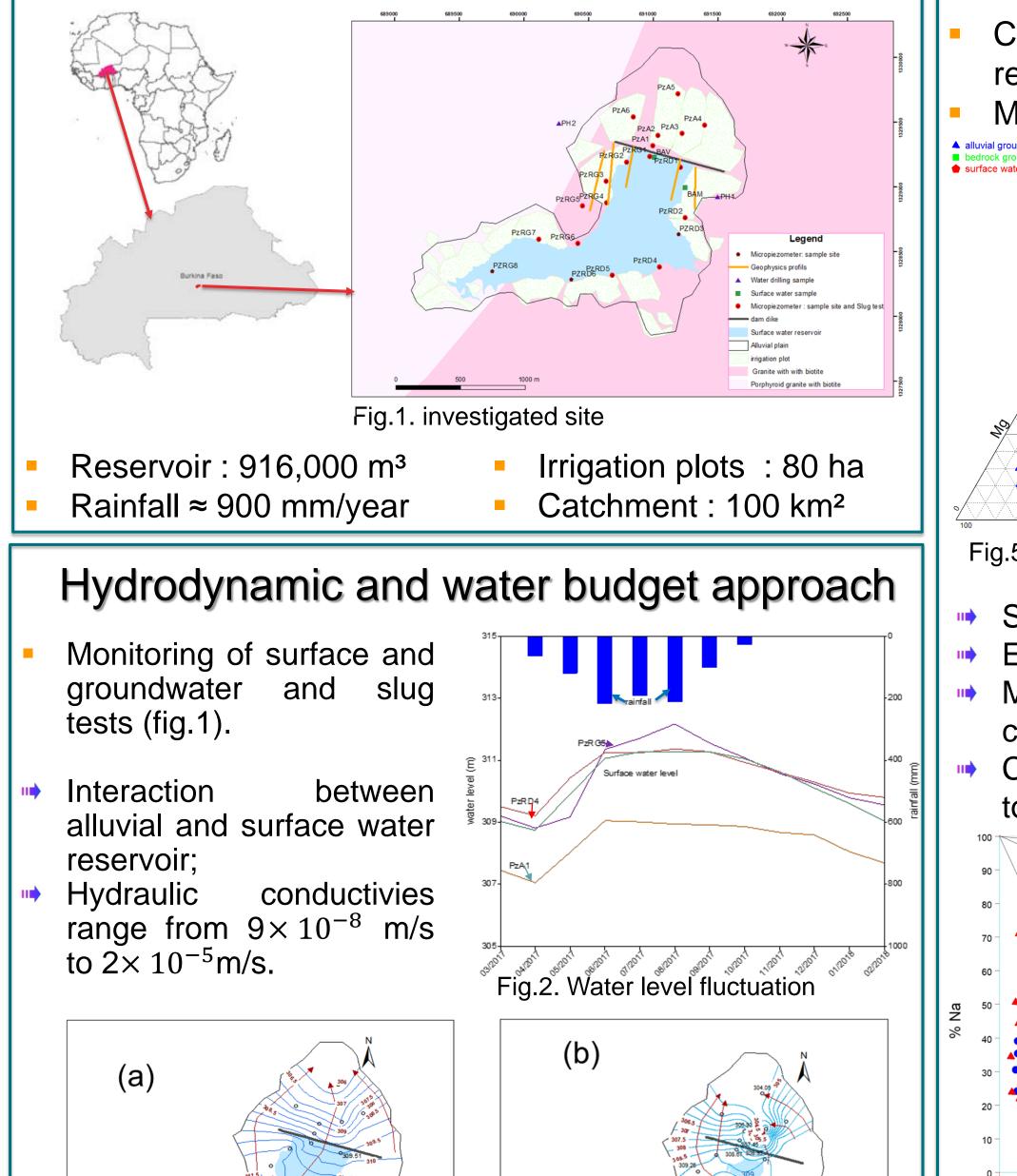


Investigating groundwater recharge under small surface water reservoirs in crystalline bedrock environments : case of Kierma dam (Burkina Faso)

Groundwater Quality 2019

Apolline BAMBARA^{1,2*}, Mahamadi ZOUNDI², Philippe ORBAN¹, Joel OTTEN¹, Francis GUYON², Eric HALLOT³, Serge BROUYERE¹

¹ Hydrogeology & Environmental Geology, Urban & Environmental Engineering Research Unit, University of Liège, 4000 Liège, Belgium

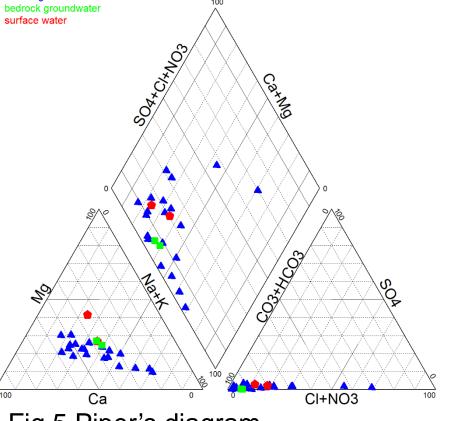

² Ministry of Agriculture and Hydro-Agricultural Development of Burkina Faso

³ Public Service Scientific Institute of Belgium

*Corresponding Author. Email: <u>Apolline.Bambara@doct.uliege.be</u>

Research objectives

In semi-arid regions of crystalline basement, most irrigation water come from small reservoirs which often dry up early. In this context, alluvial aquifer can provide water resources to support complementary dry-season irrigation. These small dams make a significant contribution to the recharge of these aquifers. The study case of the Kierma dam (Burkina Faso) contributes to a better knowledge of these alluvial aquifers and the mechanisms of their recharge.



Hydrochemistry contribution

Collection of 24 water samples (groundwater,

reservoir...);

Major ions analysis : Ca^{2+} , K^+ , Mg^{2+} , Na^+ , CI^- , NO_3^- , SO_4^{2-}

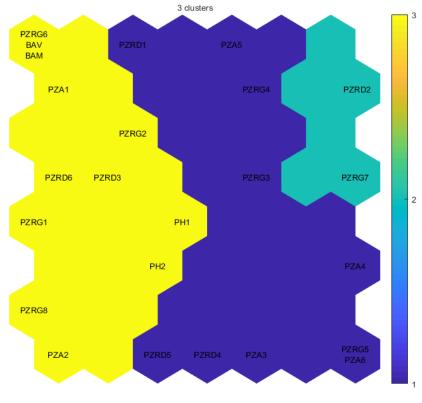
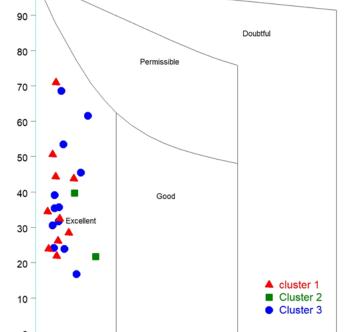



Fig.5.Piper's diagram

Fig.6. SOMs U-matrix and clustering

- Same facies for most of water : GW/SW interaction (fig. 5);
- Evolution of mineralization;
- Multivariate method (Som) classify the water samples in 3 clusters (fig.6)
- Cluster 3 : samples having chemical compositions similar to those of the surface water reservoir;

- All types of water are suitable for irrigation with a low risk of soil salinization;
- Low sodium risk for soil impermeability and hardening.

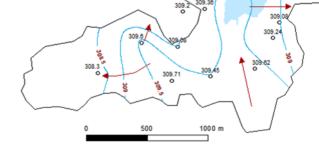


Fig.3. Piezometric map during rainy season (a) and dry season (b)

Tab.1.Water balance components	Water budget	2012-	2013-	2014-
[10 ⁶ m ³]	components	2013	2014	2015
	Surface runoff	13.93	3.24	5.12
Estimated infiltration from	Direct rainfall	0.71	0.56	0.48
the reservoir ≈ 400,000	Annual total inflow	14.64	3.80	5.59
m ³ /year Evaporation (E)	Evaporation losses	0.95	1.08	0.62
Runoff from catchment (Qr,in) withdrawal (Qwith)	Overflow spillway	12.83	1.90	4.04
	Potential recharge	0.40	0.41	0.33
	Water withdrawals	0.49	0.56	0.59
	Annual total outflow	14.67	3.95	5.58
Fig. 4. Schematic diagram of	Annual change in	0.08	-0.10	0.00
Kierma reservoir	water storage			

Conductivité en µS/cm

Fig.7. Classification of water for irrigation purpose

Conclusion

Alluvial aquifer is recharged by small dams in addition to direct recharge. The quantity of water infiltrated at the Kierma water reservoir represents about 70% of water withdrawal from the dam. This groundwater can therefore constitute a complementary water resource for the socioeconomic activities in the area. Although it is of good quality for irrigation purpose, it remains vulnerable to anthropogenic pollution. The low K values restrict however low flow pumping rate for groundwater abstraction.

O ●●●O ●●O Wallonie - Bruxelles International.be

