k=−∞

Dk pk (t− kT ) e jk π
2

where

• pk (t) = real modulating waveform signal. For the sake of sim-
plicity, we will choose pk (t) = p(t) , ∀k .

• Dk = random variable containing the digital information to be
transmitted : Dk = Ak → purely real

• Choice : T = Tb
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Consequently,

es (t) =
+∞

∑
k=−∞

Ak p(t− kTb) e jk π
2

Inphase and quadrature components

s(t) =
+∞

∑
k=−∞

Ak p(t− kTb) cos
(

2π fct +ϕc+ k
π

2

)

=

[
+∞

∑
k=−∞

Ak p(t− kTb) cos
(

k
π

2

)]
cos(2π fct +ϕc)

−

[
+∞

∑
k=−∞

Ak p(t− kTb) sin
(

k
π

2

)]
sin(2π fct +ϕc)
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So,

sI (t) =
+∞

∑
k=−∞

Ak p(t− kTb) cos
(

k
π

2

)
=

+∞

∑
k=−∞

A2k (−1)k p(t−2kTb)

And

sQ (t) =
+∞

∑
k=−∞

Ak p(t− kTb) sin
(

k
π

2

)
=

+∞

∑
k=−∞

A2k+1 (−1)k p(t− (2k+1)Tb)

→ sI (t) and sQ (t) are shifted by a duration of one bit Tb

→ Offset modulation.
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2.1 Power spectral Density (PSD)

Modulated signal PSD S(t)

γS ( f ) =
γM ( f − fc)+ γ∗M (− f − fc)

4

where γM( f ) is the PSD of the complex envelope.

Complex envelope PSD M(t)

M (t) =
+∞

∑
k=−∞

Ak p(t− kTb) e jk π
2

→ impossible to compute directly the PSD of M(t) .
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Complex envelope modulating waveform

s(t) = Re{es (t) e j(2π fct+ϕc)}

= Re{es (t) e− j2π
t

4Tb e j
(

2π

(
fc+ 1

4Tb

)
t+ϕc

)
}

= Re{v(t) e j(2π f ′ct+ϕc)}

where we let

v(t) = es(t)e− j2π
t

4Tb

f ′c = fc+
1

4Tb

So,

γs ( f ) =
γv ( f − f ′c)+ γ∗v (− f − f ′c)

4
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Modulating waveform for v(t)

v(t) = es(t)e− j2π
t

4Tb

=
+∞

∑
k=−∞

Ak p(t− kTb) e jk π
2 e− j2π

t
4Tb

=
+∞

∑
k=−∞

Ak p(t− kTb) e− j π
2Tb

(t−kTb)

=
+∞

∑
k=−∞

Ak h(t− kTb)

where we noted

h(t) = p(t) e− j πt
2Tb ( complex !)

→ new modulating waveform :

H ( f ) = P

(
f +

1
4Tb

)
So,

γv ( f ) =
||H ( f )||2

Tb

[
σ

2
A +µ

2
A

+∞

∑
m=−∞

1
Tb

δ

(
f − m

Tb

)]
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2.2 OQPSK modulation
(Offset Quadrature Phase Shift Keying)

Caracteristics

• 4 states phase modulation→ offset version of the QPSK mod-
ulation

• Rectangular modulating waveform :

p(t) = rect(0,T ) (t) = rect(0,2Tb) (t)

Constellation diagram

10

(+ A√
2
,+ A√

2
)

(+ A√
2
,− A√

2
)

00

01

(− A√
2
,+ A√

2
)

(− A√
2
,− A√

2
)

11
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Inphase and quadrature components

Let

I (t) =
+∞

∑
k=−∞

Ik δ (t− kTb)

where

Ik =

{
+1 for the bit 1
−1 for the bit 0

We build the two sequences

sI(t) =
A√
2

+∞

∑
k=−∞

I2k g(t−2kTb)

=
+∞

∑
k=−∞

A2k (−1)k g(t−2kTb)

sQ(t) =
A√
2

+∞

∑
k=−∞

I2k+1 p(t− (2k+1)Tb)

=
+∞

∑
k=−∞

A2k+1 (−1)k p(t− (2k+1)Tb)

A2k = (−1)k I2k
A√
2
→ even bits of the sequence Ik

A2k+1 = (−1)k I2k+1
A√
2
→ odd bits of the sequence Ik
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Signals

π

4 t
ϕ(t) 3π

4
−

π

4
−

π

4
3π

4
3π

4
3π

4
−− 3π

4
π

4
π

4
3π

4
3π

4

t

t

t

Tb

1 1
0

1 1
0 0

1
0

1 1
0 0

1

1 1 1
0 0 0 0

I(t)

sI(t)

sQ(t)

+1

−1

+ A√
2

− A√
2

T = 2Tb

1 1 1 1 1
0 0

+ A√
2

− A√
2

Tb

a(t)
t

+A

3π

4

Observations :

• Constant signal envelope.

• Maximum π/2 phase jumps → discontinuous phase.
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Modulation OQPSK
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)
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(e
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(f
)

(a) Binary sequence I(t)

(b) sI(t)

(c) sQ(t)

(d) sI (t) cos(2π fct)

(e) sQ (t) sin(2π fct)

(f) Modulated signal s(t)

Exercice session 5: Digital modulations (part 2) 70



Power spectral density

Hypothesis : Ak =±A/
√

2 have equal probability.

Mean
µA = E{Ak}= 0

Variance

σ
2
A = E{A2

k}=
A2

2
Modulating waveform

p(t) = rect(0,2Tb)(t)
 P( f ) = 2Tb e− j2π f Tb
b sinc(2 f Tb)

||H ( f )||2 = ||P( f +
1

4Tb
)||2 = 4T 2

b sinc2
[(

f +
1

4Tb

)
2Tb

]
Complex envelope PSD

γv ( f ) = σ
2
A
||H ( f )||2

Tb
= 2A2Tb sinc2

[(
f +

1
4Tb

)
2Tb

]

Modulated signal PSD

γs ( f ) =
A2Tb

2
{

sinc2 [( f − fc)2Tb]+ sinc2 [( f + fc)2Tb]
}

→ identical to the PSD of a QPSK modulated signal
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2.3 MSK modulation (Minimum Shift Keying)

Characteristics

• Identical to the OQPSK modulation, excepted the modulating
waveform :

p(t) = rect(0,2Tb) (t) sin
(

πt
2Tb

)
• Continuous phase.

Constellation Diagram

1000

01 11
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Inphase and quadrature components

Let

I (t) =
+∞

∑
k=−∞

Ik δ (t− kTb)

where

Ik =

{
+1 for the bit 1
−1 for the bit 0

We build the two sequences

sI (t) = A
+∞

∑
k=−∞

I2krect(0,2Tb) (t−2kTb)sin
[

π (t−2kTb)

2Tb

]

=
+∞

∑
k=−∞

AI2k (−1)k rect(0,2Tb) (t−2kTb) sin
(

πt
2Tb

)

= cos
(

πt
2Tb
− π

2

) +∞

∑
k=−∞

A2k rect(0,2Tb) (t−2kTb)

sQ (t) = sin
(

πt
2Tb
− π

2

) +∞

∑
k=−∞

A2k+1rect(0,2Tb) (t− (2k+1)Tb)

A2k = (−1)k I2k A → even bits of the sequence Ik

A2k+1 = (−1)k I2k+1 A → odd bits of the sequence Ik
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Envelope and phase of the modulated signal

a(t) =
√

s2
I (t)+ s2

Q (t)

=

√
A2 sin2

(
πt
2Tb
− π

2

)
+A2 cos2

(
πt
2Tb
− π

2

)
= A

and

ϕ(t) = arctan
[

sQ (t)
sI (t)

]
= arctan{

tan
(

πt
2Tb
− π

2

)
∑

+∞

k=−∞
A2k rect(0,2Tb) (t−2kTb)

∑
+∞

k=−∞
A2k+1 rect(0,2Tb) (t− (2k+1)Tb)

}

Temporal variation of the phase:

∆ϕ (t) =± πt
2Tb

→ The phase varies linearly of π

2 during the period Tb .
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Phase trellis

∆ϕ(t)
Tb

t

3π/2

π

π/2

−π/2

−π

−3π/2

MSK may be considered as a frequency modulation

We may write
s(t) = a(t) cos [2π fct +ϕ (t)]

During the period Tb , we get

s(t) = A cos
(

2π fct±
πt
2Tb

)
= A cos

[
2π

(
fc±

1
4Tb

)
t
]
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Signals

0 2 4 6 8 10 12
−1

0

1

(a
)

Modulation MSK

0 2 4 6 8 10 12
−1

0

1

(b
)

0 2 4 6 8 10 12
−1

0

1

(c
)

0 2 4 6 8 10 12
−1

0

1

(d
)

0 2 4 6 8 10 12
−1

0

1

(e
)

0 2 4 6 8 10 12
−1

0

1

(f
)

(a) Binary sequence I(t)

(b) sI(t)

(c) sQ(t)

(d) sI (t) cos(2π fct)

(e) sQ (t) sin(2π fct)

(f) Modulated signal s(t)
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Power spectral density

Hypothesis: Ak =±A have an equal probability.

Mean
µA = E{Ak}= 0

Variance
σ

2
A = E{A2

k}= A2

Modulating waveform

p(t) = rect(0,2Tb) (t) sin
(

πt
2Tb

)

||H ( f )||2 = ||P( f +
1

4Tb
)||2

Complex envelope PSD

γv ( f ) = σ
2
A
||H ( f )||2

Tb
=

16A2Tb

π2


cos
[
2π

(
f + 1

4Tb

)
Tb

]
1−16

(
f + 1

4Tb

)2
T 2

b


2

Exercice session 5: Digital modulations (part 2) 77



modulated signal PSD

γs( f ) =
4A2Tb

π


(

cos [2π ( f − fc)Tb]

1−16( f − fc)
2 T 2

b

)2

+

(
cos [2π ( f + fc)Tb]

1−16( f + fc)
2 T 2

b

)2


→ decreasing in 1/ f 4 (1/ f 2 for OQPSK).
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PSD comparison

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−70

−60

−50

−40

−30

−20

−10

0

d
B

BPSK − OQPSK(=QPSK) − MSK

BPSK : dotted line

OQPSK = QPSK: solid line

MSK: solid line + points
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3. Exercices

1. Consider the 2-4PSK modulation which corresponds exactly to the OQPSK modulation
excepted that the duration of the rectangular modulating waveform is not equal to 2Tb
anymore, but is equal to Tb .
(a) For the binary sequence 101101001101, could you represent the inphase and

quadrature components, the envelope and the phase of the modulated signal.
(b) Draw the constellation diagrams (complex plan for es (t) ).
(c) Determine the power spectral density for the modulated signal (hypothesis: the

symbols have equal probability).
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Answer

1. (a) –
(b) –
(c)

γs( f ) =
A2Tb

4
{

sinc2 [( f − fc)Tb]+ sinc2 [( f + fc)Tb]
}
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Spread spectrum

Outline:

1. Baseband

2. DS/BPSK Modulation

3. CDM(A) system

4. Multi-path

5. Exercises
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1. Baseband

After despreading :

+1

+1

+1

-1

-1

-1

Tb
Tc

t

t

t

b(t)

c(t)

m(t)

b(t)

c(t)

m(t)

z(t)

1 0

r(t)

∫ Tb
0

λ

i(t)

Sp
re

ad
in

g
C

ha
nn

el
R

ec
ep

to
r

c(t)
m(t) = c(t)b(t)

r(t) = c(t)b(t)+ i(t)

z(t) = b(t)+ i(t)c(t)

Transmitted signal :

Received signal :
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2. DS/BPSK Modulation (Direct Sequence
Spread Spectrum with coherent Binary Phase

Shift Keying)

Modulator:

generator

c(t)

m(t)
x(t)b(t) BPSK

Code

modulation

Carrier

Demodulator:

trigger
y(t) v 1

0
∫ Tb

0

Coherent detector

Local carrier Local code

Product
modulator

Decision

generator

filter
Lowpass

The spreading and modulation operations are linear −→ they may be
permuted.
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Channel

x(t)

c(t) c(t)

y(t) u(t)
Estimation

j(t) Porteuse locale

Emitter Receptor

Carrier

Data
signal b(t) Binary PSK Coherent of b(t)

generator
Local code

generator
Code

detectormodulation
s(t)

At the receptor input:

y(t) = x(t)+ j(t)

= s(t)c(t)+ j(t)

where s(t) = BPSK modulation of b(t).

After despreading:

u(t) = y(t)c(t)

= s(t)+ j(t)c(t)
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3. CDM(A) system

CDM = Code Division Multiplexing

CDMA = Code Division Multiple Access

fc

sn(t− τn)cn(t− τn)

s2(t− τ2)c2(t− τ2)

fc

s1(t) Coherenty(t)
detectormodulation

Estimation
BPSK of b(t)

c1(t)

b1(t)

c1(t)

u(t)

Received signal:

y(t) = s1(t)c1(t)+ s2(t− τ2)c2(t− τ2)+ . . .

+sn(t− τn)cn(t− τn)

After despreading:

u(t) = y(t)c1(t)

= s1(t)+ s2(t− τ2)c2(t− τ2)c1(t)+ . . .

+sn(t− τn)cn(t− τn)c1(t)
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After BPSK demodulation:

b̃1(t) = b1(t)+b2(t− τ2)c2(t− τ2)c1(t)+ . . .

= +bn(t− τn)cn(t− τn)c1(t)

Through the matched filter:

v =
∫ Tb

0
b1(t)dt

+
∫ Tb

0
b2(t− τ2)c2(t− τ2)c1(t)dt →±Tb Γ12(τ2)

+ . . .

+
∫ Tb

0
bn(t− τn)cn(t− τn)c1(t)dt →±Tb Γ1n(τ2)

→ We are looking for spreading codes ci(t) which are almost uncorre-
lated. Ideally, we would like to have Γi j(τ) = 0. So we use the Gold
sequences.
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4. Multi-path

Received signal:

y(t) = s1(t)c1(t)+α s1(t− τ)c1(t− τ)

After despreading:

u(t) = y(t)c1(t)

= s1(t)+α s1(t− τ)c1(t− τ)c1(t)

After BPSK demodulation:

b̃1(t) = b1(t)+α b1(t− τ)c1(t− τ)c1(t)

Through the matched filter:

v =
∫ Tb

0
b1(t)dt

+α

∫ Tb

0
b1(t− τ)c1(t− τ)c1(t)dt →±αTbΓ11(τ)
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5. Exercises

1. Let two given signals whose bandwidth are respectively equal to W and nW . Show that the
product of these two signals gives a wide band signal.

2. In a spread spectrum communication system, the binary rate is Rb = 1/Tb where
Tb = 4,095 [ms]. We use Tc = 1 [µs] and a BPSK modulation. In addition, the Eb/N0
ratio leading to an error probability less than 10−5 is equal to
10. Determine the maximum number of simultaneous users and the bandwidth of the system.

3. Given the bit sequence 01101. We will modulate it in baseband (NRZ modulation) with a
rectangular modulating waveform of Tb duration and unitary amplitude. The voltage is
respectively equal to 1 [V] for a 1 and −1 [V] for a 0. The resulting signal x(t) is then
shaped like in in the drawing below and the message is transmitted at a speed of 75 [b/s].

-1
t

x(t)
1

We then decide to use a spread spectrum method where the spreading signal g(t) is
generated by a 4 bits shift register whose initial sequence is 1111. The clock frequency of
this circuit is 1125 [Hz].
(a) Determine the circuit diagram allowing the construction of the shift register of

maximum length.(hint: use the [4,1] feedback configuration)
(b) Draw the spread signal for the two first bits of x(t).
(c) Determine the spread spectrum processing gain in [dB].
(d) If we then use a BPSK modulation and if the ratio between the energy per bit and the

noise power is 5 [dB], determine the maximum users number.
(e) Determine the spread signal bandwidth.
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4. We consider the spread spectrum transmission system represented by the following diagram

where
- m(t) is the useful binary signal; m(t) is a NRZ signal with a ±V amplitude and a bit
duration of Tb =

1
fb
,

- Ac cos(2π fct) is the carrier,
- d (t) is the spreading sequence; the bit duration is Td = Tb

60 ,
- n(t) is an additive noise.

This question has two parts and it
is possible to answer almost of all the second part without having solved the first one.

First part: Here, we will try to
find the analytic expression for the noise power spectral density at the integrator output.
The noise signal is n(t) = An cos(2π fct +Θ) where Θ is a zero mean random phase.

(a) What is the spreading factor?
(b) Give the analytic expression of the v1 (t) signal at the receptor input.
(c) What is the v2 (t) signal at the integrator input?
(d) If we take fc =

600
Tb

, some terms in v2 (t) will have a null contribution at the integrator
output. What are these terms? (Hint: (1) you should develop the cosines, (2) the
terms cos(Θ) and sin(Θ) do not depend on the time; they are constants on all the
integration period).

(e) As all operations are linear, it is possible to neglect the terms with a null contribution
starting from the integrator input. Then, what will be the simplified v3 (t) signal
derived from the expression of the v2 (t) signal?

(f) What is the interference term in v3 (t)?
(g) What is the spectral density of the interference term at the integrator input?
(h) What is the spectral density of the interference term at the integrator output? In the

computation, you may consider that the integrator will act as an ideal lowpass filter
until the fb frequency.
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Second part: We would like to compute the bit error probability. We remind you that, in
the case of a classical BPSK modulation, the bit error probability Pe is

Pe =
1
2

er f c
(√

Eb

N0

)
We will assume that the noise power spectral density is constant for | f | ≤ fb and is equal to

V 2E
{

cos2 (Θ)
}

α fd

This spectral density is null outside the [− fb, fb] interval. α is a constant.
(a) Compute the value of Pe. (Hint: replace Eb by its value)
(b) Which is the gain compared to the classical BPSK if we consider that Θ is a random

variable uniformly distributed on the [0,2π] interval?
(c) Does the gain comes from the spreading?
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Answers

1. –

2. Users number = 410. Bandwidth = 1 [MHz].
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Intersymbol interference

Outline:

1. Intersymbol interference definition (ISI)

2. Nyquist Criteria

2.1 Nyquist ideal channel

2.2 Raised cosine pulsed

3. Exercises
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1. Intersymbol interference definition (ISI)

Origin: The transmission channel is dispersive.

Transmission scheme:

Threshold λ

x(t)

y(t)

y(ti)

Σ

1 si y(ti)> λ 0 si y(ti)< λ

Ak =+1 ou−1

s(t) = ∑k Ak g(t− kTb)

channel h(t)

noise w(t)

Sampling
at ti = iTb

Receiving filtre

trigger

White Gaussian

Transmission

c(t)

Decision

Transmitted signal:

s(t) = ∑
k

Ak g(t− kTb)
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After reception and filtering:

y(t) = µ ∑
k

Ak p(t− kTb)+n(t)

From the transmitted signal to the received and filtered one:

µP( f ) = G( f )H( f )C( f )

where µ = normalization factor such that p(0) = 1.

After sampling:

y(ti) = y(iTb)

= µ ∑
k

Ak p [(i− k)Tb]+n(iTb)

= µAi︸︷︷︸ + ∑
k 6=i

Ak p [(i− k)Tb]︸ ︷︷ ︸ + n(iTb)︸ ︷︷ ︸
contribution filtered and
of the ith bit ISI sampled noise
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2. Nyquist Criteria

We are looking for p(t) such that ISI=0. Consequently,

p [(i− k)Tb] =

{
1 if i = k
0 if i 6= k

We consider the sampled signal

ps(t) =
+∞

∑
m=−∞

p(mTb)δ (t−mTb)

Ps( f ) = fb

+∞

∑
n=−∞

P( f −n fb) where fb = 1/Tb

So,

Ps( f ) =
∫ +∞

−∞

+∞

∑
m=−∞

[p(mTb)δ (t−mTb)] e− j2πt f dt

=
∫ +∞

−∞

p(0)δ (t)e− j2πt f dt

= 1

The Nyquist criteria may be formulated as follows

ISI = 0 if
+∞

∑
n=−∞

P( f −n fb) = Tb
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2.1 Nyquist ideal channel

P( f ) =
{ 1

2W if −W < f <+W
0 if | f |>W

p(t) = sinc(2Wt)

Sampling time

1.0

0 321−3 −2 −1

−1 0 1

1.0

0.5

W = 1
2Tb

= Rb
2

f
W

t
Tb

p(t)

2WP( f )
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Superposition of the received impulses:

Time

1 1 0 0110

8

A
m

p
li

tu
d

e

−4 −2 0 2 4 106

−1.0

−0.5

0.0

0.5

1.0

Binary sequence

Drawbacks:

• Abrupt transitions in ±W −→ not physically achievable.

• p(t) decreases in 1/|t| −→ too few error margin on the sampling
time.
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2.2 Raised cosine pulsed

In the frequency domain,

P( f ) =


1

2W 0≤ | f |< f1
1

4W

{
1− sin

[
π(| f |−W )
2W−2 f1

]}
f1 ≤ | f |< 2W − f1

0 | f | ≥ 2W − f1

2WP( f )
α = 0
α = 0.5
α = 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.8

0.6

0.4

0.2
f

W

Transmission band:

BT = 2W − f1 =W (1+α)

where
α = 1− f1

W
(rolloff factor)
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In the temporal domain,

p(t) = sinc(2Wt)
(

cos(2παWt)
1−16α2W 2t2

)

−3 −2 −1 1 2 30

0.5

1.0

t
Tb

α = 1

α = 0.5

α = 0

p(t)

−→ decreases in 1/t2
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3. Exercises

1. Plot the output waveform when a channel filters a unipolar NRZ
signal. Assume that the overall filtering effect of the transmitter,
channel, and the receiver is that of an RC low-pass filter where the 3 [dB] bandwidth is 1 [Hz].

Assume that the unipolar NRZ input signal has a bit rate of Rb = 1 [Hz] and that the data
on the unipolar NRZ signal is [1 0 0 1 0 1 1 0 1 0].

2. Determine the combined impulse response of the whole chain (transmitter, channel,
receiver).
(a) Compute and plot the waveform at the receiver output and observe the intersymbol

interference

3. A computer send binary data at a 56 [kb/s] rate. The base band transmission is achieved
thanks to a PAM modulation with 2 tension levels, using a raised cosine impulse signal.
Determine the necessary bandwidth for the transmission for α = 0.25,0.5,0.75,1. What
become these bandwidth if we group the bits three by three in a PAM-8 modulation?

4. An analog signal is sampled, quantized and coded with a binary PCM. The quantification
level number is 128. An error detection bit is added to each sample of the analog signal.
The resulting PCM wave is transmitted in a 12 [kHz] bandwidth channel, using a PAM-4
modulation and a raised cosine impulse (α = 1).
(a) Determine the transmission rate (in [b/s]) through the channel.
(b) Determine the sampling frequency of the analog signal. What is the maximum

possible frequency for the analog signal?

5. A PAM binary wave (2 tension levels) is transmitted in base band through a
channel whose maximum bandwidth is 75 [kHz]. The bit duration is
10 [µs]. Determine the parameter α of a raised cosine impulse which verify these conditions.
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Answers

1.

2. The bandwidth are given by

α BT [kHz]

0.25 35
0.5 42
0.75 49
1 56

If we group the bits 3 by 3, for the same transmission rate, the pulse may be 3 times
longer; the transmission bands are all divided by 3.

3. The transmission rate is 24 [kb/s]. The analog signal is sampled at a 3 [kHz] frequency.
The maximum frequency of the signal may not be upper than 1.5 [kHz].

4. α ≤ 0.5.
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Frequency and time multiplexing

Outline:

1. Frequency Division Multiplexing (FDM)

1.1 Multiplexing then digitization

1.2 digitization then multiplexing

2. Time multiplexing (TDM)

3. Exercises
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1. Frequency Division Multiplexing (FDM)

• Objectives of the multiplexing: to transmit several signals
on the same channel.

• Characteristics of the frequency multiplexing:

– All signals are transmitted simultaneously.

– Signals use different frequency bands.

– We may either multiplex then digitize (and modulate) or
digitize (and modulate) then multiplex.
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1.1 Multiplexing then digitization

Shape for the spectrum of the transmitted signals mi(t) :

Mi( f )

f−W +W

Generation of an hybrid analog signal m(t) :

USBM( f )

f
Multiplex

1 2 3 n

digitization and digital modulation of m(t) :

Modulator
m(t) s(t)Digitalization

PCM wave Digital

where s(t) is a modulated digital signal (BPSK, QPSK, ...).
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1.2 Digitization then multiplexing

Shape for the spectrum of the transmitted signals mi(t) :

Mi( f )

f−W +W

digitization and digital modulation of each mi(t) :

modulator
mi(t) si(t)Digitalization

PCM Wave Digital

where si(t) is a modulated digital signal (BPSK, QPSK, ...).

Frequency multiplexing of the digital signals si(t) :

Sn( f )
S( f )

S1( f )

Bi

B

f
B1
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2. Temporal multiplexing
(TDM: Time Division Multiplexing)

• All signals use the same frequency band.
• The signals are transmitted one by one.

Digitization of each mi(t) :

mi(t) Digitalization (PCM Wave)i
Binary rate : Ri (b/s)

Generation of an hybrid PCM wave:

PCMH 1 0 0 1 1 1 0 0 1

1 1 0

0 1 0

0 1 1

PCM1

PCM2

PCMn

has a bit rate of Rb = nRi (if Ri = R j ).

Digital modulation of PCMH :

s(t)PCMH
Digital
Modulator

where s(t) is a modulated digital signal (BPSK, QPSK, ...).
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3. Exercises

1. A basic CCITT group contains a set of 12 phone channels multiplexed by frequency
division (FDM) between 12 and 60 [kHz]. Starting from the obtained multiplex, we
generate a PCM wave, quantized on 8 bits. The PCM wave is transmitted thanks to a
PAM modulation with 2 voltage levels.
(a) Which sampling frequency should we use?
(b) What is the binary rate?
(c) What is the required bandwidth?

2. The bandwidth for an ECS satellite signal is 120 [MHz]. Then, we transmit the binary
signals with a carrier modulated in QPSK. Knowing that the signals are quantized with 8
bits, how many phone streams can we transmit by frequency multiplexing (FDM) and by
temporal multiplexing (TDM)?

3. We generate a frequency multiplex comprising a group of FM modulated TV channels.
This multiplex contains 5 sport channels and n entertainment channels. Given that the
maximum power for the multiplex is 20 [W] and that each channel has a peak voltage of
850 [mV], determine the maximum value for n .
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4. The IMAGE+ company decides to launch a new digital pay TV package distributed by
satellite and containing 20 channels. Each channel comprises two kind of information:
8 Video: represented by a luminance signal mY (t) with a 4.2 [MHz] bandwidth and two

chrominance signals mI (t) and mQ (t) with 1.6 [MHz] and 0.6 [MHz] bandwidth
respectively.

8 Audio (stereo): containing two audio signals mL (t) and mR (t) with a 20 [kHz]
bandwidth. This audio signal is generated in the same way than the FM radio signals.

The 5 signals are aggregated with a FDM technique and form a composite signal m(t)
with a B bandwidth thanks to the following diagram

Q

FM

FDM
mI(t)
mQ(t) m(t)

mL(t)
mR(t)

mY (t)

where the Q block achieves the quadrature modulation of the chrominance signals at the
f1 carrier frequency and the FM block achieves the FM modulation (with ∆ f = 75 [kHz])
of the stereo signal at f2 frequency. Graphically, the spectrum of the composite signal
m(t) corresponding to an unique channel has the following form

audioluminance chrominance

B0 f

The IMAGE+ company chooses a signal digitization at the practical sampling frequency
and a 12-bits quantization. For the transmission, they use a satellite channel carrier at
11.5 [GHz] frequency. In order to optimize the required bandwidth, several multiplexing
methods are considered. This question is aimed at studying the different possibilities.
(a) Compute the minimal numerical value for B, and the corresponding numerical values

for f1 and f2 (unlike analog television, we decide not to allow any covering between
the luminance and chrominance signals).
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(b) For each of the following multiplexing methods, give the bandwidth required for the
aggregated multiplex and depending on B [Hz].
i. First step: aggregation by FDM multiplexing of the signals obtained by USB

modulation of the 20 channels, in the same way than a base group in analog
telephony.
Second step: digitization of the aggregated signal.
Third step: QAM-16 modulation.

ii. First step: individual digitization of the m(t) signals related to each channels.
Second step: OQPSK modulation for each generated binary data streams.
Third step: FDM multiplexing of the obtained OQPSK signals.

iii. First step: individual digitization of the m(t) signals related to each channels.
Second step: TDM multiplexing of the generated binary data streams.
Third step: PSK-4 modulation.

iv. First step: individual digitization of the m(t) signals related to each channels.
Second step: CDM multiplexing with DS/BPSK modulation with a spreading
factor of 24 bits.
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Answer

1. (a) 120 [kHz]
(b) 960 [kb/s]
(c) 480 [kHz]

2. 3750(whatever the multiplexing technique).

3. n≤ 50 if all channels are independents, n≤ 30 if the 5 sport channels transmit the same
program.

4. (a) B = 7.7 [MHz], f1 = 5.8 [MHz], f2 = 7.55 [MHz]
(b) (i) 132 B
(b) (ii) 264 B
(b) (iii) 264 B
(b) (iv) 633.6 B
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Traffic engineering

Outline:

1. Counting process

2. Poisson process

3. Application to the trafic engineering

4. Exercises
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1. Counting process

5

D(t)

t

D1

D8

∆T

1
2
3
4

Given:

• T = observation period, m = time intervals number containing
no more than one event: ∆T = T

m

• λ = average event number per time unit (→ measure).
• p = probability that an event occurs during ∆T : p = λ ∆T .
• Di = Random variable representing the event number after i∆T .

We have,

P(Dm = n) = Cn
m pn (1− p)m−n

= Cn
m

(
λT
m

)n(
1− λT

m

)n−m

for n = 0,1, . . . ,m → Dm = binomial random variable with a mean
of mp = λT .
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When m→ ∞ (∆T → 0 ), binomial random variable → Poisson
random variable

P(D = n) =

{
(λT )n

n! e−λT n = 0,1, ...
0 otherwise

D = Random variable representing the event number during the
period T

E {D}= λT = α
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2. Poisson process

A counting process is a Poisson process if

• The event number during the interval ]t0, t1] , D(t1)−D(t0) is a
Poisson random variable of mean λ (t1− t0) .

• For all non-overlapping sub-intervals ]t0, t1] and ]t ′0, t
′
1] , D(t1)−

D(t0) and D(t ′1)−D(t ′0) are independent random variables

→ process without memory
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Theorem

t

1

2

3

4

5

D(t)

X4 X5

occurrence 1

occurrence 2

X1 X2 X3

Given Xn the time period between the successive events n and n−1 .
Then,

P(Xn > x) = P{[D(tn−1+ x)−D(tn−1)] = 0}= e−λx

FXn (x) = P(Xn ≤ x)

= 1−P(Xn > x)

= 1− e−λx

fXn (x) =
{

λe−λx x > 0
0 otherwise

Xn is then an exponential random variable, and

E [Xn] =
1
λ
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3. Application to the traffic engineering

NA = number of call attempts during ∆T

λ = mean number of call attempts / time unit

ND = number of call stops during ∆T

η = mean number of call stops / time unit

P(NA = n) =
(λ ∆T )n

n!
e−λ ∆T

P(ND = n) =
(η ∆T )n

n!
e−η ∆T

Load of a network link:

A = (call rate) .(call duration)

=
λ

η

Given N physical lines and Pk the probability of having k busy lines.
We show that

Pk =
Ak

k!

∑
N
k=0

Ak

k!
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Blocking probability (network congestion):

B = PN =
AN

N!

∑
N
k=0

Ak

k!

→ Erlang B Formula

→ use tables
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Tables for the Erlang B formula:
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4. Exercises

1. In a printed circuits fabrication plant, n circuits are tested. A circuit is rejected with a
probability p independently of the results of the other tests. Given K
the random variable representing the number of rejections among the
n tests. Determine the probability that K = k . Numeric application: n= 10, p= 0,2, k = 4 .

2. Each time a modem transmit a bit, the receiving modem analyses the incoming signal and
decides if the transmitted bit is 1 or 0. The decision error probability is p , independently
of the decision concerning any other bit.
(a) If X is the already transmitted bit number when the first error occurs, determine

P(X = 10) for p = 0,1 .
(b) Determine P(X ≥ 10) (p = 0,1 ).
(c) On 100 transmitted bits, Y represents the number of actual errors, determine

P(Y = 2) for p = 0,01 .
(d) Determine P(Y ≤ 2) (p = 0,01 ).

3. The number of time a database B is accessed by a computer during any 10 seconds time
period is a Poisson random variable. Its mean is 5 accesses during 10 seconds.
(a) What is the probability that there are no access to B during a time period of 10

seconds?
(b) What is the probability that there are at least 2 accesses to B during a time period of

2 seconds?

4. The data packets transmitted by a modem on a phone line form a Poisson process whose
rate λ is equal to 10 packets/second. Given Mk the number of transmitted packets during
the k th hour. Determine
(a) The probability that Mk be equal to n .
(b) The mean of Mk .

5. The arrival of cars, motorbikes and trucks to the roadworthiness tests
center consists in 3 independent Poisson processes with the following
rate; λcar = 1,2 car/minute, λmoto = 0,9 moto/minute and λtruck = 0,7
truck/minute. Determine the probability of arrival of 20 vehicles (any of them) in 10 minutes.
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6. When designing a telephone network, we use an observation period T of 15 minutes.
Knowing that the blocking probability is equal to 0,005, that the number of call attempts
is equal to 100 and that the average duration of a call is 3 minutes,
(a) Determine the required line number N .
(b) If the average communication time increases to 12 minutes, what becomes the

blocking probability?

7. A telephone link consists of 40 lines. Knowing that the average call duration is equal to 5
minutes and that the observation period is equal to 30 min, determine the maximum call
number in order for the congestion probability to stay below 0,005.

8. We accept a network congestion probability equal to 0,02 on a telephone link consisting of
30 lines. The load allocated to each user is equal to 0,03 [E].
(a) Determine the number of users.
(b) Determine the number of users when the rejected call attempts are renewed.
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Answer

1. P(K = 4) = 0,088

2. (a) 0,0387
(b) 0,387
(c) 0,185
(d) 0,9207

3. (a) 0,0067
(b) 0,264

4. (a) –
(b) 36000

5. 0,025

6. (a) 32
(b) B� 0,02

7. 164

8. (a) 730
(b) 715
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Crosstalk (NEXT - FEXT)

Outline:

1. Transmission lines reminder

2. Crosstalk and high-speed transmission

3. Power spectral density

4. Exercises
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1. Transmission lines reminder

Zl

z = 0 z = l

Zc

Signal (in volt) at a point of the line (steady state):

V (z, t) =V (z)e jωt

where

V (z) = Vi e−γz+Vr eγz

= Vi
(
e−γz+Γl eγz)

and Γl is the reflection coefficient:

Γl =
Zl−Zc

Zl +Zc

and Zc is the line characteristic impedance:

Zc =

√
Z
Y
=

√
R+ jωL
G+ jωC

Matching:
Γl = 0 −→ V (z) =Vi e−γz
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Propagation coefficient:

γ = α + j β

where α characterizes the attenuation in the line:

V (z) =Vi e−αz e−β z

High frequency behavior (ωL� R ):

γ ' R
2

√
C
L
+ jω

√
LC

where L,C are independents of f and R = R0
√

f (skin effect).
Therefore,

α( f ) ∝
√

f

β ( f ) ∝ f −→ no phase distorsion
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2. Crosstalk and high-speed transmission

Disturbed line

FEXTNEXT

L0

Copper pairDisturbing line

NEXT: Near-End Crosstalk (’Paradiaphonie’ in french)

FEXT: Far-End Crosstalk (’Telediaphonie’ in french)

Power transfer function:

HNEXT( f ) = KNEXT f 3/2

→ independent of the line length L0 .

HFEXT( f ) = KFEXT f 2 e−2α( f )L0 L0
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3. Power spectral density

If all disturbing signals have the same power spectral density (PSD),

γN( f ) = γ1( f )HNEXT/FEXT( f )N

where

• γ1( f ) = PSD of one disturbing signal.

• γN( f ) = global disturbing PSD.

• N = number of disturbing lines.

→ over-evaluation of the disturbing power. Therefore, we use

γN( f ) = γ1( f )HFEXT/NEXT( f )N0,6

(Unger empiric formula).
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4. Exercices

1. A digital signal with a power of 5 [W] should be sent from a transmitter to a receiver at a
distance of 2 [km]. The signal bandwidth is equal to 100 [kHz]. Compare the received
power levels for the two following transmission types:

(a) Twisted pair, used bandwidth: 200−300 [kHz], matched line,
α ( f ) = 4,497.10−3√ f [Np/km] .

(b) Wireless connection, carrier frequency: 2,5 [GHz], transmission antenna gain: 10 [dB],
reception antenna gain: 20 [dB].

2. On a cable comprising 5 twisted pairs, we transmit 5 ISDN signals (PAM with 4 tension
levels, Zc = 135 [Ω] , Rb = 160 [kb/s] , tension levels: ±1[V],±3[V] ). Determine the
disturbing power spectral density coming from the NEXT effect on 1 of the 5 lines.

3. A telephone cable comprises 50 twisted pairs . The signals used for the transmission have
a typical nominal power of 100 [mW].
We measure a NEXT power transfer function of −53 [dB] at 10 [kHz], for a cable length of
375 [m].

(a) What is the value, in [dB], of the NEXT power transfer function when;
i. we shorten the cable to half its length (when f = 10 [kHz])
ii. we double the frequency

(b) Estimate the useful signal power at a receiving end when f = 10 [kHz].
(c) If all copper pairs are used, what is the harvested power by Near-End crosstalk on the

central pair of the cable.
(d) The computation result for the Near-End crosstalk does not hold for a 10 [cm] cable

used at a 1 [MHz] frequency. Which computation hypothesis should you adapt to
obtain a correct transfer function.

(e) We would like to build a cable tester. This tester enable the simultaneous injection of
disturbing signals on all copper pairs. To measure the Near-End crosstalk, is it better
to inject correlated signals or uncorrelated signals ? Explain!
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4. Consider the following system, comprised of two twisted pairs of length L.
We note that the line A comprises an additional loop of length B. Historically, this
situation sometimes happens in the network for the sake of simplicity of connection.
We will study here the impact of the loop on the Near-End crosstalk.

Loop of length b

L

x

l0

Pair B

Pair A

(a) What is the NEXT power at x = 0 if we consider that the line A is the useful line and
B is the disturbing line?

(b) For l = L/2, what becomes the NEXT effect if the cable attenuation in the loop is
much more important than the attenuation in the other parts of the line.

(c) What is the NEXT power at x = 0 if we consider that the line B is the useful line and
A is the disturbing line?

(d) If you have the choice between line A and B, which one would you choose? Explain!
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5. A transmission cable consists of two lines composed respectively of the conductors 1-2 and
3-4.

d

d
1

(a) Suggest a configuration of the conductors 1, 2, 3 and 4 in the cable in such a way
that the NEXT and FEXT completely vanish. Explain!
(hint: a31 = a13 =−C13 +C14 +C23−C24).

(b) The line length is 30[km]. The attenuation coefficient α is 0,151 [Np/km/km] at the
working frequency. The temperature is 290[K]. The input signal power is 100[mW]
and the bandwidth is 2[MHz]. Compute the noise factor for one line of this cable.

(c) Compute the thermal noise power at the input of the system.
(d) Compute the signal to noise ratio at the input and at the output.
(e) Does the previous results stay valid when NEXT or FEXT effects are presents?

Explain!
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Answers

1. (a) 6.5×10−4 [W]
(b) 1.1×10−7[W]

2. KNEXT f 3/2 40,6 (4.63×10−7)sinc2(12.5×10−6 f )

3. (a) i) −53 [dB] ii) −48.48 [dB]
(b) 89.3 [mW]
(c) 5.177×10−6[W]

(d) E {P2 ( f )}= RLω2V 2
0 ( f )k

−4α( f )

(
e−4α( f )L−1

)
(e) uncorrelated signals are the most probable case and correlated signals are the worst case

4. (a) E {P2 ( f )}= RLω2V 2
0 ( f )k

−4α( f )

[
e−4α( f )l−1+ e−2α( f )b

(
e−4α( f )L− e−4α( f )l

)]
(b) E {P2 ( f )}= RLω2V 2

0 ( f )k
−4α( f )

(
e−2α( f )L−1

)
(c) same as (a)
(d) from a crosstalk point of view, both solution are equivalent. But the line B produces a
shorter delay and a lower attenuation

5. (a)
3

1 2
4

(b) F0 = 39.35 [dB]
(c) Nin = 8.00410−15 [W]
(d) (S/N)in = 1.251013 = 130.97 [dB], (S/N)out = 91.62 [dB]
(e) No
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Outline:
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2. Discrete memoryless channel
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4. Channel capacity

5. Exercises
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1. Source entropy

Given X a memoryless symbol source.

The source alphabet: J different symbols

x0,x1, ...,xJ−1

Each symbol is associated with an emission probability:

p(x0), p(x1), ..., p(xJ−1)

J−1

∑
j=0

p(x j) = 1

To each symbol, we associate its specific information:

i(x j) =− log2 p(x j)

The source entropy is then defined by:

H(X) = −
J−1

∑
j=0

p(x j) log2 p(x j)

= average information per symbol

expressed in bit/symbol.

ENTROPY ∝ UNCERTAINTY ∝ INFORMATION
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2. Discrete memoryless channel

Channel : p(yk|x j)

xJ−1

x1

x0 y0

y1

YX

yK−1

• The noise on the channel −→ the source and destination alpha-
bets might be different.

• p(yk|x j) : transition probabilities.
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3. Mutual information

We observe Y = yk . Which uncertainty remains on X ?

We define the entropy of X conditionally to Y = yk :

H(X |Y = yk) =−
J−1

∑
j=0

p(x j|yk) log2 p(x j|yk)

We take the average value of Y :

H(X |Y ) =
K−1

∑
k=0

p(yk)H(X |Y = yk)

= −
K−1

∑
k=0

J−1

∑
j=0

p(x j|yk) p(yk) log2 p(x j|yk)

= −
K−1

∑
k=0

J−1

∑
j=0

p(x j,yk) log2 p(x j|yk)

The average mutual information is defined by

I(X ;Y ) = H(X)−H(X |Y )
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I(X ;Y ) = H(X)−H(X |Y )

Two particular cases:

1. Channel without noise:

H(X |Y ) = 0 −→ I(X ;Y ) = H(X)

→ the channel convey only the useful information.

2. Very noisy channel:

H(X |Y ) = H(X) −→ I(X ;Y ) = 0

→ the channel does not convey any useful information.

Remark: The mutual information is symmetric

I(X ;Y ) = I(Y ;X)
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4. Channel capacity

Definition:

Cs = max
p(x j)

I(X ;Y )

expressed in bit/symbol. If s = symbol transmission rate (symbol/s),

C = sCs

is the channel capacity in bit/s.

Binary symmetric channel case

p(x1) = α

y0 = 0

y1 = 1

X Y

1− pe

1− pe

pe

p(x0) = 1−α x0 = 0

x1 = 1

pe

J = K = 2 . The mutual information is given by

I(X ;Y ) = H(Y )−H(Y |X)
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Computation of H(Y |X) :

H(Y |X) = −
1

∑
k=0

1

∑
j=0

p(x j) p(yk|x j) log2 p(yk|x j)

= −(1−α)(1− pe) log2(1− pe)

−(1−α) pe log2 pe

−α (1− pe) log2(1− pe)

−α pe log2 pe

= −(1− pe) log2(1− pe)− pe log2 pe

→ independent of the p(x j) .

→ may be considered as a channel entropy.

Therefore,

I(X ;Y ) = H(Y )+(1− pe) log2(1− pe)+ pe log2 pe

and

Cs = max
p(x j)

I(X ;Y )

= 1+(1− pe) log2(1− pe)+ pe log2 pe

NRZ baseband transmission case:

pe =
1
2

er f c
(√

Eb

N0

)
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Cs (bit/symbol)

Eb
N0
[dB]

0
0

1

2

3

4

10 20 30

2 states

4 states

8 states

16 states

Shannon Theorem

Continuous input and output alphabets. Example:

Y = X +N(0,σ 2
N)

Then

Cs =
1
2

log2

(
1+

σ 2
X

σ 2
N

)
[bit/symbole]

where σ 2
X = input power.

If the channel bandwidth is equal to B , its capacity is given by

C = B log2

(
1+

σ 2
X

σ 2
N

)
[bit/second]

(Shannon-Hartley relation).
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Information rate:
R = sH(X)

If R <C , we can find a source and channel encoding which give rise
to a perfect transmission.
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5. Exercises

1. Determine the capacity of the discrete channel whose transition probabilities are given by

2

0

1
p

1− p

p

1− p 0

1

2. Two binary symetric transmission channel of error probability p are cascaded. Determine
the global channel capacity.

3. We consider a channel with some white additive Gaussian noise whose bandwidth is equal
to 4 [kHz] and the noise power spectral density is equal to N0/2 = 10−12 [W/Hz] .
The required signal power at the receiver is equal to 0.1 [mW]. Compute the channel capacity.

4. An analog signal with a bandwidth of 4 [kHz] is sampled at 1.25 times the Nyquist
frequency, each sample is quantized into 256 levels of equal probability. We assume that
the samples are statistically independents.
(a) What is the source information rate?
(b) Is it possible to transmit without errors the signals from this source on a channel

subject to a Gaussian additive white noise with a bandwidth of 10 [kHz] and a signal
to noise ratio of 20 [dB]?

(c) Compute the required signal to noise to ensure a transmission without errors in the
conditions edicted in (b).

(d) Compute the required bandwidth to transmit without errors the signals from the same
source through a channel with a Gaussian additive white noise to ensure a signal to
noise ratio of 20 [dB].
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5. The problem is to design a transmission system for packets comprising 1500 bytes. We
impose the usage of a two states digital phase modulation (PSK-2) and that 99% of the
packets be entirely corrects at the receiver (meaning that the packet error rate should be
less than 1%).
(a) If the noise density N0

2 is 10−2 [W/Hz], what is the energy per bit Eb?
(b) Determine the maximum theoretical value of the channel capacity!
(c) Determine the real value of the channel capacity in the conditions of this question!

Remark:

Error probability for a bipolar NRZ signal
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Answer

1. (1− p)

2. 1+2p(1− p) log2[2p(1− p)]+(1−2p+2p2) log2(1−2p+2p2)

3. 54.44 [kb/s]

4. (a) 80 [kb/s]
(b) C = 66.6 [kb/s]. It is not possible to have a transmission without errors.
(c) 24.1 [dB]
(d) 12 [kHz]

5. (a) Eb = 0.252 [J]
(b) Cs,max = 1.88 [b/symbol]
(c) Cs = 0.919 [b/symbol]
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Outline:
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2. General propagation model
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2.2. Shadowing
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1. Mobile (receiver) sensitivity

• The transmitter is characterized by its power.

• The receiver is characterized by its sensitivity.

After demodulation:
C
N

=
EbW
N0W

=
Eb

N0
Sensitivity = minimum value of C such that

Eb

N0
>

(
Eb

N0

)
threshold

Therefore,

S =

(
Eb

N0

)
threshold

+N

For the mobile device,

W = 271 [kHz] −→ N = kT0W =−120 [dBm]

for T0 = 290 [K] , to which we add 10 [dB] (noise generated by the
input amplifier).

In addition, (
Eb

N0

)
= 8 [dB]
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It comes
S = 8−120+10 =−102 [dBm]

For a base station, we use generally

S =−104 [dBm]

→ Two communicating entities (base station, mobile device) may
demonstrate different transmission power and sensitivity.

Summary table (typical values):

Receiver type Sensitivity [dBm]

Base station −104
Mobile 8 [W] −104
Mobile 2 [W] −102

Two-band mobile −102
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2. General propagation model

Generally speaking,

PR = PT −LT +GT −L+GR−LR

where

• LT = losses in the transmission circuits.
• LR = losses in the receiving circuits.
• L = free space losses.

In the case of an unique direct path:

L =

(
4πd

λ

)2

→ Friis equation. In this case,

L = 32,5+20 log f [MHz]+20 logd [km]

But in practical situations:

• Fading: Multipath, due to reflections and diffractions by present
objects.

• Doppler effect, due to the mobile device movements.
• Shadowing: attenuation due to present objects.
• The transmission channel is constantly changing due to the mobile

movement.
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2.1. Empirical models

→ provide reliable order of magnitude for a lot of reference configu-
ration.

Environment types

Models example:

BS L at 925 [MHz] L at 1795 [MHz]

Rural 100 90,9+31,8logd 97,0+31,8logd
Suburban 100 95,9+31,8logd 102,0+31,8logd
Urban 50 123,6+33,8logd 133,1+33,8logd

where

• BS = Base station antenna height (in [m] ).

• d is expressed in kilometers.
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Cell types

• Macro cell: within a radius of a few dozen of [km] , in rural
environment.

• Small cell: within a radius of a few [km] , urban environment.

• Micro cell: within a radius of a few hundred [m] , dense urban
environment.

• Pico cell: within a radius of a few dozen of [m] , indoor
environment.

Influence of the antenna height

d

hb

hm

L'−20loghb [m]−20loghm [m]+40logd [km]
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Macro cells models

Formula of Cost 231-Hata:

L = 46.33+33.9log f [MHz]

−13.82loghb[m]−a(hm[m])

+(44.9−6.55loghb[m]) logd [km]+Cm

with
a(hm) = (1.1 log f −0,7)hm− (1.56log f −0.8)

for a middle-sized tow, and

Cm =

{
0 [dB] → middled-size towns
3 [dB] → large cities

−→ Formula correct in urban environment for cells of radius larger or
equal to 1 [km] and for frequency from 1500 to 2000 [MHz] .
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Indoor propagation

Two types of propagation “outdoor-indoor”:

• Soft Indoor: fading in places close to the front of the building,
typically 10 [dB] of additional fading.

• Deep Indoor: fading in places located deep inside the buildings,
typically 20 [dB] of additional fading.
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2.2. Shadowing

• Due to obstruction by objects.

• Also called slow fading.

If we assume the presence of N obstacles. Then

Lshadowing[dB] = L1+L2+ . . .+LN

with Li (i = 1,2, . . . ,N) = RV of same characteristics. Then L follow
a normal law (central limit theorem):

Lshadowing [dB] = N
(
L50%,σ

2
s

)
where L50% is the median value of the attenuation (given by the
empirical models coming from the experimental data).
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Impact on the covering zone (cell border):

Lshadowing [dB] = L50% [dB]+Ls [dB]

In practice, we add a security margin Ms to the transmitted power.
The covering probability is given by p(Ls < Ms) and is then a function
of Ms .

Covering probability (in percent)

Margin in [dB]
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2.3. Fading

• Due to multipaths:

Acos(2π fot) x(t)

• Generally, there is no direct path.

Received signal:

X(t) = ∑
i

Ci cos(2π f0t +θi)

which may be written in the following form

X(t) = XI(t) cos(2π f0t)−XQ(t) sin(2π f0t)

with
XI(t) = ∑

i
Ci cosθi et XQ(t) = ∑

i
Ci sinθi

→ XI(t) and XQ(t) = Gaussian and centered RV.
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Therefore,
X(t) = R(t) cos(2π f0t +Φ(t))

with
R(t) =

√
XI(t)+XQ(t)

and

Φ(t) = tan−1 XQ(t)
XI(t)

, Φ(t) ∈ [0,2π[

Probability density of R(t) :

fR(t)(r) =

 r
σ2

X
e
− r2

2σ2
X if r ≥ 0

0 if r < 0

σX r
0

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2
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Special characteristics:

E {R(t)}= 1.253×σX

σ
2
R(t) = 0.429×σX

Probability density of Φ(t) :

fΦ(t)(φ) =

{ 1
2π

if φ ∈ [0,2π[

0 otherwise
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3. Exercises

1. A base station must communicate to a telecommunication mobile subscriber using a
mobile phone receiving in the 1800 [MHz] band, functioning at a nominal power of 2 [W]
and comprising an isotropic antenna. The equivalent isotropic radiated power of the base
station is 50 [dBW] .
(a) Considering that the communication take place in a middle-sized town, by using the

model Cost 231-Hata, compute the maximum radius of the cell covered by the
base station if its height is 40 [m] and by neglecting the effect due to the height of the
mobile.

(b) We would like to manage the shadowing effect. Determine the value of the additional
margin if we require a covering ratio of 90%.

(c) With this margin, and in case of Soft Indoor communications, what is the new value
of the maximum cell radius. We will also consider 3 [dB] losses due to human bodies.

Remarks:
• Following the Cost 231-Hata model, the fading Lu in urban environment is, in [dB],

Lu = 46.33+33.9log( f )−13.82log(hb)−a(hm)+ [44.9−6.55log(hb)] log(d)+Cm

with
– f the frequency, d the distance, hb, hm the heights; these values are respectively

expressed in [MHz], [km] and [m].
– a(hm) = (1.1log( f )−0.7)hm− (1.56log( f )−0.8) for a middle-sized town.
– Cm = 0 [dB] for middle-sized towns and suburbs, and Cm = 3 [dB] for large cities
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2. A GSM service provider would like to deploy a cellular network in a large city and is
interested in the modelization of a circular cell. We would like to determine the
maximum radius of the cell, knowing that the transmission
power of the base station (BTS) is equal to 50 [W] and that the used frequency is 1800 [MHz].

(a) Determine the maximum radius of the cell by using the Cost 231-Hata model by
neglecting the effects depending on the mobile height. The height of the base station
is 40 [m] .

(b) We would like to guard ourselves from shadowing effects. Determine the additional
margin value if we require a covering percentage of 90%, if we wish to communicate
in Soft Indoor and if we also consider 3 [dB] of losses dues to human bodies?
Determine again the maximum radius of the cell in these conditions.

(c) In a second time, we focus our attention on the design in terms of the traffic of the
cell. We will arbitrarily choose a cell radius of 0.5 [km].
Knowing that:
• the service provider covers 500

[
clients/km2

]
,

• 10% of the covered customers in the cell have established a communication
during the observation period of 15 [min] and

• the average call duration is 5 [min],
determine the simultaneous communication number that the base station have to
support if we suppose a blocking probability of 0.02.

(d) Determine the minimum spectral occupancy, knowing that each carrier is able to
transport a maximum of 8 calls.

Remarks:
• The receiving and transmitting antenna are assumed isotropic
• The margin values are assumed independent of the frequency
• Following the Cost 231-Hata model, the fading Lu in urban environment is, in [dB],

Lu = 46.33+33.9log( f )−13.82log(hb)−a(hm)+ [44.9−6.55log(hb)] log(d)+Cm

with
– f the frequency, d the distance, hb, hm the heights; these values are respectively

expressed in [MHz], [km] and [m].
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– a(hm) = (1.1log( f )−0.7)hm− (1.56log( f )−0.8) for a middle-sized town.
– Cm = 0 [dB] for middle-sized towns and suburbs, and Cm = 3 [dB] for large cities

Exercise session 12: Mobile radiocommunications 159



3. A mobile service provider analyzes, in a middle-sized town, the effect of the cell size on the
power received by the mobile devices.
(a) We assume that we work only in the 1800 [MHz] band and that the Cost 231-Hata

model is valid. Compute the maximum radius of a cell.
Note: for the computation, we consider that the base height is 30 [m] and we neglect
the effects dues to the mobile height. The transmitting antenna has a power of
100 [W] and a transmission gain of 5 [dB]. We are interested in a Deep Indoor
covering.

(b) If we double the radius of the (circular) cells; analyze the effect of such a modification
on the transmission gain, when the other parameters stay unchanged!

(c) To guard ourselves from some shadowing effects, the service provider decides to
multiply the EIRP by 3. What do you think of this solution? What is the covering
percentage?
Note: We consider the same conditions that in the point (b).

Remarks:
• Following the Cost 231-Hata model, the fading Lu in urban environment is, in [dB],

Lu = 46.33+33.9log( f )−13.82log(hb)−a(hm)+ [44.9−6.55log(hb)] log(d)+Cm

with
– f the frequency, d the distance, hb, hm the heights; these values are respectively

expressed in [MHz], [km] and [m].
– a(hm) = (1.1log( f )−0.7)hm− (1.56log( f )−0.8) for a middle-sized town.
– Cm = 0 [dB] for middle-sized towns and suburbs, and Cm = 3 [dB] for large cities
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4. A GSM service provider would like to cover a middle-sized town on an area of 20
[
km2

]
with a number N of omnidirectional antennas having a power of 80 [W], a gain of 5 [dB]
and a height of 40 [m].
This service provider enforces a Deep Indoor covering with 90% of covering percentage.
(a) What is the spectral efficiency of this GSM system?
(b) Determine, at 900 [MHz], the minimum number N of antennas required to cover the

mentioned area if we suppose that these antennas cover the whole area without holes
nor covering. We assume that the losses dues to human bodies are equal to 3 [dB].
We will use the Cost 231-Hata model by neglecting the effects dependent on the
mobile device height.

(c) Compare the result obtained above with the result when the frequency is equal to
1800 [MHz]. Comment your answer.

(d) If the omnidirectional antennas are replaced by trisectorial antennas having the same
maximum gain than the omnidirectional antennas, could we place more antennas?
What would be the advantages?

Remarks:
• The receiving antenna is supposed isotropic
• The margin values are identical at 900 [MHz] and 1800 [MHz].
• Following the Cost 231-Hata model, the fading Lu in urban environment is, in [dB],

Lu = 46.33+33.9log( f )−13.82log(hb)−a(hm)+ [44.9−6.55log(hb)] log(d)+Cm

with
– f the frequency, d the distance, hb, hm the heights; these values are respectively

expressed in [MHz], [km] and [m].
– a(hm) = (1.1log( f )−0.7)hm− (1.56log( f )−0.8) for a middle-sized town; this

correction factor depend on the mobile device antenna height but also on the
environment type.

– Cm = 0 [dB] for middle-sized towns and suburbs, and Cm = 3 [dB] for the large cities
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5. The presence of a water surface influences the radio budget link from a base station to a
mobile device. We usually consider that such a link comprises the sum of the direct path
wave with the two reflected waves (by the water surface and by the ground surface close to
the mobile device). We take into account the wave reflected by the the water surface
because this wave doesn’t hit any obstacle in the neighborhood of the water and has then
a high power level.

To compute the radio budget
link, we assume the following hypothesis (fullfilled in practical situations):

1. the power level of the reflected and direct waves are more or less the same,
2. the reflected waves experience small phase offsets (∆φ1 and ∆φ2).

(a) Compute the general expression for the coefficient Γ modifying the electric field.
(b) What is the value of the received power PR?
(c) Simplify the expression of PR based on the hypothesis 2. [Hint: use the expression of

the squared norm]
(d) In almost all practical cases ∆φ1 +∆φ2 < 1. Use this information to simplify further

the expression of the power PR.
(e) Discuss the dependence in d (d being the distance between the transmitter and the

receiver) for the received power compared to the same power:
• in free space,
• by taking into account the presence of the ground (and then the height of the

antennas).
What could you infer for the practical situations?
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Answers

1. (a) 23.9 [km]
(b) 8 [dB]
(c) 5.87 [km]
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