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The interest in MEMS (Micro-electro-mechanical-system) resonant devices has
been rapidly growing over the past decades. They have become one of the major
building blocks among all MEMS devices. MEMS resonators are mainly employed for
sensing applications. By varying inherent physical properties of MEMS resonators,
such as the effective mass and stiffness, the corresponding resonance frequency of the
resonator will be altered and hence the shifted frequency will be considered as a sensing
output metric. Stiffness resonator sensors have been used for accelerometers, atomic
force microscopy, sensing physical forces and pressure sensors. Concurrently, for
biological and chemical sensing applications, resonator mass sensors have proven a
potential method for label-free sensing purpose. A novel sensing approach has been
propounded recently, namely, utilizing an output metric which is based on mode shape
variations in a linear array of several coupled resonators. In this approach, the changes
of the mode shape are due to a phenomenon called mode localization. This has already
demonstrated remarkable results for applications in mass and stiffness sensing.

This thesis comprehensively explores the potential of a 3-DOF mode localized
weakly coupled resonator. A novel reversible method which exploits the usage of
nanoparticles as well quantified mass changes is described. The mass sensitivity of the

coupled resonator can be characterized accordingly. It has been demonstrated that a) the



resonance amplitude ratio as a sensing metric can improve the coupled resonator sensitivity.
To be more specific, it yields a sensitivity in terms of mass perturbations around two times
larger than the amplitude changes. Further, it yields around two orders of magnitude
enhancement than the resonance frequency shifts. b) Nanoparticles as mass perturbations
to characterize the MEMS mass sensors is an effective and cost-effective technique. Owing
to the reversibility and flexibility of nanoparticles, the efficiency of characterizing mass
sensitivity of a MEMS sensor is greatly improved. These techniques can contribute to the
development of MEMS mass resonant sensor in general.

Further investigations of the capability for 3-DOF coupled resonators have been
carried out. A novel mass to stiffness transduction mechanism has been proposed.
Hereby, a commercial QCM mass sensor is combined with a 3-DOF mode localized
coupled resonator stiffness sensor. This approach can solve the problem that typical
micromachined resonators suffer from performance degradation when operated in high
damping environments such as air or liquids which results in a low quality factor.
Consequently, this contributes an important step towards a practical biochemical sensor
that can exploit the advantages of mode localized coupled resonators but works directly
in contact with a liquid.

In addition to aforementioned points, this thesis describes several simulation
models for the 3-DOF mode localized weakly coupled resonators. MATLAB,
SIMULINK, COMSOL and equivalent circuit models are presented, which agree well
with practical experiments. Next, multiple device layouts of 3-DOF coupled resonator
dedicated for biosensing purposes have been designed. Furthermore, a biochemical
surface functionalization process is investigated, which is evolved subsequently to a
general operation protocol.

Finally, a 2-DOF mode localized weakly coupled BAW disk resonator is studied,
along with the interface electronic circuit and associated instrumentation. This research
has the potential to put forward an alternation route for high Q coupled resonators that
can operate in a highly damped environment, with the ultimate objective to result in a

highly sensitive biosensor.
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Chapter 1

Introduction

1.1 Background

Micro-electro-mechanical systems (MEMS), also known as micromachines or
microsystems, are increasingly the objects of cutting-edge research. Their
multidisciplinary applications have attracted substantial scientific interest. Their
microscopic size and capacity to implement mechanics on a micro scale overcome the
problems of bulky machinery. Batch manufacturing, compatibility with conventional
metal-oxide semiconductors, and their integrity allow MEMS to be used in a wide range
of applications. The early prototype resonant gate transistor [1] have evolved into
silicon-based micro-mechanical transducers [2]. Notable new fabrication flows, device
designs, and integration processes have led to great success for MEMS in the 1990s.
Commercialized MEMS have had a large impact on society. MEMS-based products
range from navigation equipment, military weaponry, and aerospace facilities, to more
everyday appliances, such as inkjet printers [3], projectors [4, 5], and smartphones.

Interest in MEMS resonators has grown rapidly in recent decades. They have
become one of the major building blocks of all MEMS devices. As a complementary
solution of integrated circuits, MEMS resonators are used in applications such as
switches, oscillators, and filters [6-9]. Additionally, MEMS resonators are employed in
sensing applications. Varying the inherent physical properties of MEMS resonators,
such as the effective mass and stiffness, alters the corresponding resonance frequency

of the resonator. This shifted frequency is considered an output metric [10]. Stiffness



resonator sensors have been applied in atomic force microscopy [11]. Physical forces
(for instance, magnetic and electrostatic forces) can also be measured by stiffness
resonator sensors [12, 13]. In addition, MEMS resonators are also found in inertial
sensors (accelerometers and gyroscopes) [14, 15]. Such accelerometers can achieve
relatively wider bandwidth and significantly improve the resolution [16]. These
accelerometers can be further adapted with an electrostatic force feedback system,
namely electromechanical sigma-delta modulators [17]. Additionally, MEMS resonant
membranes have demonstrated their effectiveness as pressure sensors [18]. For
biological and chemical sensing applications, mass resonator sensors have already been
proven as a potential label-free technique [19, 20].

As a further development from single degree-of-freedom (1-DOF) MEMS
resonator sensors, multi-DOF resonator sensors have recently gained considerable
attention. 2-DOF resonator sensors have already demonstrated remarkable results for
applications in mass and stiffness sensing [21, 22]. Research has indicated that in
comparison with conventional 1-DOF resonator sensors with frequency shift as the
sensing output metric, approximately two orders of magnitude enhancement in
sensitivity can be achieved by utilizing the mode localization effect in a 2-DOF coupled
resonator sensor system. With particular emphasis of the principle [23], the mode
localization effect is based on external perturbation energy that is confined at a
particular area in a weakly coupled periodic vibration system. This leads to variations
in the mode shape of such a system.

Recently, a novel sensing method has been proposed, which uses the ratio of the
resonant amplitudes of the resonators as an output metric. Such an approach can
concurrently achieve a high sensitivity and a high common mode rejection. Accordingly,
a 3-DOF weakly coupled resonator system [24, 25] utilizing mode localization has
improved stiffness change sensitivity by approximately three orders of magnitude
compared to a conventional 1-DOF MEMS resonator of similar geometry when
operated in vacuum. Furthermore, the 3-DOF weakly coupled resonator has been
investigated with a similar experimental frame but under the condition of atmospheric

pressure [26]. With the same stiffness perturbation, the change of the resonator



amplitude ratio is significantly higher than that of the resonant frequency shift,
indicating the resonator amplitude ratio is an output metric with higher sensitivity in
respect to external perturbations. A 4-DOF coupled resonant accelerometer has been
developed, which has attained superior sensitivity and resolution over that of the

conventional accelerometers [27].

1.2 Dissertation Outline

This dissertation investigates multi degree-of-freedom (DOF) mode localized
weakly coupled resonators in mass and biological sensors. It is organized as follows.

Chapter 2 begins with a review of MEMS resonant devices, covering the
fundamentals, design concepts, and performance metrics. The focus moves from 1-
DOF to multi-DOF resonant devices that are used as either stiffness or mass sensors.
Particular emphasis is given to multi-DOF mode localized coupled resonators, and the
chapter closes with a discussion of the advantages and disadvantages of multi-DOF
coupled resonant devices.

Chapter 3 provides a comprehensive theoretical analysis of a 3-DOF mode
localized weakly coupled resonator. Sub-technical levels such as actuation, coupling,
and sensing are illustrated. The vibration mode behavior and system responses are
examined.

Chapter 4 introduces various simulation models for a 3-DOF mode localized
weakly coupled resonator. The theoretical analysis in the previous chapter is verified
with Simulink, finite element modelling (FEM), and equivalent electronic circuit
models. System-level simulations are conducted with environmental variables such as
noise, temperature, and pressure. Additionally, simulation models based on a quartz
crystal microbalance (QCM) and its hybrid system and a 2-DOF weakly coupled bulk
acoustic wave (BAW) resonant device are also included. These results are compared
with the data obtained from the experiment.

Chapter 5 presents the layouts of 3-DOF weakly coupled resonator devices for



biosensing and the layouts of 2-DOF weakly coupled BAW resonators, along with two
different dicing-free fabrication flows. The chapter ends by presenting the fabricated
multi-DOF weakly coupled resonators.

Chapter 6 introduces the interface circuit designs for the 3-DOF weakly coupled
resonator, the QCM incorporated with a 3-DOF weakly coupled resonator, and the 2-
DOF weakly coupled BAW resonator. The chapter also introduces the experiment
materials and platforms: (1) the preparation of magnetic nanoparticles, (2) the standard
operation protocol for dispensing nanoparticles on multi-DOF resonant devices, (3) the
reversibility of nanoparticles as mass perturbations, and (4) the protocol of the surface
functionalization process.

Chapter 7 presents the experimental results for the 3-DOF mode localized weakly
coupled resonator as a mass sensor, the QCM mass sensor incorporated with a 3-DOF
mode localized weakly coupled resonator stiffness sensor, and the 3-DOF mode
localized weakly coupled resonator as a stiffness change sensor with small stiffness
perturbations (under laboratory conditions).

Chapter 8 explores the possibilities for future work. A novel multi-mass detection
scheme of the 3-DOF mode localized weakly coupled resonator is proposed, along with
theoretical analysis and simulation models. In addition, a novel structural modification
is suggested; namely, a 3-DOF mode localized weakly coupled resonator integrated
with an embedded micro-channel.

Chapter 9 concludes the dissertation.



Chapter 2

MEMS Resonator Review

2.1 MEMS Resonator Concept

Aside from MEMS resonant oscillators employed in timing devices, MEMS
resonant transducers have drawn a great amount of attention in recent years. The central
principle of a MEMS resonant transducer is its intrinsic vibration frequency. Given a
periodic stimulus, the MEMS resonator begins to vibrate within a certain frequency
range. The vibrating amplitude will increase and eventually reach a maximum when the
vibration frequency is identical to the intrinsic natural frequency (the natural frequency
is constrained by the resonator design). Subsequently, the vibration amplitude will
decrease to the baseline value. By properly tuning the physical properties of the MEMS
resonator, such as the effective mass and stiffness, the corresponding intrinsic natural
frequency of the resonator, or simply resonance frequency, will be altered, and the
shifted frequency value can be used to determine the device sensitivity. A typical linear
MEMS resonator operating in response to either stiffness or mass perturbations is
shown in Figure 2.1. Research outcomes based on 1-DOF MEMS resonator stiffness
sensors are applied for measuring small physical forces, such as inertial force [28],
magnetic force [29], and pressure force [30]. Single-DOF resonator mass sensors are

suitable for biosensing applications [31].
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Figure 2. 1: Normalized system response of a 1-DOF MEMS resonator. a) MEMS
stiffness sensor. b) MEMS mass sensor.

2.2 MEMS Resonator Structure

2.2.1 Clamped-Free Structure: Cantilever

Adopted from macro-mechanical applications, cantilevers are one of the most

widely used structures in MEMS resonator designs. Cantilevers share similar behavior



to springboards. The transduction mechanism of MEMS cantilevers utilizes
deformation in response to external stimulus, ideally only bending vertically. Such
deformation requires flexibility or elasticity so that the bending of the cantilever can be

measured. Figure 2.2 shows a schematic of a typical cantilever and its 3D model.

Tensile
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-
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Figure 2. 2: A typical cantilever design. a) Cross section view, the cantilever is
comprised of a mechanical beam. An external force in longitudinal direction can deflect
the beam. b) 3D model with a load stimuli.

The main advantage of the cantilever structure is the predictable vibration mode,
whereby it flexes rather than extends. The cantilever displacement can be derived as

[32, 33]:

9%2x(Y)
aY?

EI = M(Y) (2.1)

B ab3

I=— (2.2)

where | is the second moment of inertia, a is the transverse length, b is the



longitudinal thickness of the cantilever cross section, x(Y) is the displacement along
the cantilever beam, M(Y) is the bending moment at the same location, E is Young’s
modulus, which depends on the device material, and L is the cantilever beam length.
By applying boundary conditions to the anchor where the rotation and movement are

constrained, the displacement at location Y in response to a force F can be deduced:

x(Y) = E[L%Z _ %3] (2.3)

The angle due to the bending action can be expressed:

dx(Y) F y?2

The effective spring constant for the cantilever can be solved by Hooke's Law F =

kx:

k(L) = % (2.5)

MEMS cantilevers benefit from a relatively simple structure and batch fabrication
process, which can be implemented by either bulk micromachining or surface
micromachining. MEMS cantilevers benefit from a relatively simple structure and
batch fabrication process, which can be implemented by either bulk micromachining or
surface micromachining. In addition, MEMS cantilevers can be employed as sensitive
force sensors and biosensors. Small device dimensions render the ability to integrate
with interface circuitry, which attains a miniature system. Despite the noticeable
advantages, MEMS cantilevers are commonly confined to high-frequency regimes. The
resonance frequency is determined by the effective mass of the cantilever and the spring
constant. The small and stiff cantilever beam pushes the resonance frequency to a
higher region (in kHz to MHz range). Correspondingly, such a property leads to
complexity of interface circuit design.

MEMS cantilevers are actuated via diverse approaches, including thermal [34],



piezoelectric [11], and capacitive [35] actuations. General pick-off techniques include
optical [36, 37], capacitive [38] and piezoresistive [39-41]. Figure 2.3 demonstrates a

typical capacitive actuation principle and two pick-off systems [42, 43].

Figure 2. 3: 1) A capacitive driving atomic force microscopy [42]: A thin film capacitor
is integrated beneath the cantilever beam. The AFM cantilever can be actuated by
introducing a potential difference V across the thin film capacitor. The thin film
capacitor is consisted of a deposited metal layer and separated by an insulator with a
relative permittivity €. The separation distance is D. The voltage V across the thin film
capacitor causes deflections that alter the capacitor dimensions, separation distance and
dielectric properties, hence resulting in the actuation of the cantilever beam. 2) Two
typical methods to extract the mechanical deflections of a cantilever beam are exhibited
[43]. (a) Optical beam deflection sensing: the beam angular changes are measured by
the shifts of the reflected laser spot incorporated with a position detector. (b)
Pizeoresistive beam deflection sensing: The beam deflection causes the resistivity
changes of the doped silicon, where the changes are also proportional to the voltages
measured by the Wheatstone Bridge.



Among the versatile applications of MEMS cantilevers, AFM has achieved great
success [44, 45]. Nevertheless, much recent research has focused on MEMS cantilevers
in biosensors. MEMS cantilever biosensors can operate in either dynamic or static
modes. In the dynamic mode, properties such as resonance frequency and amplitude
before and after the external mass perturbation are captured and compared. In contrast,
in the static mode, only the displacement of the cantilever beam after the external mass
perturbation is measured. With the adoption of proper surface functionalizations,
MEMS cantilevers can be used for a variety of biosensing purposes [46-49]. Figure 2.4

shows an example of a MEMS cantilever biosensor.

v

a) b)

Figure 2. 4: MEMS resonant cantilever biosensor. a) Dynamic mode. b) Static mode.

2.2.2 Clamped-Clamped Structure: Mass Spring Damper System

Another widely investigated MEMS resonator structure is the mass-spring-damper
system. This structure can be briefly described as a block of proof mass that has been
confined to in-plane vibration. Figure 2.5 (a) exhibits a simple 1-DOF mass-spring-
damper model. However, the proof mass in the model is likely to have unwanted out-
of-plane movement due to insufficiently fixed boundaries. An improved model is

shown in Figure 2.5 (b). Single-DOF clamped-clamped MEMS resonators have a

10



variety of proof mass designs. Typically, the shapes of the proof mass include circle
[50], square [51], rectangle [52], and ring [53]. The supporting spring designs are also
vital for a practical 1-DOF resonator. The supporting spring guides the vibration
direction of the proof mass and prevents interference from out-of-plane displacement.
The designs of both the supporting spring and the proof mass are critical to the
production of the final resonator, as they determine the natural behavior of the resonant
device. Most importantly, the supporting spring constant and the proof mass weight
have a direct impact on the functionality of the resonant device. For instance, they are

correlated with the sensitivity and resolution of the designed resonator.

Spring (Effective stiffness)

Electrostatic force actuator

((CCdadm
. MASS

b)

Figure 2. 5. A basic equivalent model of 1-DOF mass spring damper system. a)
Simplified mass spring damper model. b) Clamped-Clamped model.
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To predict the vibrational behavior of a practical 1-DOF MEMS resonator, an
equation of motion is needed. This equation provides a theoretical analysis of the
resonance frequency, vibration displacement, and system response of the resonator.
Consider a 1-DOF MEMS resonator based on the concept in Figure 2.5 (b), the total
supporting spring constant with an effective stiffness value K, the proof mass with a
weight M, and the damping element with a damping coefficient b. Accordingly, the
mass-spring-damper system will start to vibrate with an external stimulus force F, and
the proof mass will undergo a position shift with a displacement value X, which exists
on the same plane as the external excitation force. The equation of motion for this 1-

DOF mass-spring-damper can be expressed as:

MX(t) + bX(t) + KX(t) = F(t) (2.6)

The equation of motion is an intuitional expression of relation between the
acceleration, velocity, and displacement of the proof mass in response to an external
excitation force. To obtain the resonance frequency, the equation of motion must be
transferred into the frequency domain via Laplace transforms, where M and K are
determined by the dimensions and materials of the resonator. Consider an ideal case in
which the mass-spring-damper system is not affect by the damping element and the
system is self-actuated without an external force. The equation of motion in the

frequency domain can be expressed as:

Ms?X(s) + KX(s) =0 2.7
where s = jw,

—Mwy?X(s) + KX(s) =0 (2.8)

& fo=oge j% (2.9)

The displacement of proof mass induced by an external force can be deduced from:

I3
1]
==
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F(s)

X(s) = —— o
(5) Ms2 +bs + K

(2.10)

The quality factor is correlated with the effective stiffness and mass of the resonator, as
well as the damping coefficient:

o = VMK (2.11)
b
Therefore, the displacement can be reorganized as:
F(s)

M —

X(s) = = H(s)F(s) (2.12)
s?+ SQﬂ + wo?
H()—1 ! = Hypq(w) + jH 2.13

w _MG)OZ—W2+ja)a)O/Q_ real(W) + jHim(w) (2.13)

The displacement of proof mass can be altered by either tuning the value K or M,
simultaneously changing the resonance frequency w,. Thus, the 1-DOF MEMS
resonator can be used as a sensor for detecting small mass perturbations; for example,
small particles docking on the surface of proof mass. Similarly, the resonator can be
used as a sensor to measure small physical forces that influence the effective spring

stiffness. A system-response model in both time and frequency domains is shown in

Figure 2.6.
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Figure 2. 6: 1-DOF MEMS resonator system response: a) Step response. b) Impulse
response. ¢) Frequency domain response. d) Bode plot.

Clamped-clamped 1-DOF MEMS resonators are widely used for sensing tiny
physical forces, such as inertial force. A 1-DOF MEMS resonator gyroscope can
achieve a quality factor of a few ten thousands [54], while a more complex design could
achieve a quality factor of 5.1 x 10> with a 74.9 s decaying time constant [55].
Furthermore, MEMS resonators are suitable for measuring accelerations [56].

One-DOF MEMS resonators can also be found in biosensors, such as the
measurements of microdroplets [57], the biotin-streptavidin interaction [58], and
glucose molecules [59]. Figure 2.7 shows the principle of a 1-DOF MEMS resonator
biosensor.

To define the sensitivity of 1-DOF MEMS resonators and help characterize such
devices, a normalized figure of merit is required. The general output metrics are
resonance frequency and the relative resonance frequency shift due to external
perturbations. As in the principle of clamped-clamped 1-DOF MEMS resonators, either
induced stiffness or mass variations can be measured as a result of resonance frequency
shifts. Accordingly, the final expression of normalized sensitivity can be written as [21,

25]

fooaMp 1
St Sor = |6_fo x—r~3 (2.14)
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Stiff f 0K ~1
51—11301:— a_foxf ~

(2.15)

N

a) b)

v

Figure 2. 7: 1-DOF MEMS resonator biosensor. a) Proof mass surface cleaning. b)
Surface functionalization. c) Forming bio-affinity counterpart layer. d) Deposition of

sample solution, target molecules are bonded with selective counterpart.
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2.2.3 Multi-DOF Coupled Resonators

Demand for novel miniature devices continues to grow, and 1-DOF MEMS
resonators have played a role in such devices thanks to their batch fabrication capability
and superior functionality as transducers. Despite the progress so far, researchers are
pursuing improvements and optimizations. However, there is an obstacle in the way of
further extending the capabilities of 1-DOF resonators. Limited by the fabrication
process and materials, the development of MEMS resonators require system- and
structure-wise innovation. A natural solution is to increase the degree of freedom. This
can realize specific vibration modes among multiple resonators in an interrelated
oscillating system. A multi-DOF resonant system consists of two or more resonators,
and adjacent resonators are connected through a coupling element. Figure 2.8 presents

a fundamental 2-DOF resonator model.

— Mechanical coupling spring

Anchor — Spring (Effective stiffness)

Resonator2

Electrostatic force 4

— Damping element

Figure 2. 8: A 2-DOF coupled resonator mechanical model.

The coupling element in the multi-DOF system determines the behavior of the
device. To form correlated resonator pairs, the coupling element can take the form of a
mechanical cell or a physical phenomenon that exploits the electrostatic force. The
mechanical coupling may already exist as the cantilever anchor or may be designed as

an independent component in the multi-DOF system. For instance, a multi-DOF MEMS
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cantilever array has been proposed that utilizes four cantilevers coupled to a shuttle [60].
The coupled multi-DOF cantilever array can detect biochemical mixtures and has
achieved a viable label-free technique. Moreover, a 3-DOF coupled cantilever array has
been proposed that can verify two types of mass changes simultaneously [61]. The
unique vibration modes among the three coupled cantilevers are used as fingerprints
whereby different mass perturbations can be distinguished. Another research trend of
MEMS cantilever arrays explores the possibility of asymmetrical structures, including
several different cantilever designs [62]. Figure 2.9 illustrates a series of multi-DOF

MEMS cantilever arrays [21, 60, 63].

rhar

| ‘

Figure 2. 9: Multi-DOF cantilever array with mechanical coupling [21, 60, 63].

(I

c)

=0

As well as the cantilever array, the clamped-clamped mass-spring-damper can also

be coupled through a mechanical beam. A mechanically coupled resonant

17



accelerometer, for example, has shown great improvement over the conventional 1-
DOF device [64]. Amulti-DOF coupled resonator gyroscope [22, 65], on the other hand,
has proven that the coupled resonator system can improve the overall sensing
performance.

Another widely applied coupling element is electrostatic coupling. Electrostatic
coupling can be perfectly equivalent to mechanical coupling, with the extra capability
of tunable coupling strength. To explain the principle, a comparison will be made that
shows both mechanical and electrostatic coupling can achieve the same effective
coupling strength. Figure 2.10 shows two possible designs of mechanical coupling
elements. The straight coupling beam can be considered as a clamped-clamped guided

beam structure; hence, the effective coupling stiffness is expressed as:

12E1 Etw3
Koo = T3~ = T

(2.16)

3
where [ = % h and t are the cross-section width and thickness, and W is the straight

beam transverse length.
The folded coupling beam achieves a relatively weaker coupling strength but

maintains the properties of the coupled system. To determine the effective stiffness of
the folded coupling beam, a simplified method is implemented in which the folded
beam is equivalent to two straight beams in series. However, this simplification is only
valid for a folded coupling beam with a short transverse length. By revising the stiffness
equation for the straight coupling beam, the stiffness of the folded coupling beam can

be calculated:

12E1 Eth3

kverticat = I3 I3 (2.17)

The small transverse beam connecting two vertical beams can be ignored, as it is
far smaller in reality. Therefore, one folded coupling beam can be treated as two straight

beams in series:
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keep = + -1 = (2.18)
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1
w
MASS1 - MASS2 MASS1 MASS2
a) b)

Figure 2. 10: Mechanical Coupling. a) Straight beam coupling. b) Folded beam
coupling

Unlike mechanical coupling, the electrostatic coupling is less intuitive. The
fundamental principle can be established on two identical and parallel capacitive plates,
between which a given DC potential difference exists. The stored charges in the gap
interact and induce an electric field. The displacements of the two plates will result in
potential energy generation, expressed in a form of physical force and further computed
as an effective spring stiffness. Figure 2.11 shows an electrostatic coupling between
two resonator proof masses. Assume a stimulus is applied, and the 2-DOF resonator
starts to vibrate with a displacement value x, the original separated gap between the
two proof masses d, the DC potential difference V, and the parallel cross-section area

A. The effective electrostatic coupling stiffness can be calculated as:

1 1
E:ECVZ—CVZZ—ECVZ (219)

where C =¢€A/(d —x), € is the permittivity of the medium in the gap, most
commonly air.
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v _6E_16CV2_$AV2 1+2x_|_3xz_|_4x3
e ax 20x  2d?

2 3
d at d (2.20)
eAV? x
=~ 2 d? (1 + ZE)
By using Hooke’s Law, the electrostatic coupling stiffness is:
oF,, cAV?
kes = I ~ — PE (221)

Unlike mechanical coupling stiffness, electrostatic coupling stiffness is always
negative. The negative coupling stiffness will result in only a “pull” physical force;
however, the mechanical coupling stiffness has both “push” and “pull” states. The direct
effect of such a situation is the vibration mode exchange, details of which will be given
in later sections. The main advantage of electrostatic coupling is that the coupling

strength can be altered by tuning the DC potential difference.

(@

Resonator Resonato 2
r

Figure 2. 11: A 2-DOF electrostatic coupled resonator.

Multi-DOF electrostatic coupled resonator systems have shown great potential in
sensing applications, with tunable coupling strength, enhanced sensitivity, and sensor
system flexibility. Figure 2.12 demonstrates a 2-DOF electrostatic coupled resonator

[66]. Following the principle of multi-DOF electrostatic coupled resonators, a mode
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localization transduction mechanism is proposed. This novel mode localized multi-

DOF weakly coupled resonator system is the topic of this dissertation.

Figure 2. 12: A 2-DOF electrostatic coupled resonator with tunable coupling strength
[66]. Each resonator has a relatively large proof mass which is suspended by four
supporting beams. The supporting beams can be perturbed via capacitive perturbation
plate. The coupled resonator is driven by one group of capacitive comb fingers while
another group of comb fingers is used for sensing.

2.2.4 Multi-DOF Mode Localized Weakly Coupled Resonators

To increase the functionality of multi-DOF coupled resonators, a novel
transduction output metric that is more efficient than structure- and material-based
optimizations is proposed. In what follows, a new output metric is developed from the
theory of mode localization. As well as conventional frequency shift monitoring, mode
localization based technology exploits the resonant amplitude change in response to
perturbation.

Mode localization was first introduced in 1958, with the original theory proposed
by Anderson [23] in solid-state physics. Since then, mode localization has been widely
investigated and adopted in different disciplines. Mechanical vibration structures are
one of the applied field. Especially for a periodic vibrating mechanical structure [67],

mode localization will result in energy confinement [68]. To be more specific, as the 2-
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DOF electrostatic coupled resonator described above is periodically vibrating, a
perturbation either affects the effective stiffness or mass given to one of the two
identical resonators. Naturally, the injected perturbation energy should propagate
evenly through the coupled system. However, mode localization spatially confines the
energy in a small region, which will dramatically change the relative vibration mode.

The FEM model given in Figure 2.13 demonstrates the influence of mode localization.

Eigenfrequency=1.1011E5 Surface: Total displacement (um) Eigenfrequency=1.0941E5 Surface: Total displacement (um)

A 1.8>5<105 A 2.22x10°

A

1.6

1.4

1.2

1

0.8

0.6

0.4
\W/ 0.2

x10°
Figure 2. 13: FEM simulation model of a 2-DOF mechanical coupled resonator. a)
Natural resonance frequency. b) Mode localization effect with 500ng mass perturbation
on the left resonator, consequently the left resonator vibration amplitude is dramatically
changed but the right one is less affected. The system resonance frequency is also
shifted.

Another interesting point from the simulation above is the comparison of resonance
frequency shift and vibration amplitude change. The relative resonance frequency shift
is 0.64%; however, the amplitude change is 23.3%. The amplitude change induced by
mode localization is weighted more in respect to the original state. To delve deeper into
this idea, consider the following theoretical analysis of a 2-DOF mode localized
coupled resonator. Assume the two resonators are identical: both have effective mass
value M; = M, = M, supporting spring constant K; = K, = K, damping coefficient
b; = b, = b and the coupling stiffness Kc. The equation of motion for the coupled

resonator system can be expressed:
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My X, () 4 by X1 () + Ko X1 () + K [X,(8) — X,(0)] =0 (2.22)
M,X,(8) + by X, () + Ko Xo () + Ko [Xo(8) — X1(8)] = 0 (2.23)

where X; and X, are the vibration amplitude of resonator 1 and resonator 2. The
damping terms are ignored for simplification, and the system is presumed to be purely
symmetric. The equations can be solved using an eigenstate method with the assistance

of a matrix. Accordingly, equations 2.22 and 2.23 are revised:

M1 0 U, K1 + KC _KC Uq
,1[ ] [ _ ] (0.24)

O M2 uz _KC K2 + KC uz
AM pmatrix = Kinaerixlt (2-25)

where u and A are the eigenvectors and eigenvalues. These two parameters are

correlated with the coupled resonator system behavior:

. U . .
X =ue/®t = [u;] e/t & X =-w?ue/®t = —w?X (2.26)

A= —w? (2.27)

The coupled resonator vibration amplitude is determined by the eigenvectors, and
the vibration mode frequency is determined by the eigenvalues. Owing to the two
equations of motion and matrix computations, the solutions consist of two groups of
eigenvectors and eigenvalues. More specifically, one eigenvalue corresponds to one
vibration mode resonance frequency, and the two resonators in the coupled system each
have a vibration amplitude u; and u, in respect to the mode frequency. The final

expression of the solutions are:

2 _

w2 = (2.28)

K
M

Before examining the solutions further, the electrostatic coupling and mechanical

coupling mode exchange mystery can now be solved. By inspecting the two computed
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mode frequencies, one has a term of coupling spring stiffness K. If the 2-DOF coupled
resonator has a mechanical coupling, K. is positive and hence the second mode
frequency will be higher than the first. However, if an electrostatic coupling is used,
K, will be negative and the second mode frequency will be smaller than the first, which
results in a vibration mode exchange. To return to the matrix solutions, the two groups

of vibration amplitude are (under the condition of mechanical coupling):

1 1

uwl = l l & uwz = l ] (229)
1 -1

The two resonators with the first vibration mode are in the in-phase mode because

they vibrate in the same direction. In the second vibration mode, on the contrary, the

two resonators vibrate in opposite directions, and hence they are in the out-of-phase

mode. Figure 2.14 shows the vibration modes of a 2-DOF mechanical coupled resonator.
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Figure 2. 14: 2-DOF mechanical coupled resonator vibration modes. a) In-phase mode.

b) Out-of-phase mode.

Another characterization of multi-DOF mode localized coupled resonators is the
eigenvalues loci curve veering [69-72]. The eigenvalues obtained from the system
matrix can be plotted as a function of external perturbations; for instance, added masses
or effective spring stiffness alterations. Accordingly, the two vibration modes, in-phase

and out-of-phase, each have a curve plotted against the perturbations:
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Figure 2. 15: Loci veering of a 2-DOF mode localized mechanical coupled resonator.
a) Mass perturbations. b) Stiffness perturbations.

The in-phase and out-of-phase eigenvalue curves are symmetrical, and the trends
of the curves are likely to intersect. However, the two curves cannot cross. The gap
between the curves is determined by the coupling strength K.. For a clearer
interpretation of loci veering and the veering zone, Figure 2.16 illustrates the loci
veering with different coupling strengths.

The following conclusion can be drawn after observing the loci veering diagram:
The weaker the coupling strength in coupled resonator systems, the closer the gap in
the loci veering zone. Accordingly, coupled resonator systems can directly benefit from
extending the linear response range when the weak coupling condition is satisfied. A
narrow veering zone enhances the sensitivity of mode localized behavior. Following
this principle, electrostatic coupling can achieve relatively lower coupling strength by
simply tuning the DC potential difference, whereas mechanical coupling has limited

flexibility in mode localized weakly coupled resonator systems.
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Figure 2. 16: Loci veering of a 2-DOF mode localized mechanical coupled resonator
with different coupling strength.

As the output metric comparison from previous section, where the mode localized
coupled resonator exploits vibration amplitude changes and mode frequency shifts as
sensing outputs, the vibration amplitude changes vyield higher sensitivity. The
eigenvector solutions from the system matrix stand for the vibration amplitudes and the

final sensitivity can be derived as follows:

M, 01[%,] [Ki+K.+AK =K, 7[Xqi
+ =0 (2.30)

L0 M,l|%, ~K, K, + k. Lx,.

M, +AM  07[%,] [Ki+K. —K. 1[X:
+ =0 (2.31)

0 M,l|%, K, K,+KJLx,]

where AK is the stiffness perturbation that can be applied on either resonator in the
coupled system and AM is the mass perturbation. The deduced eigenvector solution
groups corresponding to the in-phase mode with eigenvalue 4,, and out-of-phase

mode with eigenvalue A,,,, respectively [25, 71]:
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Uypi — Upoi K AK .

~ | X — =12 2.32
‘ Uor ’41{6 K ' (2:32)
Upi — Uyoi K AM .

o |— x — =12 2.33
’ Uor ’4KC M ' (2:33)

where u,,; are the original eigenvectors corresponding to either one of the two
vibration modes with its unperturbed resonance frequency. u,; are the shifted
eigenvectors in response to the external stimulus. The expression of normalized

eigenvector shift sensitivity can be written:

u oM K
sMass = |— X —| ~ 2.34
eigzen?igftor du M 4Kc ( )

; u 0K K
st = |— x —| ~ 2.35
eigzeng(e)gtor du K 4KC ( )

The relative normalized resonance frequency shift sensitivity can also be obtained:

f oMy 1
SMASS or = |—><— ~ = 2.36
o T (239
: f 0K 1
sy =|—><— ~ = 2.37
oo, = lof K172 (237

Evidently, eigenvector shift as an output metric possesses higher normalized
sensitivity. By carefully designing the supporting spring stiffness K and the coupling
strength K., the overall normalized eigenvector shift sensitivity can be optimized.
However, the supporting spring stiffness can hardly be adjusted in practice since it is
fixed by the original design. A simple approach is to decrease the coupling strength.
Thus, electrostatic coupling is the most suitable candidate for this task. In addition, a
tunable coupling strength also provides adjustable sensitivity, which offers flexibility
in a variety of applications.

A 2-DOF mode localized electrostatic weakly coupled resonator has been proven
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to have two to three orders of magnitude higher sensitivity than 1-DOF frequency shift
based resonator devices [21, 73]. Figure 2.17 illustrates two 2-DOF mode localized

electrostatic weakly coupled resonators [71].

1 ;
L[ - -
200pm |l S 200 pm

I i TII1I1]
a) b)
Figure 2. 17: 2-DOF mode localized electrostatic weakly coupled resonators [71]. a)

Two double ended tuning forks (DETF) resonators with both ends anchored and they
are coupled via electrostatic coupling, as shown in the dash box. Two adjacent
electrodes serve as drive and sense electrodes, respectively. b) Two double free-free
beam resonators are coupled via electrostatic coupling, as shown in the dash box. The
double free-free beam resonator is suspended by tether supporting spring. Two adjacent
electrodes serve as drive and sense electrodes, respectively.

Moreover, multi-DOF mode localized weakly coupled resonators have the
capability of inherent common mode noise rejection. The instability of the ambient
environment, such as temperature and pressure, will cause resonance frequency shifts
or vibration amplitude changes even without any perturbations. The mode localized
weakly coupled resonators have experimentally proven that the eigenvector shifts are
less influenced by environmental factors, and hence the system has improved common

mode rejection [74].

2.2.5 Multi-DOF Mode Localized Weakly Coupled Resonators: Vibration

Amplitude Ratio as An Output Metric

Delving deeper into the potential of multi-DOF mode localized weakly coupled

resonators, a new theory has been proposed that utilizes resonator vibration amplitude
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ratio as an output metric. Originally proposed by Gil-Santos [75], amplitude ratio theory
uses the vibration amplitude of a specific resonator in one vibration mode (e.g., the in-
phase mode in the coupled system) divided by another vibration amplitude in a different
mode (e.g., the out-of-phase mode). However, such a technique has an intrinsic defect:
it requires a full frequency sweep to extract all the vibration modes and shapes in a wide
range of bandwidths. Consequently, this drawback impinges on the device functionality,
as it cannot realize a real-time transducer. Recently, Chun Zhao [76] has adopted a
similar concept but has ingeniously surmounted the difficulty by using the quotient of
vibration amplitudes that belong to each resonator in the coupled system within the
same vibration mode. The real-time transduction can thereby be implemented.
Fundamentally, the theoretical analysis of amplitude ratio shares the same principle as
the eigenvector and eigenvalue computations. To be more specific, the amplitude ratios

can be expressed by revising equation 2.29:

AR,,=1 & AR,,=-1 (2.38)

The same 2-DOF mode localized coupled resonator simulation model is employed
in this section. The calculated amplitude ratios are plotted as a function of either mass

perturbations or stiffness perturbations, as demonstrated in Figure 2.18.
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Figure 2. 18: Amplitude ratios of a 2-DOF mode localized mechanical coupled
resonator. a) Mass perturbations. b) Stiffness perturbations.
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A comparison is conducted of the three output metrics: resonance frequency shift,
eigenvector shift, and amplitude ratio change. By plotting the sensitivity curves with
the same perturbations, and additionally rescaling the sensitivity as normalized change
in percentage, the comparison is fair and reasonable. The normalized sensitivity of the
amplitude ratio change is one to two orders of magnitude greater than the eigenvector
shift, and the normalized sensitivity of the eigenvector shift is approximately two to

three orders magnitude greater than the resonance frequency shift.

=-—@— Eigenvector shifts
=—&— Amplitude ratio
=—@®— Resonance frequency shift

4_ -

Output Metrics

Figure 2. 19: Sensitivity comparisons of three different output metrics.

In addition to its superior sensitivity, the amplitude ratio as an output metric also
possesses the capability of common mode noise suppression. Since the quotient of the
two vibration amplitudes is adopted, the affections of ambient common mode noises
induced system variations are less weighted. Further common mode rejection ability is
granted by the transduction signal read-out stage; namely, a differential pick-off

interface circuit. More details will be covered in later chapters.

30



2.2.6 Multi-DOF Mode Localized Weakly Coupled Resonators: Mode Aliasing

As explained in previous sections, weaker coupling strength results in higher

sensitivity. However, coupling strength cannot decrease indefinitely. Not only is it

constrained by the physical properties of the coupling element, but it is also limited by

the system bandwidths. Figure 2.20 shows the consequences of extremely weak

coupling in a 2-DOF mode localized mechanical coupled resonator model.
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Figure 2. 20: Demonstration of mode aliasing phenomena.

The vibration modes have certain bandwidths, and the gap frequency between the

two modes shrinks as the coupling strength decreases. Eventually, the two vibration

modes overlap and only one mode is left. This phenomenon is called mode aliasing.

However, mode aliasing is not a fatal problem for mode localized weakly coupled

resonators. It can be avoided by carefully defining the mode bandwidth and its related

cut-off frequency [77]:

foutphase - finphase =2X fcut—off (2-39)
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The out-of-phase and in-phase resonance frequencies indicate the centre

frequencies, where the cut-off frequencies are the two 3 dB points adjacent to the

related vibration mode centre frequency. In addition, a mode localized coupled

resonator with a low system quality factor and a relatively heavy damping element will

lead to mode aliasing. Such influences will be discussed in the following chapters.

2.3 The Advantages and Disadvantages

The development of MEMS resonator technologies has been rapid and encouraging;

however, certain drawbacks cannot be denied. Despite the superior functionality of

multi-DOF coupled resonator systems, several compromises must be made. Table 2.1

below summarized the pros and cons of the MEMS resonators that have been

introduced so far. Efforts to compensate for those disadvantages will be discussed in

this dissertation.

Resonator type

Pros

Cons

1-DOF resonators

Simple structure, fast design, easy
to fabricate.

Frequency shift as an output
metric.

Output can be extracted via
different facilities: electrically or
optically.

High fabrication yield rate, easier
to be commercialized.

Relative simple chip wire bonding

and packaging.

Relative lower sensitivity.
Ambient environment
noises can heavily affect
the performance.

Cannot perform multiple

sensing tasks.
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Multi-DOF
coupled

resonators

Improved normalized sensitivity.
Use vibration modes and mode
frequencies to perform multiple
targets sensing or mixture targets
discriminations.

Can adopt differential pick-off
method to suppress noises.
Electrostatic coupling can realize
system flexibility for a variety of

applications.

Complex device structure
design.

Relative low fabrication
yield rate.

Electrostatic coupling
requires high DC voltage.
Relative higher power
consumption.

Still mainly remain in labs.

Multi-DOF mode
localized weakly
coupled

resonators

Extremely high normalized
sensitivity.

Use eigenvector shifts or vibration
amplitude ratios as output metric.
Inherent common mode rejection
capability.

Tunable electrostatic coupling can
realize controllable system
sensitivity.

Potentials and opportunities that

still waiting to be discovered.

Table 2. 1: MEMS resonators pros and cons.

2.4 Chapter Summary

Complex interface circuit
design, especially in high
frequency devices.
Suffering from fabrication
tolerances.

Electrostatic coupling
requires high DC voltage.
Operating in low Q
environment will
dramatically affect the
performance and make it

difficult for biosensing.

This chapter covers the fundamentals of conventional 1-DOF resonators and

reviewes two basic device structures:
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Furthermore, the chapter introduces multi-DOF coupled resonators, in which the
coupling element is either mechanical or electrostatic. A novel sensing metric is
described that exploits the mode localization effect, and 2-DOF electrostatic weakly
coupled resonators utilizing mode localization is demonstrated. The chapter also
includes system characterizations such as normalized sensitivity and mode aliasing.

Finally, a comparison is conducted of different types of MEMS resonators.
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Chapter 3

MEMS 3-DOF Mode Localized Weakly

Coupled Resonator

3.1 Theoretical Analysis of a 3-DOF Mode Localized Electrostatic

Weakly Coupled Resonator

3.1.1 Fundamentals

Intuitively, increasing the degrees of freedom in a coupled resonator system should
raise its performance (e.g., sensitivity). Although this worked well for 2-DOF coupled
resonators, it has limitations for 3-DOF coupled resonator systems. Specifically, as
shown in chapter 2, a 2-DOF mode localized weakly coupled resonator improves
sensitivity by more than two orders of magnitude over a 1-DOF resonator. Research has
been conducted to extend the principle to 3-DOF systems to produce extremely
sensitive and high-performance transducers. However, the results have not been as
expected; the sensitivity enhancement has been limited [78]. Nonetheless, increasing
the degrees of freedom of coupled resonator systems is a worthwhile research topic.
Chun Zhao has theoretically proved that by increasing the supporting-spring stiffness
of the middle resonator in a 3-DOF coupled resonator system while keeping the first
and third resonators the same, the overall sensitivity can be vastly improved [79]. In

what follows, a computational method based on matrices and equations of motion is
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used to develop a 3-DOF mode localized weakly coupled resonator system.

The 3-DOF mode localized weakly coupled resonator can be equivalent to a
lumped mass-spring-damper system. A physical model of such a device is exhibited to
correlate the relative parameters. Figure 3.1 demonstrates the operation principle of a

3-DOF coupled resonator.

K1

Wk

El:e':cff_rostatic
Cdugling

Anchor

A
v

Vibration Direction

Figure 3. 1: 3-DOF coupled resonator lumped parameter system model.

Regarding to the lumped parameter model of Figure 3.1, assuming the proof mass
value of each resonator R1 = R2 = R3 = M, the effective supporting spring stiffness of
the first and third resonators K1 = K3 = K, the middle resonator 2 has a unique effective
stiffness value with K2 # K, consider a stiffness perturbation is added to resonator 3,
thus the effective stiffness of resonator 3 becomes K3 = K + AK. The damping
coefficients b1, b2, b3 are identical. The motion of the three resonators in the time

domain can be expressed as:

MX1(t) + b1X1(t) + (K, + Kc)X1(t) — KcX2(t) = F1(t)  (3.1)
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MX2(t) + b2X2(t) + (K, + 2Kc)X2(t) — Kc(X1(t) + X3(t)) = F2(t) (3.2)

MX3(t) + b3X3(t) + (K3 + AK + Kc)X3(t) — KcX2(t) = F3(¢t) (3.3)

The equations of motion of a 3-DOF resonator can be re-written in a matrix form
and hence can be solved using an eigenstates computation method. The damping
coefficients b1, b2, and b3 are disregarded in the following equation. This allows the
derivation of expressions for the vibration amplitudes, amplitude ratios, and mode
frequencies of the 3-DOF coupled resonator system. The coupled system with a

stiffness perturbation on resonator 3 can be expressed as:

M 0 0][%,1
/’ln[o M 0”1%2

0 0 MIllUW,s3
(3.4)
K, + Kc —Kc 0 Up,1
=| —Kc K, + 2Kc —Kc uanz]
0 —Kc K3 + AK + Kcl LlUa,3

where 1, = —w,?%; n =1, 2, 3; and the eigenvalue A,, represents the corresponding
mode frequency (w, = —\/A—n). The vibration amplitudes are correlated with the
eigenvectors, and thus the amplitude ratio can be calculated from the parameters
[Ur,1 Ua,2 uzn3]T- An eigenvalue loci veering curve can be plotted by adopting proper

values for the 3-DOF coupled resonator system parameters. As listed in Table 3.1, the
values are chosen to reflect realistic system behavior, and they are verified with

experimental data in the following chapters.

Parameters M K, & K3 K, Kc

Value 6.94ug 48.815N/m 285.212N/m -0.926N/m

Table 3. 1: System parameters of eigenvalue loci veering curve model for a 3-DOF
mode localized electrostatic weakly coupled resonator (with stiffness perturbations).

The eigenvalue loci veering curve and the amplitude ratio versus the stiffness
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perturbations are illustrated in Figure 3.2 (a) and (b), respectively.
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Figure 3. 2: A 3-DOF mode localized electrostatic weakly coupled resonator system
behavior. a) Eigenvalue loci veering curve. b) Amplitude ratio versus stiffness
perturbations.

To provide convincing evidence that such a 3-DOF coupled resonator design can
considerably improve sensitivity, the system behavior diagrams in Figure 3.2 show a

comparison with a 2-DOF electrostatic weakly coupled resonator that possess the same
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system parameter values as listed in Table 3.1.
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Figure 3. 3: A 3-DOF weakly coupled resonator compared with a 2-DOF weakly
coupled resonator. a) Eigenvalue loci veering curve. b) Amplitude ratio versus stiffness
perturbations.
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Figure 3. 4: Investigations of middle resonator stiffness variations. a) Eigenvalue loci
veering curve with different value of K, b) Amplitude ratio versus stiffness
perturbations with different value of Ko.

The ideal stiffness perturbation sensitivity in respect to the amplitude ratio has been

increased by more than two orders of magnitude. However, there is little difference in
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the resonant frequency shifts of the 2-DOF and 3-DOF coupled resonators. This is
mainly due to the constant value of nominalized resonance frequency shift sensitivity
from equation 2.37. However, the linear region of the eigenvalue loci veering curve for
the 3-DOF coupled resonator is larger than that of the 2-DOF coupled resonator.
Investigations for the supporting spring stiffness of the middle resonator is carried
out, as shown in Figure 3.4. In summary, the system performance is improved by
increasing the supporting-spring stiffness of the middle resonator in a 3-DOF coupled
system. This result is consistent with the theory proposed by Chun Zhao [79]. The
middle resonator stiffness should be sufficiently strong but not exceed the limitation of
a movable structure. Thus, to attain relatively high sensitivity and preserve the

properties of the coupled system, the middle resonator stiffness should satisfy:

KZ 2 2K1 = 2K3 (3.5)

As introduced in chapter 2, the coupling strength is an essential element in 2-DOF
coupled resonators. The overall system functionality is affected by the coupling spring
stiffness. This idea can be further extended to 3-DOF coupled resonators. The coupling
strength is another factor that determines the coupled system sensitivity. For a basic
overview, the eigenvalue loci veering curve and amplitude ratio versus stiffness
perturbations with different coupling strengths K, are plotted in Figure 3.5 (a) and (b),
respectively.

A conclusion can be drawn: in a 3-DOF coupled resonator system, both middle
resonator supporting-spring stiffness K, and coupling strength K. influence the final
performance. However, K, is a fixed parameter constrained by the design and
fabrication. The parameter K., in contrast, is tunable, owing to the electrostatic
coupling. The next section will examine mathematical expressions that denote the
relationship between the resonant mode frequencies or vibration amplitude ratios and

the related system parameters.
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Figure 3. 5: A3-DOF mode localized electrostatic weakly coupled resonator in response
to stiffness perturbations. a) Eigenvalue loci veering curve with different value of K.
b) Amplitude ratio versus stiffness perturbations with different value of K.

Similar analysis methodology is applied to the theoretical computation of mass
perturbations for the 3-DOF weakly coupled resonator. In this case, R1 = R2 = M, K1
=K3 =K, with K2 #K, the damping coefficients b1, b2, b3 are identical. The perturbed
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resonator3 is assumed to have an added mass R3 = M + AM. Thus,

MX1(t) + b1X1(t) + (K, + Kc)X1(t) — KcX2(t) = F1(t)  (3.6)

MX2(t) + b2X2(t) + (K, + 2Kc)X2(t) — Kc(X1(t) + X3(t))

= F2(t) (3.7)

(M + AM)X3(t) + b3X3(t) + (K5 + Kc)X3(t) — KcX2(t) = F3(t) (3.8)

By rewriting the system equation of motion in a matrix form, the damping
coefficients b1, b2, and b3 are disregarded, and hence the coupled system with added

mass on resonator 3 can be expressed as:

M 0 0 Upn1
An [O M 0 uznzl
0 0 M+ AMILUA,3
(3.9)
K, + Kc —Kc 0 Up,1
=| —Kc K, + 2Kc —Kc uanzl
0 —Kc K5 + Kcl lUa,3

The same system parameters from Table 3.1 are adopted in what follows. The
plotted eigenvalue loci veering curve and the amplitude ratio versus the mass
perturbations are illustrated in Figure 3.6 (a) and (b), respectively.

Figure 3.7 compares the theoretical computations of a 3-DOF coupled resonator
with a 2-DOF electrostatic weakly coupled resonator that possess the same system
parameter values as listed in Table 3.1. Accordingly, the simulated mass perturbation
sensitivity is significantly improved by adopting such a 3-DOF weakly coupled

resonator design, as shown in Figure 3.7.
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to mass perturbations. a) Eigenvalue loci veering curve. b) Amplitude ratio versus mass
perturbations.
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Figure 3. 7: A 3-DOF weakly coupled resonator compared with a 2-DOF weakly
coupled resonator. a) Eigenvalue loci veering curve. b) Amplitude ratio versus mass

perturbations.

Finally, a comparison of the three different output metrics is conducted. In a 3-DOF

weakly coupled resonator system, the amplitude ratio yields the highest normalized
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sensitivity compared to eigenvector shifts and resonance frequency shifts, as illustrated

in Figure 3.8.
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Figure 3. 8: A 3-DOF weakly coupled resonator normalized sensitivity comparisons in
three different output metrics.

3.1.2 Derivations of Output Metrics: Stiffness Perturbations

This subsection presents a mathematical derivation method that provides a
theoretical basis for the output metrics and offers an intuitive view of the relationships
of the system parameters in a 3-DOF coupled resonator, such as coupling strength and
supporting-spring stiffness. Starting with Chun Zhao’s proposition, a transfer function
based computational approach is adopted. As described in previous research [24, 25,
77], such amethod can allow for an analysis of nonlinearity, noise, and system response
to excitation force. To provide an intuitional understanding of the transfer functions for
a 3-DOF weakly coupled resonator system, a lumped parameter model in conjunction
with a system block diagram are utilized. The equations of motion can thereby be

deduced and subsequently revised in the form of transfer functions.
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Figure 3. 9: A 3-DOF weakly coupled resonator lump parameter model and system
block diagram.

By applying Laplace transform to the system equations of motion:
M;52X1(s) + b1 X1(s) + K1 X1(s) + Kc[X1(s) — X,(s)] = Fy(s) (3.10)
M,s2X,(s) + by X,(s) + (K, +2Kc)X,(s) — Kc[X3(s) + X1 (s)] = F5(s) (3.12)

M3s2X5(s) + b3X5(s) + (K5 + AK)X3(s) + Kc[X5(s) — X,(s)] = F5(s)  (3.12)

A symmetrical condition is assumed, where M; = M, = M3 = M, K1 = Kz = K,
K, = 2K, a stiffness perturbation AK is applied to resonator 3. The damping
coefficients bl = b2 = b3= b. Only resonator 1 in the coupled system is given an
actuation force hence F; = F,F, = F; = 0. Accordingly, the revised system transfer

functions are:

Hi(s) = Ms?+bs+K + Kc (3.13)

H,(s) = Ms? + bs + K, + 2Kc (3.14)
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H;(s) = Ms? + bs + K + AK + Kc (3.15)

By combining equations 3.13-3.15 with equations 3.10-3.12, the relationship
between the input actuation force and the output resonator displacement can be

obtained [25]:

Hz(s)Hs(s)—KCZ _X1(S)
Hy (s)H;(s)H3(s) — [Hy(s)+H3(s)]Kc? — F(s)

(3.16)

Kc? _ X3(s)

= 3.17
TGV GV ) — [ ()T H, (VK — F(s) (3.17)

A weak coupling condition is satisfied with Kc < K/10 and s = jw. The
resonance mode frequencies can be found by disregarding the damping elements.

Solving equations 3.16 and 3.17 will give:

1 1 2K 2K

1 1 2K 2K
Woutphase = M(K + Kc + E(AK - 7 + \/AKZ + (7)2) (3.19)

— (3.20)

Y

In practice, there are three resonance mode frequencies, each corresponding to one
dedicated vibration mode. This can also be proved with the eigenstate matrix
calculation (the three eigenvalues), which has been covered in the previous section.
However, only two vibration modes are used for sensing applications due to operation
frequency, vibration amplitude, and overall functionality. More specifically, Figure 3.10

shows a COMSOL model of a 3-DOF weakly coupled resonator, including the three
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vibration modes.
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Figure 3. 10: 3-DOF weakly coupled resonator vibration modes. a) ¢) e) Three identical
resonators coupled via mechanical springs. b) d) f) Left and right resonators are
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identical, middle resonator supporting spring stiffness K, > 2K; = 2K3. a) & b) All
three resonators are vibrating in-phase. ¢) & d) Left and right resonators are vibrating
out-of-phase while middle resonator maintains stationary. e) & f) Each resonator is
vibrating out-of-phase with adjacent one, left and right resonators are vibrating in-phase
however both of them are out-of-phase with middle resonator.

By increasing the supporting-spring stiffness of the middle resonator, the third
vibration mode with the highest resonance frequency is dramatically changed in
comparison with the symmetrical case. The vibration amplitudes of the left and right
resonators are considerably reduced. Another influence is the resonance frequency: the
gap frequency between the third and second modes is increased, but the gap between
the first and second modes is reduced. In contrast, the symmetrical case has three
vibration mode frequencies with nearly the same gap values.

In sensing applications, to maximize the signal to noise ratio (SNR) and the overall
sensitivity, the displacements of the left and right resonators should be sufficiently large.
As for the vibration mode frequency, the third mode resonance frequency is relatively
higher than that of the previous two. The increased frequency sweeping range will
increase the transduction processing time. The third vibration mode is accordingly
treated as an invalid mode and hence can be disregarded.

After the vibration modes have been selected and the corresponding resonance
frequencies have been derived from equations 3.18 and 3.19, the next step is to define
the amplitude ratios in accordance with the system transfer functions by solving

equations 3.13-3.17:

r(%)+ N ()2 +4 (3.21)

ARinphase = 2
AK AK
v(F) - JOR) +e (3.22)
ARoutphase = 2

To obtain valid solutions, the stiffness perturbation should be constrained as AK «

K + K.. A general definition of weak coupling in such a 3-DOF coupled resonator
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system can also be given:

|K.| < 0.1K <0.05 K, (3.23)
The relevance for all stiffness related parameters can be expressed as:
|AK| < |K.| < 0.1K <0.05K, (3.24)
The normalized amplitude ratio sensitivity can hence be written:

gstifs aK K(K2 K + Kc)
S3- DOF AR K Kc?

(3.25)

An extreme case is used, which will give an intuitive and quantified sensitivity
comparison of a 3-DOF coupled resonator, a 2-DOF coupled resonator, and a 1-DOF
resonator. Using equations 2.32 and 3.25 and assuming K = 10K, and K, = 2K, the

comparison results are summarized in Table 3.2.

Type 3-DOF 2-DOF 1-DOF
Nor.S 110 2.5 0.5
Multiple 44 5

Table 3. 2: Stiffness perturbation sensitivity comparisons under the condition of
extreme values.

The sensitivity of the 3-DOF weakly coupled resonator is 44 times that of the 2-
DOF one. However, this conclusion is based on extreme values, which eventually yield
the lowest normalized sensitivity. By carefully specifying the supporting stiffness K,
the middle resonator stiffness K,, and the coupling strength K_, the sensitivity can be

greatly enhanced.

3.1.3 Derivations of Output Metrics: Mass Perturbations

A mathematical computational method is adopted to derive the 3-DOF weakly

coupled resonator output metrics in response to mass perturbations. Disregarding
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damping, the equations of motion for the resonator system with a mass perturbation on

resonator 3 can be defined as:

—M;w?X,(s) = —(K; + Kc)X,(s) + KcX,(s) (3.26)
—M,w?X,(s) = — (K, + 2Kc)X,(s) + KcX,(s) + KcX5(s)  (3.27)

—M3(1 4+ SM3)w?X3(s) = — (K5 + Kc)X3(s) + KcX,(s) (3.28)

A symmetrical condition is assumed, where M; = M, = M3 = M, K1 = Kz = K,
K, > 2K, the mass perturbations on resonator 3 satisfy: AM > 0, §M; = 6M =

AM/M3 = AM/M > (0. The amplitude ratios in the coupled system are defined as:

T EXZ/X1 & T, EXZ/X3 & AR =Xl/X3 =T2/T1 . Using algebra method to

equation 3.26-3.28:

K+K
1, = (14 6M)7, — CsM (3.29)
AR =1+ tKe oy 3.30

To obtain the final expression of AR, the solution of 7; should be extracted. By

applying the algebraic method, the roots can be obtained:

L, K+Kc 1 1_6M
7,0 = ——— [+
Kc(1+6M) 'y Yy 2

(3.31)

. (K + Kco)(K, — K + K¢)

= (3.32)
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Accordingly, inserting equation 3.31 into equation 3.30 will give the in-phase and

out-phase amplitude ratios respectively.

oM oM
ARinphase = (1 - V)T + \/(1 - V)Z(T)Z +1+6M (333)

oM oM
ARoutphase = (1 - V)T - \/(1 - V)Z(T)Z +1+6M (334)

Similar algebra method is used to derive the resonance mode frequencies:

Winphase

2 (3.35
B K+ Kc (1 1)+(1 1)6M (1 1) 6M2+1+6M)
M@+ 6M) Y v/ 2 Y (2) Y2

Woutphase

- (3.36
- e [0 - o e 3

As shown in Figure 3.10, only the first and second vibration modes are used in

view of the relatively large vibration amplitudes and rational resonance mode
frequencies. The same principle is adopted in mass perturbation characterizations.
Furthermore, the weak coupling condition in the previous section is valid here, as

|K.| < 0.1K <0.05 K,. The normalized sensitivity in terms of amplitude ratio can be

deduced:

gMaSs  _ AR XB_M _(1_V)+ (1-y)?6M +1
3-DOF = | X 3r| =
AR

- 3.37
2J(1—y)2(6TM)2+1+5M (3:37)
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o (K +Kc)(K, — K + Kc) (3.38)

ASS
SM
Kc?

3—-DOF
AR

An extreme case is used again to compare the mass sensitivities. Using equations
2.32 and 3.38 and assuming K = 10K, and K, = 2K, the results are summarized in

Table 3.3.

Type 3-DOF 2-DOF 1-DOF
Nor.S 121 2.5 0.5
Multiple 48 5

Table 3. 3: Mass perturbation sensitivity comparisons under the condition of extreme
values.

Again, this conclusion is drawn from extreme values, and consequently it yields
the lowest normalized sensitivity. The system parameters such as supporting stiffness
K, middle resonator stiffness K,, and coupling strength K. are correlated with the
final mass perturbation sensitivity. According to equation 3.32, optimizing the system

parameters can result in dramatic sensitivity enhancement.

3.2 Mode Aliasing in a 3-DOF Mode Localized Electrostatic Weakly

Coupled Resonator

As mentioned in chapter 2, the mode aliasing phenomenon causes an overlap in the
coupled resonator vibration modes, which inhibits the mode localized sensing
mechanism. A general definition of an anti-mode aliasing condition is expressed in
equation 2.39; however, it is based on the final system response rather than the initial
coupled resonator design. In what follows, the anti-mode aliasing condition will be
revised in terms of the parameters of a 3-DOF weakly coupled resonator system. In

accordance with the derived expressions from the previous section, both stiffness and
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mass perturbations are correlated with the anti-mode aliasing condition. Assuming a
given stiffness perturbation and inserting equations 3.18 and 3.19 into equation 2.39

[25]:

Zﬂ(foutphase - finphase) = 47chut—off
= Woutphase — Winphase = 2W3dB (3-39)
= Aw = 2wz4p

K | AK 1
~ = [(&2y2 4 — 3.40
Aw \/; (21( + " (3.40)
K(K, — K + Kc)
Vi = o2 (3.41)

The cut-off 3dB bandwidth can be expressed as a function of the system quality
factor Q, hence:

wy 1 |K
Wagp = — = — |— (3.42)
Combine equation 3.39, 3.40 and 3.42 will give:
oK 24 ! > 2> 3.43

AK ’ 2. 1
T <2 (3.44)

Evidently, the stiffness perturbation AK and its normalized term AK/K are
determined by the vibration modes Q-factor and the system stiffness sensitivity y.
More importantly, the dynamic range of a 3-DOF mode localized weakly coupled
resonator is determined. The mode aliasing phenomenon, on the other hand, can be
avoided by limiting the input stiffness perturbation, tuning the coupling strength Kc or

adjusting the system quality factor Q (either the environment or the design).
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Figure 3.11 shows the influence of mode aliasing with different coupling strength

K. in a 3-DOF mode localized weakly coupled resonator system.
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Figure 3. 11: Mode aliasing with different values of coupling strength Kc.

Ideally, a relatively strong coupling strength could effectively suppress mode
aliasing. However, the stiffness perturbation sensitivity from equation 3.41 indicates
that the coupling strength is an inverse function of sensitivity. Simply increasing the
coupling strength will yield lower sensitivity. Although maximizing sensitivity is the
ultimate goal in designing sensor devices, in some cases, especially where the Q-factor
is unchangeable and mode aliasing is inevitable, there must be compromise among the
system parameters such as Kc, K,, and K. The Q-factor, however, is a major
determinant of the anti-mode aliasing condition, and it is closely correlated with the
sensor system functionality.

Figure 3.12 shows the results of another study of mode aliasing with different Q-

factors.
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Figure 3. 12: Mode aliasing with different values of quality factor Q (different damping
conditions).

Next, the anti-mode aliasing condition for mass perturbations can be computed

with a similar pattern. Substituting equation 3.35 and 3.36 into equation 3.39:
1 1 2

_— (AM 2 4+ >
M 27N (3.45)
,1 +AM/M Ym Q

— —>Z (3.46)

_ (K+Ko)(K, — K +Kc)

" 5 (3.47)

In conclusion, the mode aliasing effect restricts the lower limit of coupling strength

in a coupled resonator system. Due to the Q-factor correlation, the anti-mode aliasing
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condition also gives guidelines for the design of coupled resonators and the preferred
operating environment. Eventually, the upper limit of the device sensitivity is

constrained by mode aliasing.

3.3 Transduction Techniques of a 3-DOF Mode Localized Electrostatic

Weakly Coupled Resonator

3.3.1 Actuation

Actuators are essential elements for MEMS devices, especially MEMS resonators
that work in a dynamic mode with an excitation force. A brief comparison of commonly

applied actuation technologies is provided in Table 3.4.

T
ype .0 f Pros Cons
actuation
e Simple to implement. e Slow response time.
([ . ([
Thermal Generate large force Large power

consumption.
Thermal noise.

e No dc power consumption. e Small displacements.

Piezoelectric | @ Fast response time. e Require large voltage.
e Easy to manufacture. e Nonlinearity.
N e No dc power consumption. e Feedthrough current.
Capacitive e Relative large displacements.
e Low noise.

Table 3. 4: A comparison of MEMS actuation methods.

To achieve a cost-effective and flexible design, simplicity of fabrication, and
relatively good excitation force with reasonable displacements, capacitive actuation is
selected for the 3-DOF mode localized weakly coupled resonator system. The principle
of capacitive actuation is similar to the electrostatic coupling introduced in chapter 2.

Capacitive actuation utilizes a parallel plate structure with an actuation voltage to form
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an electric field that attracts electric charges, thus inducing an electrostatic force. The
magnitude of the generated electrostatic force depends on the actuation voltage and the
parallel plate geometry. In the 3-DOF coupled resonator system, the capacitive
actuation structure is formed by an actuation port and the proof mass of either the left
or right resonator. Figure 3.13 shows the schematic of capacitive actuation in a 3-DOF

coupled resonator system.

Left actuation port Vibration direction nght actuation port

Resonatorl  Resonator3

Figure 3. 13: Capacitive actuation in a 3-DOF coupled resonator system.

The boundary of the actuation port and the cross-section of the proof mass of
resonatorl and resonator 3 form a parallel plate structure. The effective area of the
parallel plate is defined by the thickness and width of the proof mass. Thus, the
equations that were used to deduce electrostatic coupling can be adopted here. The
actuation force is equivalent to the generated electrostatic force and hence can be
computed using equations 2.19 and 2.20:

10C

F . _ —_——
actuation 2 ax

V2 (3.48)

where V is the potential difference between the actuation port and proof mass, d is the
original gap value, x is the displacement due to proof mass vibration, and C is the
capacitance formed by the structure. With capacitive actuation, there is no DC power

consumption, and thus only an AC voltage is applied on the actuation port. However,
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in the 3-DOF coupled resonator system, a DC voltage is required to maintain sufficient
coupling strength to establish electrostatic coupling. Hence, assuming resonator 1 and
resonator 3 are given the same DC voltage and the middle resonator is grounded, the

desired coupling stiffness can be calculated by equation 2.21:

EAVDCZ
— FE

K3~POF = (3.49)

With an AC actuation voltage of frequency f and amplitude v, V,. = vsin2nft;
after the DC coupling voltage is applied, the final potential difference is V =V, —
Vpc. Equation 3.48 can be rewritten as:

10C , lac ,

Factuation = Ea Vac —Vpe)* = Ea (‘l)SlTlZT[ft — Vbe)
19C X

= Ea[(vsinant)z + Vpe® — 2vusin2nftVpc|

10C[ , 1—cosdnft 2 ,
= Ea [v T) + VDC - ZvSlTlZT[ftVDC:I

(3.50)

The constant term in equation 3.50 expresses a DC component of the actuation
force. The doubled frequency term, however, can be disregarded if the voltage is
|Vacl < |Vpel. In general, the mixed term with the original frequency component is
considered as the true actuation force. The DC constant term, on the other hand,
generates an initial force that sets up the quiescent position of the resonator proof mass.
Following from this, equation 3.50 can be further revised by using a Taylor series on

the variable capacitance term:

0C €A 2eAx 3$Ax2+4eAx3

ac_ €A 3.51
F AR PR T PG (351)

Voot w2 , ac
Factuation = I( ch + T) - vstnftVDCl ™ (3.52)
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eA (Vpc*  v? ]
=~ + — — vsin2nftVp,

2 4
Voot v? _ 2eAx  3gAx?  4eAx3
+ > +Z—vsm2nftVDC FERT + PE
Vpc €A €A

> q2 + VacVpe 22

After the dimensions and geometry of the coupled resonator device are finalized,
the effective actuation force of the capacitive actuator is determined by three parameters:
excitation voltage V,., coupling voltage V,., and the induced displacement x.
Careful selection of the voltage values can generate a desired actuation force with
predictable displacements. In contrast, if V. is too large, a pull-in phenomenon
(details are introduced in the following section) will occur, causing the coupled
resonator system to fail; a relatively large V,. could allow for unwanted influences

and trigger system instability.
3.3.2 Sensing Element

As well as actuators, the sensing element is another vital component of MEMS
resonator sensors. The sensing element picks up target activities and then transport to
the final readout stage. A comparison of the most commonly adopted sensing

technologies is provided in Table 3.5.

Sensing element Pros Cons
e Easy to implement. e Noisy.
e Inherent shielding. e Large temperature
Piezoresistive dependency.

e Large power
consumption.

Self-generating. e Cannot use in static

No bias voltage or current. measurements.

e Materials are difficult to
process.

Piezoelectric
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Parasitic influences.
Hermetic packaging.
Complex circuitry.
Small comb finger gaps.

e Low power consumption.

e Good noise performance.
Capacitive

Table 3. 5: Comparisons of MEMS sensing techniques.

For the purpose of small signal pick up, less noise affections, greater SNR and
adaptability with capacitive actuation and electrostatic coupling, capacitive sensing is
applied to the 3-DOF mode localized weakly coupled resonator. The working principle

of integrated capacitive sensing elements is shown in Figure 3.14.

Vibration direction%:‘ - —— B -
| |
Resonator Effective
Proof mass I

[
v | area
I
[
I
I

Capacitive'sens'ing
(Comb fingers)

Fixed structure

Figure 3. 14: Integrated capacitive sensing element.

The capacitive sensing element consists of one movable part and one stationary
part. The sensing plate is designed to be close to one of the parts but distant from the
other. This is because the displacement of the proof mass is relatively small in practice,
and to successfully extract the generated motional current, an initial small gap is
necessary. When a DC voltage is applied to the resonator but maintains the capacitive
comb finger structure unchanged, a DC potential difference is formed. When the
resonator is excited and starts to vibrate, the displacement of the movable plate induces

the effective capacitance variations that result in generated motional current. Assuming
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the gaps satisfy d; « d,, the capacitance in respect to d, can be disregarded. The
effective capacitance is determined by the overlap area A between the movable and

stationary plates. Accordingly, the motional current can be expressed as:

0Q  av) oV

ac
= = = —(C— — 3.53
Lnotion at at (C at + 4 at) ( )

There are two components in the motional current equation. The variable
capacitance term expresses the valid motional current that is picked up by the capacitive
sensing element. The variable voltage term, however, denotes an AC voltage across
fixed capacitance and results in feedthrough current. In the 3-DOF mode localized
weakly coupled resonator, a DC voltage is applied on the left and right resonators
because of electrostatic coupling and capacitive actuation. The DC voltage also serves
as the voltage source in the capacitive sensing element. Supposing the movable plates
have a displacement value x and substituting equation 3.51 into equation 3.53, the
motional current equation can be rewritten as:

) ac dC 0x
lmotion = _VDCE = —Vpc a%

_ v ( sA+2€Ax 3sAx2+4sAx3>6x
AU R T I d,’ ) ot (3.54)

v A O0x
~ Dcdlz at

Further optimization of the sensing element can be achieved by utilizing a
differential capacitive sensing technique. Another group of capacitive sensing elements
is integrated on the resonator structure but with an opposite positional order. This can
generate a motional current measurement with an inverted direction. The two measured
motional currents are then fed to a differential device such as an instrumentation
amplifier, and a differential algorithm between the two contrary motional current is
executed. This technique eventually achieves a doubled motional current pick-up along

with suppressed noise and reduced feedthrough current and parasitic capacitance
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induced current [80]. The differential capacitive sensing configuration also results in
enhanced common mode rejection capability and reduced nonlinearity [81]. Figure 3.15

demonstrates the setup of a basic differential capacitive sensing element.

Differential

Figure 3. 15: Differential capacitive sensing.

If both motional current components consist of an effective sensing current, noise
current, feedthrough current, and parasitic current, then the environment variables such
as temperature and pressure will cause the alternations of all unwanted current sources.

Accordingly, the differential motional current output can be expressed as:

-+ _ . AP . AP . AP
Lmotion = lsense T lnpp t U AT Tl (3.55)

— : . AP . AP - AP
Linotion = ~lsense T lnpp + U AT + Lpar (3.56)
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. o+ - _ :
Laiff = lmotion ~— lmotion = 2isense (3.57)

In conclusion, although differential capacitive sensing has increased the
complexity and fragility of the device structure, with a proper design the enhanced
motional current signal will effectively improve the device sensitivity, SNR, and noise

signal rejection ability.

3.3.3 Pull-in Effect

As mentioned before, though capacitive transduction has many advantages, it has
a serious problem: pull-in. The pull-in effect not only limits the total displacement of
the proof mass but also affects the dynamic range and sensitivity. To analyze the pull-
in effect, a state of equilibrium is assumed between the electrostatic force and the
mechanical spring force. Hence, the total force existing on the parallel plate structure

can be expressed as:

10C
Frotar = Fu + Fg = EaVz —Kx=0 (3.58)

where K is the effective spring stiffness, d is the original gap in the parallel plate
structure, and x is the displacement. The equilibrium point stiffness can thus be

derived as:

OFporar  €AV?

= - 3.59

dx (d —x)3 K (3:59)

V2 = oK (d—-x)* 2Kd’x 1 X (3.60)
s T R |

Accordingly, the relationship between the equilibrium point stiffness K, the
displacement x, and the applied voltage V can be plotted as in Figure 3.16 (a) and (b).

At the equilibrium point where the equilibrium stiffness is zero, the ratio of x/d is
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around 0.3. Thus, the pull-in displacement is determined as:

Xpull-in = d/3 (3.61)

Inserting equation 3.56 back into equation 3.55, the pull-in voltage can also be

deduced:

8 Kda3

Vputi-in = 27 €A (3.62)
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b)

Figure 3. 16: Pull-in phenomenon. a) The equilibrium point stiffness as a function of
displacement. b) The applied voltage versus the relative displacement.

The system is unstable when the displacement is above the pull-in threshold. If the
pull-in occurs, the mechanical spring force cannot compensate for the generated
electrostatic force. Consequently, the parallel plate structure will be over-pulled and
snap. Thus, proper design of capacitive actuation and sensing must include the
coordination of the relationship between the pull-in displacement and pull-in voltage.
The pull-in effect constrains the minimum gap between the parallel plate structures.
The displacement in response to the excitation force, however, has to be carefully
reviewed, as relatively small displacements will result in unsatisfactory SNR and

sensitivity; conversely, large displacements will cause the problem of the pull-in effect.

3.4 Chapter Summary

This chapter provides a comprehensive theoretical analysis of a 3-DOF mode
localized weakly coupled resonator. It discusses theoretical characterizations such as
vibration modes, veering curves, and sensitivities in terms of frequency shift,
eigenvector shift, and amplitude ratio. Additionally, it includes mathematical
derivations for vibration mode frequencies and amplitude ratios. The chapter also
examines system responses in respect to both stiffness perturbations and mass
perturbations, and provides comparisons of actuation and sensing techniques, with a
focus on capacitive actuation. Finally, this chapter investigates the anti-mode aliasing

conditions and pull-in effects.
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Chapter 4

Simulation Models of Multi-DOF Mode
Localized Weakly Coupled Resonators

4.1 Simulations of a 3-DOF Mode Localized Weakly Coupled

Resonator

4.1.1 Equivalent Electronic Circuit Model of a 3-DOF Mode Localized Weakly

Coupled Resonator

Based on the fundamentals of the 3-DOF mode localized weakly coupled resonator,
an equivalent electronic circuit model is adopted to mimic realistic system behaviors.
Such modeling method offers simple, effective and rapid simulations that can be used
for investigating linear responses of the 3-DOF coupled resonator. In addition, the
equivalent electronic circuit model is capable of performing a sweep function to
simulate multiple system responses in respect to different external perturbations.
Further, it can include excitation force, noise and interface circuitry such as amplifiers.
The flexibility and rapidity make equivalent electronic circuit a good simulation tool to
study coupled resonators.

To correlate the electrical components with mechanical objects, an electrical
transduction factor is needed. This is attained by revising equation 3.54 as:

0C 0x

Imotion = Vbc aa =nx (4-1)
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Henceforth, the electrical transduction factor is defined as 7 =VDC3—:‘;. By

substituting the motional current from equation 4.1 into the mechanical motion from
equation 2.6 to obtain:
M @iprion b K
;% + Elmotion + ;f lmotion dt =F (4-2)
Assume an AC voltage is applied to actuate the system, the corresponding
excitation force can hence be written as F = nV,., then substituting this expression
into equation 4.2 to have:
M 0Oipori b K (.
F% + n_zlmotion + n_zj- lmotion dt = VAC (43)
Accordingly, the constant term of each variable can be replaced by an electrical

component. Consequently, it is adaptable to a series RLC electronic circuit:

aimotion . 1 .
L, T + Relmotion + C_f Imotion At = Vac (4-4)
e
Co /// ______ -__________-__________-E
| !
1] 7 v
/ K
,/ F
(TR (T (TS —
AT N -
s V___Js‘\___ - A
v i : __________________ _________,’// b
Q) b A
GND GND

Figure 4. 1: Electronic equivalent circuit model in corresponding to a lumped model of
1-DOF MEMS resonator.

Diagram of a 1-DOF resonator in the form of equivalent electrical circuit model
and lumped parameter model is demonstrated in Figure 4.1. To summarize, the

equivalent electronic components are defined as:
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L= M/nz = /WZT]Z

2 2
Ce:n/WZM:n/K (4-5)

Re = b/nz - KM/Qn2 - WM/QTI2

Once the equivalent RLC circuit for 1-DOF resonator is done, multi-DOF structure
with coupling elements can be easily modeled by adopting this principle. As the
stiffness term is equivalent to capacitance in RLC circuit, the coupling element is
another stiffness component in the mechanically coupled system, hence it can be
expressed as a unique capacitance in a multi-stage RLC circuit. A multi-stage RLC

circuit model is proposed to represent the 3-DOF coupled resonator, as shown in Figure

co co co
|1 11 1]
11 L 1
R1 L1 ”1;1 R2 L2 Ilf_z R L3 c3
AR ST
A 1! l M 1
v

C-:DuplI Cooupl

M —
2
%

Figure 4. 2: Equivalent RLC circuit of a 3-DOF coupled resonator system.

The computed RLC circuit component values are listed in Table 4.1. To
characterize the simulated system behavior, a group of stiffness perturbations are given
to resonator3, which are in a form of capacitances. The established SPICE circuit
simulation model is illustrated in Figure 4.3. The simulated system responses with
stiffness perturbations for resonator 1 and resonator 3 are shown in Figure 4.4 (a) and

(b), respectively.

Mechanical Parameter Component Value
bl =b2 =b3 R1=R2 =R3 5.5 x 10°Q
Signal amplification Rra 66 x 10°Q
M1 = M2 = M3 L1=L2=L3 0.475 x 10°H
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K1 = K3 Cl1=C3 2.543 X 10716F

K2 C2 8.477 x 10~ 17F
Kcouplel = Kcouple2 Ccouplel = CcoupleZ —1.907 X 107 15F
. . —4.2383331 x B to
Stiffness perturbation Cperb [—6.3575001 <14]
Exitation force Vactuation 15mV

Table 4. 1: Parameter definitions of equivalent RLC circuit simulation model.
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Figure 4. 3: SPICE simulation model of a 3-DOF coupled resonator.
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Figure 4. 4: Equivalent RLC circuit simulated 3-DOF coupled resonator system
responses (strong coupling). a) Resonatorl. b) Resonator 3.

Accordingly, the sensitivities in term of resonance frequency shift, resonant
amplitude change and resonance amplitude ratio change are able to plot in same scale
by using normalization process. The two vibration modes: in-phase mode and out-of-
phase mode are treated separately for the sensitivity characterization. The comparison

of output metric sensitivities is depicted in Figure 4.5.

0.2 - - T T
* in-phase fregshift
0.18 A out-phase fregshift |
’ in-phase ampchange A
0.16 A out-phase ampchange i
’ in-phase ARchange
0.14 out-phase ARchange
0
L0121 b
©
E oar |
S
s
=} [ 4
1] 0.08 4
0.06 b
A
0.04 - b
0.02 b
0 ;%: A I | A | | L A
1.4 1.6 1.8 2 2.2 24 2.6 2.8
ATk %107

Figure 4. 5: Equivalent RLC circuit simulation model output metric sensitivities
comparison (strong coupling).
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It is can be seen, both amplitude change and amplitude ratio change yield one to
two orders of sensitivity enhancements compared with resonance frequency shift. This
is agreed well with the theoretical analysis. However, due to the simulation model was
based on a relative large coupling strength, the discrimination of amplitude ratio change
and amplitude change are not obvious. This is agreed with the computation from
equation 3.20. A strong coupling can achieve good anti-mode aliasing, which results in
clear separated mode curves with a relative large gap frequency. On the contrary, strong
coupling heavily affects the final sensitivity in terms of amplitude ratio change. As
shown in the simulation results, the sensitivity in terms of amplitude ratio change and
amplitude change are tangled. Concurrently, another simulation model is implemented
but alter the coupling strength to a much weaker level, the corresponding system
responses and the comparison of output metric sensitivities are shown in Figure 4.6,
Figure 4.7 respectively.

It is can be observed, after the coupling strength is adjusted to 5 times weaker than
the first model, the final comparison denotes the sensitivity of vibration amplitude
change is two orders higher than that of the resonance mode frequency shift. Moreover,
the amplitude ratio change yields one to two orders of sensitivity enhancements
compared with vibration amplitude change. The amplitude ratio sensitivity can be
further improved by optimizing the system parameters such as coupling strength,
middle resonator supporting beam stiffness and system Q factor, as discussed in the

previous chapter.
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Figure 4. 6: Equivalent RLC circuit simulated 3-DOF coupled resonator system
responses (weak coupling). a) Resonatorl. b) Resonator 3.
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Figure 4. 7: Equivalent RLC circuit simulation model output metric sensitivities
comparison (weak coupling).

4.1.2 MATLAB & Simulink Model of a 3-DOF Mode Localized Weakly Coupled

Resonator

MATLAB in joint with Simulink simulations are benefitting from accurate, flexible
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and system level modelling. Concurrently, it can attain complex simulations including
non-linearity, different source of noises and environment variables. To perform
theoretical analysis, MATLAB is the perfect tool to verify basic properties such as mode
frequencies and eigenstates. However, merely MATLAB is difficult in system level
simulations, thus Simulink is combined. Although the many advantages of MATLAB
& Simulink simulation, the modeling speed and complexity (mathematical and logical
block functions) are the main drawbacks.

In what follows, a series of MATLAB & Simulink models for a 3-DOF mode
localized coupled resonator are presented. Starting with Table 4.2, which has listed the

system parameters, followed by a demonstration of Simulink model in Figure 4.8.

System Parameters Values
Actuation force 1.45 X 10°°N
Resonator effective mass
6.94 x 10~%kg
Ml = MZ = M3
Resonatorl & resonator3 effective stiffness
48.815N/m
Kl = K3
Resonator2 effective stiffness
285.212N/m
K,
Coupling strength (in stiffness)
3.9255N/m

K¢

Sweeping frequency range & step

[10000:0.1: 16000]Hz

Actuation electrode effective area

360 X 107 x 22 X 10~ %um?

Comb fingers effective area

70 X 107 x 22 X 10~ %um?

Original gaps 4.5um
Damping coefficient in vacuum
6.2 % 1078
bl == b2 == b3
Damping coefficient in air
6.6 X 107°

b1:b2:b3
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Mass perturbations [10:10:50]ng

Stiffness perturbations —[0.083:0.083: 0.415]N/m

Table 4. 2: MATLAB & Simulink simulation model parameters.

Capacitive sensing & amplifications
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=

Resonator2

ey —

," Capacitive sensing & amplifications

Figure 4. 8: Simulink system level simulation of a 3-DOF coupled resonator.

Two different types of perturbations are given to the established model: five
consecutive mass perturbations are added on the effective mass of resonator3 and five
consecutive stiffness perturbations are put on the effective stiffness of resonator3,
respectively. Further, two scenarios of the environment condition are assumed: i)
vacuum. ii) atmospheric pressure. The motional currents are obtained from vibration
displacements of resonatorl & resonator3 via capacitive sensing principle. Henceforth,
the motional currents are converted to voltage signals and amplified by external
electrical facilities such as transimpedence amplifier. The noise sources are neglected
in the simulations. Figure 4.9 a) and b) illustrate the simulated frequency responses of
resonatorl and resonator3 under the condition of stiffness perturbations, respectively.
The output metric sensitivities are deduced accordingly, followed by a normalized

sensitivity comparison as shown in Figure 4.10.
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Figure 4. 9: MATLAB & Simulink simulated frequency responses with given stiffness
perturbations. a) Resonator 1. b) Resonator 3.
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Figure 4. 10: MATLAB & Simulink model output metric sensitivities comparison
(stiffness perturbations).

Similarly, the simulated frequency responses of resonatorl and resonator3 under
the condition of mass perturbations are exhibited in Figure 4.11 a) and b), accompanied

with output metric sensitivities comparison in Figure 4.12.
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Figure 4. 11: MATLAB & Simulink simulated frequency responses with given mass
perturbations. a) Resonator 1. b) Resonator 3.
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Figure 4. 12: MATLAB & Simulink model output metric sensitivities comparison (mass
perturbations).

As can be observed, both perturbation cases have proved that the amplitude ratio
change as an output metric yields one to two orders of sensitivity enhancements
compared with vibration amplitude change. On the other hand, the vibration amplitude
change yields at least two orders of sensitivity improvements than that of the resonance
frequency shift. The simulation models are in a good agreement with the theoretical
analysis in chapter 3.

Next, the simulation models are altered to atmospheric pressure condition. The

simulated results are depicted in the following. Figure 4.13 a) and b) illustrate the
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simulated frequency responses of resonatorl and resonator3 with stiffness perturbations
under atmospheric pressure condition, respectively. The output metric sensitivities are
deduced accordingly, followed by a normalized sensitivity comparison as shown in
Figure 4.14.

Then, the mass perturbations are given, whereby the simulated frequency responses
of resonatorl and resonator3 are exhibited in Figure 4.15 a) and b), accompanied with

output metric sensitivities comparison in Figure 4.16.
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Figure 4. 13: MATLAB & Simulink simulated frequency responses with given stiffness
perturbations under atmospheric pressure. a) Resonator 1. b) Resonator 3.

® fregshift
A ampchange o
O ARchange
0.1F 1
0.08 - d
[}
Q
©
E o006t ° 1
5
a
=
(@]
0.04 1
o
0.02 d
o A
0 A Il L ‘ | |é I [ ]
1 2 3 4 5 6 7
A Tk %1073

Figure 4. 14: MATLAB & Simulink model output metric sensitivities comparison under
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atmospheric pressure (stiffness perturbations).

0.03

Simulated frequency response of Resonator1

4 mo*s‘

0.028 -

0.026 -

0.024 -

0.022 [

0.02

Amplitude of Resonator1 in Voltage[V]

0.018 [,

0.

Resonator1 with 20ng ém
Resonator1 with 30ng ém
Resonator1 with 40ng 6m
Resonator1 with 50ng om | |

Resonator1
— Resonator1 with 10ng ém

Simulated frequency response of Resonator3

@
o

w

N
o

Resonator3

Amplitude of Resonator3 in Voltage[V]

016 ' : : :
127 1.272 1274 1276 1278 1.28 1282 1.284 1286 1.288 1.29

Frequency [Hz]

a)

Resonator3 with 10ng sm
Resonator3 with 20ng 6m
Resonator3 with 30ng 6m
Resonator3 with 40ng sm
Resonator3 with 50ng sm

x10% Frequency [Hz]

b)

05 L L L L L
1.27 1272 1.274 1.276 1.278 1.28 1.282 1.284 1.286 1.288 1.29

x10*

Figure 4. 15: MATLAB & Simulink simulated frequency responses with given mass

perturbations under atmospheric pressure. a) Resonator 1. b) Resonator 3.
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Figure 4. 16: MATLAB & Simulink model output metric sensitivities comparison under
atmospheric pressure (mass perturbations).

Evidently, due to the simulation condition was under atmospheric pressure, mode

aliasing effect heavily affected the system behavior. First and foremost, the vibration

modes are overlapped, which results in only one peak. Consequently, the output metric

cannot be defined according to the dedicated vibration mode. Hence, the output metric

sensitives merely derived from the single mixed peak. It is can be seen, the normalized

sensitivities deduced from amplitude change and amplitude ratio change are

80



dramatically reduced, whereas the frequency shift sensitivity remains the same.
Another interesting point is the amplitude change sensitivity (assume the perturbation
IS given to resonator3), under low Q condition (in air), the superiority of amplitude ratio
is doubtable when it is compared with amplitude change of resonator3. However, the
amplitude ratio still maintain excellence in contrast to amplitude change of resonatorl
(the actuation force is given to resonatorl). In summary, even though the vibration
modes are overlapped under atmospheric pressure, the 3-DOF coupled resonator still
has the capability to be employed as a sensor device; in which the amplitude ratio as an
output metric yields the highest sensitivity in comparison with amplitude change and

resonance frequency shift.

4.1.3 COMSOL Simulation Model of a 3-DOF Mode Localized Weakly Coupled

Resonator

COMSOL finite element method (FEM) provide intuitive simulations for periodic
mechanical vibration structures. It is a perfect platform to study the MEMS coupled
resonator mechanical structure properties. The characterization of vibration modes can
be easily extracted as well as garnered the eigenfrequencies (natural resonance
frequencies). However, the main drawback of COMSOL is the simulation speed.
Complex structure for instance comb fingers with a fine mesh could bring failure to the
software. In addition, multi-physics simulations such as involving damping,
electrostatic force, currents and voltages are greatly increased the simulation difficulty.

In this section, starting with Figure 4.17, which shows the vibration modes of a 3-
DOF mode localized weakly coupled resonator. Followed by Figure 4.18 that illustrates

the corresponding frequency responses of resonatorl and resonator3, respectively.
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Figure 4. 17: COMSOL simulated vibration modes of a 3-DOF coupled resonator. a)
In-phase mode. b) Out-of-phase mode.
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Figure 4. 18: COMSOL simulated vibration amplitudes with a given excitation force
on resonatorl.

4.2 Simulations of QCM Mass Sensing System

4.2.1 Equivalent Electronic Circuit Model of a QCM Mass Sensor

In order to overcome the losses of functionality in a 3-DOF coupled resonator due
to damped environment applications, an alternative approach is proposed, which
exploits a QCM mass sensor incorporated with 3-DOF weakly coupled resonator
stiffness sensor to attain a hybrid transduction mechanism.

Similar as the electrical model of coupled resonators, a RLC circuit can also be
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adopted to represent a QCM mass sensor. To be more specific, the Butterworth van
Dyke electrical model [82, 83] is used. This RLC model can efficiently extract accurate
resonant frequency of the QCM sensor, as well as predicting the QCM frequency
responses in respect to mass perturbations. The SPICE model of the RLC circuit is
represented in Figure 4.19 a), Figure 4.19 b) shows the frequency responses with mass

perturbations and finally, the parameter definitions are listed in Table 4.3.

uZ 1.0v

oV—1— T T T
5.05700MHz 5.05750MHz 5.05800MHz 5.05850MHz
00V a0+ V(u26:00T)

Frequency

b)

Figure 4. 19: SPICE equivalent RLC circuit model. a) Actual model set-up. b)
Frequency responses with mass perturbations.

Component Defination Value
Dissipation of the
R oscillation energy 10Q
(damping elements)
Rta Signal amplification 50
L Effective mass 30mH
Stored energy
C (elasticity of the quartz 33fF
structure)
Cra Signal amplification 5pF
Lperb Mass perturbations [0.001:0.001: 0.005]mH
Vactuation Excitation force 2V

Table 4. 3: Equivalent RLC circuit parameter definitions.
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4.2.2 MATLAB & Simulink Model of a QCM Mass Sensor Incorporated With a

3-DOF Weakly Coupled Resonator Stiffness Sensor

The MATLAB & Simulink combined simulation can attain system level modeling
which consists of QCM mass sensor in damped environment, peak detector, and 3-DOF
weakly coupled resonator in vacuum. Starting with QCM mass sensor, the frequency

responses with consecutive mass perturbations are shown in Figure 4.20.
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Figure 4. 20: Simulated QCM mass sensor frequency responses with consecutive mass

perturbations under atmospheric pressure. a) MATLAB & Simulink model. b)
Equivalent RLC circuit model.

Frequency

Next, the system level simulation is carried out. As illustrated in Figure 4.21, the
QCM mass sensor is combined with a 3-DOF weakly coupled resonator, in which the
3-DOF coupled resonator model is the same as the MATLAB & Simulink model in the
previous section. A peak detector stage is existed between the output of the QCM mass
sensor and the input of 3-DOF coupled resonator stiffness perturbation port. The QCM
mass sensor is actuated at the original resonance frequency, constantly. When an
external mass perturbation is rendered, the output AC signal will be converted to a DC
voltage signal via the peak detector and hence fed to the stiffness perturbation port of
the 3-DOF coupled resonator. The 3-DOF coupled resonator on the other hand, is
operating in vacuum condition. Consequently, the functionality of the weakly coupled
resonator is preserved and the low-Q drawback is avoided. Simultaneously, the QCM

is capable to perform direct liquid contact measurements, which denotes the hybrid
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system has

potential to be employed in heavy damped applications, such as liquid

contact biosensors. The system model and the corresponding outputs are exhibited in

Figure 4.21

Figure 4. 21

and Figure 4.22, respectively.
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Figure 4. 22:

QCM incorporated with 3-DOF coupled resonator MATLAB & Simulink

model. a) QCM mass sensor in air, the output signals are converted to DC voltages via

peak detecto

r. The converted DC voltages are used as electrostatic forces to generate
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stiffness perturbations for resonator3 in a 3-DOF weakly coupled resonator which
operates in vacuum. b) The frequency responses of resonatorl in the hybrid system. c)
The frequency responses of resonator3 in the hybrid system.

The output metrics in terms of resonance frequency shift, amplitude change and
amplitude ratio can be adopted for the hybrid system. The normalized sensitivities

comparison is shown in Figure 4.23.
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Figure 4. 23: MATLAB & Simulink simulated QCM combined with 3-DOF coupled
resonator hybrid system normalized sensitivities comparison.

It is can be observed, as the theoretical analysis and simulations for the 3-DOF
mode localized weakly coupled resonator under high Q condition (operate in vacuum),
the amplitude ratio as an output metric yields one to two orders of sensitivity
enhancements compared with amplitude change, and again, the resonance frequency
shift yields the lowest normalized sensitivity. Accordingly, the advantages of the multi-
DOF mode localized coupled resonator are preserved while an effective mass sensing
approach can also be attained in damped condition. Further possibilities remains in the

capability of direct liquid contact measurements by using this hybrid system.

4.3 Simulations of 2-DOF Coupled BAW Disk Resonator

The ongoing investigation focus on employing multi-DOF mode localized coupled
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resonator in damped environment but maintaining its superior functionality. Based on
structure wise modifications, Silicon disk Bulk Acoustic Wave (BAW) resonators are
the suitable candidates which can operate in damped environment yet have a good
system quality factor (Q-factor). By adopting the theory of coupled resonator and mode
localization mechanism, a 2-DOF weakly coupled mode localized BAW disk resonator
is proposed.

Silicon disk Bulk Acoustic Wave resonators are excited in either Extensional mode
(Breath mode) [84, 85] or Wine-Glass mode [86, 87], they can achieve thousands of Q-
factor in air. Generally, BAW resonant devices are operating in high frequency
region(>1 MHz) [88, 89], the disk shape proof mass has intrinsic large surface area that
is suitable for droplet deposition (adding masses), also they sharing similar fabrication
process with other types of resonator, and IC-compatibility.

The 2-DOF weakly coupled mode localized BAW disk resonator can also be

expressed as a mechanical lumped parameter model [90-92], as shown in Figure 4.24.
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Figure 4. 24: 2-DOF coupled BAW disk resonator lumped parameter model.

The theoretical analysis of typical 2-DOF coupled resonator on the other hand, has
already been introduced in chapter 2, as well as basic characterizations of mode
localization behaviors in the 2-DOF coupled system. In what follows, different
simulation models are represented, including equivalent RLC circuit model, MATLAB

model and COMSOL model.
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4.3.1 Equivalent Electronic Circuit Model of a 2-DOF Mode Localized Coupled

BAW Disk Resonator

To establish an equivalent RLC circuit model, equation 4.5 is availed. The RLC
circuit model is similar as it is for 3-DOF coupled resonator, but only has two stages.
The computed electrical component values are listed in Table 4.4. To characterize the
simulated system behavior, a group of mass perturbations are given to resonator 2, in a
form of additional inductances. The actual SPICE model is illustrated in Figure 4.25.
The equivalent RLC circuit simulated frequency responses of resonator 1 and resonator

2 with mass perturbations are shown in Figure 4.26 (a) and (b), respectively.

Mechanical Parameter Component Value
bl = b2 R1 = R2 2.1718 x 10°Q
Signal amplification Rra 230 x 10°Q
M1 = M2 L1 =1L2 888.2264H
K1 = K2 Cl1=C2 4.036 X 10718F
Keouple Ceouple 9.086 x 107 1°F
Mass perturbation Lperb 0.05% 1t00.2%
Exitation force Vactuation 220mV

Table 4. 4: Parameter definitions of equivalent RLC circuit model for a 2-DOF coupled
BAW disk resonator.
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Figure 4. 25: SPICE simulation model of a 2-DOF coupled BAW disk resonator.
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Figure 4. 26: SPICE simulated frequency responses with given mass perturbations.
a) Resonator 1. b) Resonator 2.

4.3.2 MATLAB Model of a 2-DOF Mode Localized Coupled BAW Disk Resonator

The abovementioned equivalent RLC circuit model can be verified by using
MATLAB simulation model, in which the MATLAB model is based on the 2-DOF
coupled BAW disk resonator system equations of motion. Firstly, Table 4.5 listed the
parameters and corresponding values of the MATLAB model. Followed by the

demonstrations of simulated frequency responses in Figure 4.27 a) and b). In the end,
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the output metric sensitivities comparison is implemented in Figure 4.28.

System Parameters

Values

Actuation force

2.21 x 1078N

Resonator effective mass

M1=M2

6.3451 x 108kg

Resonatorl & resonator3 effective stiffness

K1:K2

1.7698 x 10’N/m

Coupling strength (in stiffness)
K¢

586.4N/m

Sweeping frequency range & step

[2.655Meg: 0.1: 2.661Meg]|Hz

Mass perturbations

[635,1269,1904,2538]ng

Table 4. 5: Parameters of MATLAB simulation model for a 2-DOF coupled BAW disk

resonator.

Simulated frequency response of Resonator1
Resonator1 I I
Resonator1 with 0.01% dm
Resonator1 with 0.02% ém
2.5 Resonator1 with 0.03% ém
Resonator1 with 0.04% ém

Amplitude of Resonator1 in Voltage[V]
s
Amplitude of Resonator2 in Voltage[V]

0 . . .
2.657 2.6575 2.658 2.6585 2.659
Frequency [Hz] %108

Simulated frequency response of Resonator2

Resonator2

Resonator2 with 0.01% ém
Resonator2 with 0.02% ém
Resonator2 with 0.03% m
Resonator2 with 0.04% ém
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J
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Figure 4. 27: MATLAB simulated frequency responses of a 2-DOF coupled BAW disk
resonator under atmospheric pressure. a) Resonator 1. b) Resonator 2.
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Figure 4. 28: MATLAB simulated 2-DOF coupled BAW disk resonator normalized
sensitivities comparison.

Evidently, the notion of mode localization is well proved in the simulation model,
in which the amplitude ratio change yields the highest normalized sensitivity. Even if
the simulation condition is under atmospheric pressure, the 2-DOF coupled BAW disk
resonator however, has demonstrated a Q-factor ~5000, which is a distinguished

property for such BAW coupled resonator.

4.3.3 COMSOL Simulation Model of a 2-DOF Mode Localized Coupled BAW Disk

Resonator

In order to investigate the mechanical vibration mode shapes and the corresponding
mode frequencies, COMSOL FEM simulation models of the 2-DOF coupled BAW disk
resonator system with mechanical beam coupling are established. The COMSOL model
is constructed under the condition of atmospheric pressure, in which the Rayleigh
damping parameters [93] are availed to represent the viscous losses.

Firstly, the eigenfrequency analysis is carried out. Similar as what has been done

for the 3-DOF coupled resonator, eigenfrequency studies in COMSOL can attain an
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accurate computation of mode frequencies and visualize the vibration mode shapes.

Figure 4.29 a) and b) illustrate the in-phase and out-of-phase modes, respectively.
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Figure 4. 29: COMSOL simulated vibration modes of a 2-DOF coupled BAW disk
resonator. a) In-phase mode. b) Out-of-phase mode.

A mass perturbation on resonator 2 is utilized to demonstrate the phenomenon of
mode localization in the 2-DOF coupled BAW disk resonator system. It is can be seen
from Figure 4.30, the balance of the coupled periodic vibration system is disrupted and
the related vibration amplitude is dramatically altered, which denotes the effect of mode

localization.
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Figure 4. 30: COMSOL model of a 2-DOF mode localized coupled BAW disk resonator
with an added mass perturbation on the right disk proof mass. a) In-phase mode. b) Out-
of-phase mode.

Subsequently, a frequency domain study in COMSOL is exploited to generate the
frequency sweep function. Resonator 1 (left) is actuated via electrostatic force, the
frequency responses of each disk resonator hence can be garnered, as demonstrated in
Figure 4.31.

In conclusion, mode localization effects in the 2-DOF coupled wine-glass BAW
disk resonator are successfully demonstrated by COMSOL FEM modeling, equivalent
RLC circuit model and MATLAB model. The characterizations of such resonant device
are comprehensively estimated, in which the simulation results render reliable

information for the 2-DOF coupled BAW disk resonator system.
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Figure 4. 31: 2-DOF coupled BAW disk resonator COMSOL simulated vibration
amplitudes with a given excitation force on resonator 1. a) Without mass perturbation.
b) With mass perturbation.

4.4 Chapter Summary

In this chapter, three different multi-DOF coupled resonator systems were
simulated: i) a 3-DOF mode localized weakly coupled resonator for sensing either
stiffness or mass perturbations, ii) a hybrid mass sensing system consisted of a QCM
mass sensor & a 3-DOF mode localized weakly coupled resonator stiffness sensor, and
iii) a 2-DOF mode localized coupled BAW disk resonator. Three modeling tools were
employed for mechanical structure, device characterizations, vibration behaviors and
system level simulations. All simulation results agreed well with the theoretical analysis,
in addition, the predictions of system responses were reasonable. Further, mode
localization effects were successfully simulated, different output metrics were
investigated. Finally, comparisons of normalized sensitivities for different output

metrics were performed and conclusion was drawn.
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Chapter 5

Fabrications of Multi-DOF Mode Localized
Weakly Coupled Resonators

5.1 Fabrication of 3-DOF Mode Localized Weakly Coupled Resonator

In this chapter, the aforementioned and simulated multi-DOF coupled resonators
are realized via different fabrication flows: i) SOI based process that exploits two steps
of release. ii) Dry release process with dicing free technique for SOI devices. iii) SOI
based process with dicing free technique that exploits a carrier wafer. The geometric
dimensions of each designed resonator are listed and the corresponding device layouts
are demonstrated. The detailed fabrication processes are depicted with the assistance of

3D cross section view.

5.1.1 Fabrication of 3-DOF Mode Localized Weakly Coupled Resonator: SOI

Based Process that Exploits Two Steps of Release

Silicon-on-insulator (SOI) technology benefiting from simple fabrication flow, in
which a single mask is used for sculpting the device features and releasing. Deep
reactive ion etching (DRIE) and hydrofluoric acid (HF) wet etching are the two main
techniques to define the device structure layer and to release the suspended movable
structures [94]. However, stiction is a crucial problem that is induced by HF wet etching
[95]. To overcome this barrier, one-step dry release process has been proposed [96, 97],

yet the notching effect overetches the moveable structures and results in structural
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fragility. Accordingly, an improved fabrication flow is presented in [98] , which utilizes
selective release process consisted of two steps: dry release and HF wet release.
To fabricate the 3-DOF coupled resonator, a single mask SOI process with two

steps of release is adopted. The device structural dimensions are listed in Table 5.1.

Parameter Value

Thickness of structural layer 30 um
Suspended beam length 350 um

Suspended beam width 5um
Middle suspended beam width 7.5 um

Comb finger overlap 70 um

Comb finger length 90 um
Proof mass 3602 um?

Gaps between proof masses
& Gaps between comb fingers 4.5 um
& Gaps between proof mass and electrodes

Suspended structure thickness after overetch 22 ym
Effective cross section area for electrostatic
. . ) 360 X 22 um?
coupling and electrostatic actuation
Effective cross section area for capacitive
P 70 X 22 um?

comb fingers

Table 5. 1: Dimension parameters of fabricated 3-DOF coupled resonator device.

The mask layouts are drawn by L-Edit software, two different prototype designs of
the 3-DOF coupled resonator are represented: one integrated with extra tether structures
as bias voltage input to adjust the initial state of the device, one without the tether

structure. The layouts are shown in Figure 5.1 a) and b) respectively.
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Figure 5. 1: Device layouts of the 3-DOF coupled resonator. a) With tether structure. b)
Without tether structure.

To interpret the fabrication flow, a procedure comprised of 5 steps is represented,

3D cross section view are introduced to assist the explanation:

a) Form the photoresist layer by spin-coating, then the photoresist is patterned

according to the mask layout. (Figure 5.2 a)
b) The device layer is defined by deep reactive ion etching (DRIE). (Figure 5.2 b)

c) DRIE dry overetching process which exploits notching effect to undercut the main
parts of the proof masses and comb fingers, the silicon dioxide layer beneath is also
removed. However the overetch process is stopped to keep the edge part of the proof
masses unreleased. Hence the movements that could damage the suspended beams

and other fragile structures are confined. (Figure 5.2 )

d) Remove the patterned photoresist layer, separate the fabricated devices by physical
dicing. Due to the unreleased proof masses edge, the movements during dicing

process are constrained, hence protects the device structure. (Figure 5.2 d)

e) Fully release the device by using HF wet etching. The residue of silicon dioxide layer
under the edge of proof masses are removed. The movable structures are suspended

and the released devices are put in carrier boxes for future packaging. (Figure 5.2 e)

- Photoresist layer Undercut device
layer (DRIE dry

etching release)
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e)

Figure 5. 2: Fabrication flow of SOI based process that exploits two steps of release. a)
Spincoating photoresist layer. b) DRIE dry etching. c) DRIE overetching (dry release).
d) Remove photoresist layer. e) HF wet etching fully release.

The fabricated 3-DOF coupled resonator devices are inspected under optical
microscope, the captured images are demonstrated in Figure 5.3. All the images are

acquired via Leica ZA6APO optical facilities.
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Figure 5. 3: Microscope view of fabricated 3-DOF coupled resonator devices. (SOI
based process that exploits two steps of release)

5.1.2 Fabrication of 3-DOF Mode Localized Weakly Coupled Resonator: Dry

Release Process with Dicing Free Technique for SOI Devices

The aforementioned two steps of release SOI process can attain single mask
fabrication, however, the separation procedure by physical dicing significantly reduce
the device yield rate. Even though the device structure is not fully released by dry
etching process and protected by part of silicon dioxide layer, physical dicing force can
still damage or destroy the device. In order to achieve better fabrication yield rate, a
dicing free technique is adopted [99]. In this technique, two masks are required: front
side device layer mask and bottom side release trenches mask. Accordingly, the mask

layouts are shown in Figure 5.4 a), b) and c) respectively.

Front side
trenches

Free dicing
release holes

Bottom side
trenches
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c)

Figure 5. 4: Modified layout (dicing free): Device layouts of the 3-DOF coupled
resonator. a) Front side device layer. b) Bottom side release trenches. ¢) Overlapped
view of one block unit on the wafer, consisted of two 3-DOF coupled resonator devices.

It is can be observed, there are floating structures exist in between each section of
the resonator. The reason is to uniform the gaps between each part in the device
structure, as well as decreasing the relative large gaps, for instance, the gap between the
suspended beam of resonatorl and the suspended beam of resonator2. The floating
structure can control the DRIE dry etching speed thus the slim structure such as comb
fingers and long suspended beams are protected from overetching, concequently
increases the final fabrication yield rate. There are 4 gap variations that been introduced
to the front side layout: 20 um, 30 um, 40 um and 50 um. The gaps are distributed evenly,
for example, the gap between the floating structure and the two adjacent supporting
beams of resonatorl is the same as the gap between the supporting beams to the next
floating structure.

The fabrication flow is explained by a procedure consisted of 7 steps, with the
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assistance of 3D images in Figure 5.5:

Il Photoresist layer

Figure 5. 5: Fabrication flow of dry release process with dicing free technique.
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a) Forming photoresist layer on the bottom side.

b) DRIE to form the bottom side trenches and remove photoresist.

c¢) Forming photoresist on top layer and patterning the device features with front side
mask.

d) DRIE to form the front side device features.

e) Removing the photoresist and preparing for releasing.

f) HF VPE dry releasing process. The movable structures are released first, followed

by the release of grid.

g) Finalizing the release procedure, separating the individual unit.

The fabricated device is exhibited in Figure 5.6.

Figure 5. 6: Close-up view of the fabricated 3-DOF coupled resonator (dry release with
dicing free technique).

Although the floating structures in the modified layout could effectively protect the
fragile & slim parts, they have an intrinsic defect: the possibility of stuck in the device
layer during release process. Figure 5.7 shows the floating structures that stuck in the

gaps of the device layer.
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a)

Figure 5. 7: Failure of floating structures after releasing.

By positioning the device layer facing down during the release process, the
problem can be countered. The floating structures hence can drop out and separate from
device layer under the force of gravity.

Apart from the adjustments in release process, another structure modification is
proposed. As the layout shown in Figure 5.8, floating structures are removed, whereas

the extended structure frames are introduced.

Figure 5. 8: 3-DOF coupled resonator structure modification: extended frame.

As can be seen, the large gap area between the middle resonator and the adjacent
resonators are covered by extended frame. The capacitive comb fingers are increased

to 4 pairs instead of 3, which results in better output signal strength and enhanced SNR.
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The variations of gaps are limited to 19 um and 49 um, which can attain better structural

uniformity and better release control.

5.1.3 Fabrication of 3-DOF Mode Localized Weakly Coupled Resonator: SOI

Based Process with Dicing Free Technique that Exploits a Carrier Wafer

Alternatively, a different dicing free technique is adopted [100], which is suitable
for fabricating the 3-DOF coupled resonator as a biosensor. Commonly, a large
dispensing area is required for biosening applications. The biological samples are
typically in liquid phase, a large dispensing area can maintain the sample droplet shape
and provide enough space for molecules to bind onto the device surface. On the other
hand, the aforementioned fabrication flows demand the etching holes to be integrated
in the resonator proof mass, which result in the imperfection of biosensing purposes.
The liquid sample could pass through the small etching holes on the proof mass and
leak into the gap between the suspended structure and substrate. Consequently, there
are possibilities of stiction during biosensing operations. To counter this problem, the
substrate beneath the resonator proof mass is removed, the etching holes on the proof
mass are also eliminated owing to double side DRIE process. In this technique, two
masks are required: front side device layer mask and backside mask. Accordingly, the

mask layouts are shown in Figure 5.9 a), b) and c) respectively.

b)
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c)
Figure 5. 9: Modified layout (dicing free with removed proof mass substrate): Device

layouts of the 3-DOF coupled resonator. a) Front side device layer. b) Backside layer.
c) Overlapped view.

The fabrication flow is explained by a procedure consisted of 8 steps with the

assistance of 3D images in Figure 5.10:

I rhotoresist layer I Carrier wafer

I substrate layer

2)
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Figure 5. 10: Fabrication flow of SOI based process with dicing free technique that
exploits a carrier wafer.

a) Forming photoresist layer on the bottom side.

b) DRIE to remove bottom side proof mass substrate.

c¢) Bonding with carrier wafer.

d) Forming photoresist on top layer and patterning the device features with front mask.
e) DRIE to form the front side device features.

f) Separating the carrier wafer.

g) Removing the front layer photoresist and preparing to release.

h) Releasing the units: HF solution wet release the movable structures.

However, a defect was found after this fabrication flow, where the structures with
relative large structural gaps were overetched. The damages were mainly appeared at
the middle resonator suspended beams and their surroundings. As demonstrated in
Figure 5.11, slim structures such as suspended beams of side resonators were
completely overetched, the suspended structures of middle resonator were barely
survived. To solve this critical failure, the large gap areas should be minimized. Both
structure modifications in Figure 5.4 and Figure 5.8 are competent, in addition,

reducing the removed substrate areas and utilizing supporting anchors can effectively
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control the influences of overetch.
B

Figure 5. 11: Microscope view of failed device structure due to overetch (dicing free
technique with a carrier wafer).

5.2 Fabrications of 2-DOF Mode Localized Coupled BAW Disk

Resonator

The 2-DOF coupled BAW disk resonator devices are fabricated by using the SOI
based dicing free technique with a carrier wafer. Due to the large surface area of the
proof mass in the disk resonator system and the purpose of biosensing applications, the
substrates beneath proof masses are removed. Hence, the fabrication flow includes
double side etching and dicing free technique is the appropriate one. Four designs are

introduced in this section, including disk radius of 200um, 250um, 500um and 750um.

5.2.1 Fabrication of 2-DOF Mode Localized Coupled BAW Disk Resonator: SOI

Based Process with Dicing Free Technique that Exploits a Carrier Wafer

The device structural dimensions of the 2-DOF coupled BAW disk resonators are

listed in Table 5.2. The device layouts are exhibited in Figure 5.12.

Parameter Value
Suspension beam lengths
(R_100)

50 um
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Suspension beam lengths
(R_250) 50 pm
Suspension beam lengths 100
(R_500) um
Suspension beam lengths 100 um
(R_750) K
Suspension beam width
for all designs 10 pm
Gaps between resonator and electrodes
. 2 um
for all designs
Coupling beam length
(R_100) 220 pm
Coupling beam width 10
(R_100) Hm
Coupling beam length
(R_250) 350 pm
Coupling beam width
(R_250) 10 pm
Coupling beam length
(R_500) 600 pm
Coupling beam width 15
(R_500) Hm
Coupling beam length
(R_750) 590 um
Coupling beam width 15
(R_750) Hm

Table 5. 2: Dimension parameters of fabricated 2-DOF coupled BAW disk resonators.
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Figure 5. 12: Device layouts of the 2-DOF coupled BAW disk resonators. a) Disk radius
100 um. b) Disk radius 250 um. c¢) Disk radius 500 um. d) Disk radius 750 um.

The fabrication flow is identical to the process that has been described in Figure

5.10. Accordingly, the actual fabricated devices are shown in Figure 5.13.
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Figure 5. 13: Microscope view of fabricated 2-DOF coupled BAW disk resonator
devices. a) Disk radius 100 um. b) Disk radius 250 um. c) Disk radius 500 um. d) Disk
radius 750 um.

5.3 Chapter Summary

In this chapter, the fabrication flows of the 2-DOF mechanical coupled BAW disk
resonators and the 3-DOF electrostatic coupled resonators were introduced. Three
different fabrication processes were discriminated into dicing and dicing free
techniques, in which the 3-DOF coupled resonators were fabricated by all the three
processes. The 2-DOF coupled BAW disk resonators on the other hand, were fabricated
by dicing free technique with a carrier wafer. Devices layouts were demonstrated and
structural parameters were listed. The microscope view of actual fabricated devices
were inspected, the possibilities of fabrication failure and corresponding solutions were

summarized.
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Chapter 6

Interface Circuit Designs and Experimental
Materials

6.1 Interface Circuit Designs for 3-DOF Mode Localized Weakly

Coupled Resonator

To measure the motional currents induced by periodic vibrations of the parallel
plates, a proper interface circuit is required. An interface circuit integrates the functions
of signal filtering, signal buffering, and signal amplification. The input signals are
processed and then delivered to the output ports that communicate with an extended
platform such as a precise measurement facility (e.g., a lock-in amplifier or network
analyzer) or signal processing software on a PC. In short, an interface circuit assists the
transducer device to measure physical quantities that are correlated with final output

signals.

6.1.1 Signal Pick-up Circuit for 3-DOF Mode Localized Weakly Coupled

Resonator

The capacitive sensing element of the 3-DOF coupled resonator system has already
been introduced in chapter 3. Theoretically, the total generated motional current is
expressed in equation 3.54 (multiplied by the number of comb finger pairs). To use a
lock-in amplifier to measure the output signals from the 3-DOF coupled resonator

system, the motional current signals have to be converted into voltage signals. This is
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achieved using a transimpedance amplifier. To select the correct transimpedance
amplifier among the many variations, two properties should be considered: amplifier
noise level and the bandwidth of the amplifier. The motional currents are very weak,
usually in the nanoampere to microampere range. The resonance frequency of such a
device is approximately 20 kHz, which is not difficult for many types of
transimpedance amplifiers to achieve. The gain value of a transimpedance amplifier,
determined by the resistor value in the negative feedback loop, is also easy to control.
Ideally, the generated motional currents in the range of tens to hundreds of nanoamperes
should be converted and amplified to hundreds to thousands of millivolts. Hence, given
its high gain bandwidth product, high speed, and low noise, the operational amplifier
OPAB57U (Texas Instruments) was chosen as the current-to-voltage converter and as
the first stage of amplification for the interface circuit.

To obtain a stronger signal and suppress noise, a second stage of amplification is
employed. Instrumentation amplifiers can achieve a controllable gain and perform
signal subtraction. In the 3-DOF coupled resonator design, four groups of comb fingers
forming two pairs of differential capacitive sensing elements, whereby four
transimpedance amplifiers are used as I/V converters. Subsequently, two
instrumentation amplifiers perform subtractions for each differential capacitive pair.
The amplifier AD8429 (Analog Devices) was selected as the instrumentation amplifier
in the interface circuit. This low-noise instrumentation amplifier has excellent common
mode rejection ratio (CMRR) and relatively wide bandwidth. In addition, the second
stage amplification can provide significant signal boosts so that the final output signal
reaches hundreds to thousands of millivolts.

The schematic of the motional current converter and amplification circuit is shown
in Figure 6.1. Figure 6.2 presents an overview of the 3-DOF coupled resonator
measurement platform, which consists of the MEMS 3-DOF coupled resonator device,

interface circuit, and data acquisition facilities.
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Figure 6. 1: Schematic of the I/V converters and amplification stages.
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Figure 6. 2: 3-DOF coupled resonator measurement platform.

The interface circuit was fabricated on a printed circuit board (PCB). All the
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electronic components were standard surface-mounted devices (SMD). The prototype

PCB had a dimension of 75 x 70 mm?. The fabricated PCB board is shown in

Figure 6.3.
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Figure 6. 3: Fabricated PCB interface circuit for a 3-DOF mode localized weakly
coupled resonator.

6.1.2 Peak Detector Circuit for QCM & 3-DOF Mode Localized Weakly Coupled

Resonator Hybrid System

As introduced in chapter 4, the QCM mass sensor is exploited as a sample contact
platform, which can operate in damped environment. To establish the interaction
between the QCM mass sensor and the 3-DOF coupled resonator stiffness sensor, the
AC output signal from QCM is needed to be converted to a DC voltage and hence can
be used as electrostatic force to induce the stiffness perturbation in the 3-DOF coupled
resonator system.

Quartz crystal microbalance mass sensors come in a variety of dimensions and with
a variety of electrode materials and generally operate in the MHz range. In this hybrid

system, the QCM mass sensor (commercially available from thinkSRS) has a resonance
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frequency of 5 MHz, has Cr/Au electrodes, and has a nominal blank diameter of
25.4 mm. A continuous AC stimulus generated from a function generator facility can
maintain the QCM device vibrating at certain frequencies (initially at resonance
frequency). To convert the high frequency AC output signal produced by the QCM, a
high-speed peak detector is necessary. Figure 6.4 a) shows a typical peak detector
design, which is intended for slow-speed signals. Figure 6.4 b) shows a modified peak
detector design, which has improved tracking speed and hence can be used for the QCM

output signal peak detecting task.

Diode

ciaion  QCM T {\ M f\ /\ J

Rf

Diode
- Diode —O0

Excitation QCM ¢
= b)

Figure 6. 4: Peak detector circuit. a) Typical peak detector design. b) Modified high
speed design

Although a more advanced PCB layout was proposed, the electronic components
were integrated in a prototype board (stripboard). For convenience, the experiments
were conducted using this prototype board. As demonstrated in Figure 6.5, the QCM is

clamped in a dedicated holder fabricated by 3D printing.
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Figure 6. 5: Actual circuit of the high speed peak detector. a) Prototype board. b)
Proposed PCB layout design.

6.2 Interface Circuit Designs for 2-DOF Mode Localized Coupled

BAW Disk Resonator

There are several options for the interface circuit design for BAW disk resonators
in terms of drive and sense schemes [101-103]. As mentioned previously, 2-DOF
coupled BAW disk resonator devices are electrostatically actuated. The sensing
elements, on the other hand, are capacitive. There are four electrodes surrounding each
disk resonator, which can be configured either as an actuation electrode or a capacitive
sensing electrode. A comparison of different configurations, in terms of vibration
modes compatibility, interface circuit simplicity, noise rejection capability and parasitic
feedthrough signal influences is summarized in Table 6.1.

Based on the experiment design and for packaging convenience, a 1-port capacitive
sensing scheme was selected as the starting point. The main disadvantage of this
method is noise-signal disturbance, especially feedthrough current interferences.
Specifically, a dominant parasitic capacitance results in a relatively large feedthrough
current at the operating frequency range, rendering impossible the detection of the
motional current signal. An RLC equivalent circuit model can verify the weights of
effective motional current and feedthrough current at the resonance frequency, as

demonstrated in Figure 6.6.
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Breath mode
compatibility

Wine glass
mode
compatibility

Simplicity

Noise
rejection

Feedthrough
influences

1-port
capacitive

2-port
capacitive

2-port
differential
capacitive

Table 6. 1: Comparison of the 2-DOF coupled BAW disk resonator sensing electrode

schemes.

SZ24mv

Figure 6. 6: RLC equivalent circuit model of a 750um radius 2-DOF coupled BAW disk
resonator. a) Absence of parasitic feedthrough capacitance. b) Presence of parasitic
feedthrough capacitance.

The parasitic feedthrough capacitance results in a feedthrough current, which

increases with frequency. The magnitude of the feedthrough current far exceeds the

effective motional current generated by the 2-DOF coupled BAW disk resonator.

Consequently, the external data acquisition facility cannot measure anything but the

dominant feedthrough current signal. Therefore, a parasitic feedthrough cancellation

method [104] is adopted. As shown in Figure 6.7, two feedthrough cancellation

techniques are employed.
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Figure 6. 7: Feedthrough cancellation method. a) Tunable capacitance compensation
technique. b) Dummy MEMS compensation technique.

Both techniques utilize an inversed current at a similar level to the feedthrough
current; hence, they cancel each other out at the output junction. Figure 6.8
demonstrates the 2-DOF coupled BAW disk resonator measurement platform, which

consists two precise tunable capacitances as the feedthrough compensation.
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Figure 6. 8: 2-DOF coupled BAW disk resonator measurement platform.

By exploiting a 1-port capacitive measurement setup, the coupled disk resonator is
excited electrostatically via the combination of DC and AC actuation voltages. A
particular vibration mode (in-phase or out-of-phase) is selectively actuated by assigning
the positive and negative DC voltage onto different electrodes pairs. The variable
compensation capacitors are placed in parallel with each disk resonator, where the AC
actuation voltage is passed through a single-to-differential driver, producing two out-
of-phase AC voltages. Subsequently, the two out-of-phase AC voltages are fed to
actuation electrodes and the compensation branches. Since the resulting tunable
compensation currents (icomp1 and icomp2) and the effective motional currents from the 2-
DOF coupled BAW disk resonator (iout1 and iout2) are opposite, they cancel each other
out at the sense node. By carefully tuning the value of each variable capacitance, the

feedthrough currents can eventually be eliminated, allowing the measurement of the
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effective motional signals.

The interface circuit was fabricated on a PCB, and all the electronic components

were standard SMDs. The prototype PCB had a dimension of 60 x 50 mm?. Details

are presented in Figure 6.9.
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Figure 6. 9: Fabricated PCB interface circuit for a 2-DOF mode localized coupled BAW
disk resonator.

As well as the PCB design based on variable capacitance compensation, two
additional layout designs exploiting dummy MEMS device compensation and a tunable

current source are included in the appendix.

6.3 Experiment Materials for Mass Sensing Characterizations

To characterize the mass sensitivity of multi-DOF coupled resonators — in
particular, the 3-DOF weakly coupled resonator, the QCM mass senor, the 3-DOF
coupled resonator stiffness sensor hybrid system, and the 2-DOF coupled BAW disk
resonator — consecutive mass perturbations are added to target proof mass surfaces.
However, unlike the stiffness perturbations, which can be easily manipulated via

electrostatic forces, the implementation of mass perturbations is more complex. As the
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comparison summarized in Table 6.2, properties of mass and stiffness perturbations are

listed.

Control | Accurate | Simplicity | Reversibility | Reproducibility

Mass
perturbations

Stiffness
perturbations

Table 6. 2: Comparison of mass/stiffness perturbation features in terms of feasibilities.

Indeed, the stiffness perturbation process is more flexible: the magnitude of the
stiffness perturbation can be tuned by adjusting the potential difference (DC voltages)
across the parallel plate structures. The accuracy of the stiffness perturbation depends
on the minimum step of the voltage source, while the MEMS device can return to its
initial state by shutting down the stiffness perturbation voltage source. In contrast, the
mass perturbation process requires physical substances; for instance, the depositing of
a uniform thin layer of a certain material. External facilities are required for depositions
[105] or dispensations [57], and both procedures are time consuming. The accuracy of
mass perturbation relies on the minimum mass and the possibility of immobilization on
the proof mass surface.

In contrast to adding external mass, removing a portion of mass from the MEMS
device proof mass is another approach to mass perturbation [106]. In this case, an
expensive focused ion beam facility is required. Generally, adding or subtracting
masses is permanent, resulting in the disposal of MEMS devices. This is a crucial
problem for the characterization of prototype MEMS devices, considering the
fabrication cost and yield rate.

In view of the difficulty in mass perturbation characterizations, the author has
proposed a novel idea, which exploits magnetic nanoparticles as mass perturbations to

create a reversible, relatively simple, and cost-effective mass characterization method.
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In principle, such a novel approach could be adopted by any MEMS mass sensor,
meaning that it is a universal solution for mass perturbation characterizations [107, 108].

Magnetic nanoparticles are artificial particles that possess a sphere-like structure
and a typical diameter ranging from 1 nmto 1 um. Such nanoparticles can be controlled
by an external magnetic field. The magnetic materials commonly used for forming the
core structure are cobalt, nickel, manganese, and iron [109]. Although the original
purpose of magnetic nanoparticles was for biological assays, magnetic materials cannot
interact with biological molecules directly; specifically, they are not able to handle
strong covalent bonds to allow the bonding of functionalization. Thus, an additional
chemical component is needed; namely, an outer layer of silica. A basic structural

diagram of magnetic nanoparticles is shown in Figure 6. 10.

I:I Core material
- Outer shell material %

SiOH

Figure 6. 10: Magnetic nanoparticles. a) Structure diagram. b) TEM image of magnetic
nanoparticles cluster [110]. ¢c) TEM image of a single magnetic nanoparticle [110].

Other possibilities for the outer shell materials and their functional groups exist;
their use depends on the biological sensing tasks. In MEMS multi-DOF coupled
resonator mass perturbation characterizations, basic magnetic nanoparticles comprised

of iron core and a silicon dioxide outer shell are employed. The magnetic nanoparticles
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were commercially available from Innosep Biosciences. Three batches with different
diameters were purchased: 1 um, 5 um, and 10 um. All the magnetic nanoparticles were
stored in a liquid environment (de-ionized water or oil) and distributed in carrier bottles

with a concentration of 10 mg/ml. The batches are shown in Figure 6.11.
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a) b)

Figure 6. 11: Commercialized magnetic nanoparticles. a) Original production with a
given concentration and volume. b) Diluted magnetic nanoparticles floating in an
Eppendorf tube. ¢) Magnetic shelf.

6.3.1 Preparations of Magnetic Nanoparticles

Before dispensing the magnetic nanoparticles onto multi-DOF coupled resonators,
a pre-treatment step is essential. Unwanted carrier liquid should be removed quickly
after dispensing; otherwise, both the magnetic nanoparticles and the carrier liquid are
counted as added mass, which would result in inaccurate characterizations. To
accelerate this process, a 70% ethanol solution is used for the carrier liquid. Another
important step is dilution, as the original concentration of magnetic nanoparticles far
exceeds the desired amount. Basically, magnetic nanoparticles with net weight of 1 ng
to 1 ug are used as mass perturbations. Figure 6.12 details the pre-treatment procedure,
which comprised of magnetic nanoparticles transportation, separation of carrier liquid,

dilution, and relocation.
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Figure 6. 12: Magnetic nanoparticles pre-treatment. a) Transporting the magnetic
nanoparticles from original container. b) Eppendorf tube temporary storage. ¢) Using
magnet to attract floating nanoparticles. d) Separation of carrier liquid. e) Fully remove
the liquid, only solid nanoparticle clusters exist. f) Reinjecting 70% ethanol. g) Shaking
the Eppendorf tube to make the nanoparticles evenly distributed in 70% ethanol
solution. h) Taking the desired quantity of diluted nanoparticle solution, relocating in a
shallow well plate, preparing to be dispensed.

As the flow diagrams illustrated in Figure 6.12, an operating protocol of pre-
treatment is compiled accordingly:

(1) Calculating the desired mass perturbation value. According to the concentration of
original production, computing the transported nanoparticles mass value in terms
of the volume of pipette (equation 6.1). Computing the diluted concentration, in
terms of the transported masses and the volume of 70% ethanol solution (equation
6.2). Again, computing the relocated nanoparticles mass value, in terms of the

volume of pipette and diluted concentration (equation 6.3).

Mirans = Corigin X Vtip1 (6.1)
Caitutea = Mtrans/Vethanot (6.2)
Myeiocation = Caitutea X Viip2 (6.3)
Myery = Caitutea X Vaispenser (6.4)

(2) Shaking the original container until nanoparticles evenly floating in the solution.
Setting up a pipette with proper volume and installing appropriate tip, carefully
sucking out nanoparticle solution from the original container.

(3) Injecting the transported nanoparticle solution into an Eppendorf tube.

(4) Placing a magnet at one side of the Eppendorf tube, hold it until nanoparticles are
gathered as cluster.

(5) Reinstalling a clean pipette tip and configuring the volume to the same value as

transportation step or a relative larger value.
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(6) Carefully sucking out the carrier liquid in the Eppendorf tube while maintaining the
gathered solid nanoparticles untouched.

(7) Reinstalling a clean pipette tip and configuring the volume to dilution required
value.

(8) Loading up the 70% ethanol solution and injecting into the Eppendorf tube, check
the volume scale on the Eppendorf tube, make sure the nanoparticle solution is
correctly diluted

(9) Reinstalling a clean pipette tip and configuring the volume to relocation required
value.

(10) Shaking the Eppendorf tube until nanoparticles evenly floating in the solution.

(11) Carefully sucking out the diluted nanoparticle solution, then distributing the diluted
solution into one or several wells of the designed shallow well plate.

(12)Sending the shallow well plate to Microdispenser (Microplotter), preparing to

dispense nanoparticles onto MEMS devices.

6.3.2 Reversibility of Magnetic Nanoparticles as Mass Perturbations

After the characterizations of mass sensitivity for multi-DOF coupled resonators,
a reversal procedure can be performed so that tested MEMS devices can be reused. By
utilizing the intrinsic magnetic affinity, the dispensed nanoparticles can be withdrawn
from the proof mass of MEMS devices. This greatly improves the effective usage of
each multi-DOF coupled resonator device and provides an economical solution for
testing the mass sensitivity of MEMS devices. The reversibility is consisted of the
following steps:
(1) Overhanging the packaged multi-DOF coupled resonator device, the dispensed side
is facing down.
(2) Preparing 70% ethanol solution and filling into a Beaker cup.
(3) Slowly and steadily moving the hanged device, approaching the liquid surface of
the 70% ethanol solution.

(4) Holding a magnet close to the liquid contact surface, ensure the dispensed side is
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well contacted to the liquid solution but not fully immerse in it.

(5) Slightly shaking the hanged device, repeating several times until visually no
nanoparticles attached.

(6) Overhanging the device for 45 minutes, ensure the humid of the contacted surface
are entirely evaporated.

(7) Transferring the packaged device to oven dryer, running a 30 minutes
comprehensive dry program.

(8) Testing the packaged device, checking the physical structure integrity under
microscope and implementing a test run.

A detailed procedure of removing magnetic nanoparticles is represented in Figure 6.13.

7
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Figure 6. 13: Magnetic nanoparticles removal. a) Dispensed magnetic nanoparticles on
packaged multi-DOF coupled resonator device. b) Flip-over the packaged device and
approaching the liquid surface. c) Dispensed surface contacts the liquid. d) Using a
magnet to attract the dispensed nanoparticles. e) Waiting humid evaporation. f) Oven
dryer program.

6.3.3 Dispensing of Magnetic Nanoparticles

SonoPlot GIX Microplotter was used to dispense a small droplet (~20 nl) of diluted
magnetic nanoparticles solution on one resonator in the multi-DOF coupled resonator
system. The microplotter system consisted of a precise movement platform (x-y
direction), a z-direction high-resolution positioning capillary tube, and a controller
console. An ultrasonic pumping mechanism was used, which allowed an accurate and

quick depositing process. Figure 6.14 details the procedure of dispensing nanoparticles.
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Figure 6. 14: Dispensing of magnetic nanoparticles. a) Calibration of positioning
system. b) Set-up the coordinates to the filled well. ¢) Loading-up magnetic
nanoparticle solution in the capillary. d) Depositing magnetic nanoparticle solution onto
resonator proof mass surface.

In Figure 6.15 a), the method to calculate the dispensed weight of nanoparticles is

illustrated. Figure 6.15 b) shows the actual Microplotter system.
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Figure 6. 15: Microdispenser system. a) Computation of dispensed weight of magnetic
nanoparticles, where h is the change of liquid level. b) SonoPlot GIX Microplotter
system.
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6.4 Surface Functionalization of Multi-DOF Mode Localized Coupled

Resonators

In the last two decades, biosensor technology has rapidly and widely evolved. Both
assay- and device-based biosensors are used to analyze biological molecules, mainly
antigens and antibodies, enzymes, DNA, and cells. The principal mechanism in a
device-based biosensor is the transduction of a specific biological component that has
a strong binding affinity with the target analyte. However, electronic devices such as
MEMS sensors are silicon-based, and silicon is not capable of intrinsic adhesion or
interaction with biological components. Hence, silicon surface modifications are
indispensable; specifically, functionalization.

To capture the desired bioresponses on the surface of a MEMS device — for instance,
antibody and antigen binding reactions — the counterpart of the analyte requires an area
to dock. Biomolecules can be immobilized on the functionalized silicon surface using
a hydrophobic or electrostatic approach. Furthermore, functionalization that exploits
chemical reactions possesses enhanced stability. Table 6.3 [111] provides an overview

of different strategies for functionalization on silicon-based surfaces.

Surface Material Modification Blndm_g Formed Film
Mechanism

Si0, Silanization Covalent Monolayer
Si0, Esterification Covalent Monolayer
Si0, Phosphorization Covalent Monolayer
Si0, Layer-by-layer Electrostatic Multilayer
Si0y Liquid membrane Electrostatic Bilayer

Si—H Hydrosilylation Covalent Monolayer

Table 6. 3: Strategies of silicon surface functionalization.

Considering the feasibility and applicability [112] of functionalization for multi-
DOF coupled resonator devices, the chemical-reaction—based silanization process was

selected. Briefly, silanization offers a coupling medium that enhances the stability of
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the binding between silicon-based material and biological compounds. To be more
specific, silanization utilizes hydroxyl groups to form a functional linkage. The self-
assembled layers of organosilane are obtained by forming a siloxane network [113],
which is suitable for bio-MEMS development.

The chemical reaction of silanization is divided into four steps: the silicon substrate
is hydrolyzed; the silanol group forms siloxane linkages; hydrogen bonds are formed
with hydroxide bonding; and covalent bonds are formed on the silicon surface. Table
6.4 summarizes a number of silanization reagents for silicon surface functionalization

[111], which are correlated with the sensor types and target analyte.

Sensor Silanization Affinity counter
. Target analyte
applications reagent part
APTES Poly-T/ pgkl'ﬁ‘ 15-Mer | 15 mer ss-DNA
APTES Streptavdin Biotin
APTES & GA Estrogen response Estrogen
elements receptors
APTES & GA PSA Anti-PSA
Biosensors APTES & GA Glucose Glucose oxidase
APTES & GA CRP Anti-CRP
APDMES Complementary DNA | 16-mer ss-DNA
APMS PSA Monoclonal
antibodies
APMS Influenza Antibodies
APMS ATP Tyrosine Kinase
pH sensors APTES H*
Gas sensors APTES TNT

Table 6. 4: Silicon surface silanization. Colored sections indicate the possibility to be
adopted for multi-DOF coupled resonators as biosensors.

As can be seen from the table above, (3-aminopropyl) triethoxysilane (APTES) as
a silanization reagent can be adopted for a variety of bio-chemical sensors. Several
studies [114-117] have provided reliable results that show APTES is an effective
surface modification agent. For example, it has been used in silicon nanowire devices
[118], silicon nanochannel glucose sensors [119], and silicon BAW resonators for
biotin-streptavidin binding detections [120]. The APTES agent offers functional groups

for aldehyde, carboxylic acid, and epoxy [111], and consequently enhances the
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immobilization properties of biological molecules.

To extend the range of applications and improve the performance of the APTES-
treated silicon surface, glutaraldehyde (GA) is used to coat an aldehyde-terminated
layer. This approach increases the potential for additional reactions, including the
interaction with amine groups, proteins, and enzymes [118]. A flow diagram of the

APTES and GA linker process for silicon surface modification is shown in Figure 6.16.
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Figure 6. 16: Flow diagram of APTES & GA treatment for silicon surface
functionalization. a) Original silicon surface (SiOz layer) cleaning via oxygen plasma
or piranha solution. b) Hydroxyl groups are formed up after cleaning. ¢) 2% v/v APTES
solution treatment, silane layer is formed. d) GA linker solution treatment. e)
Functionalized silicon surface immobilizing bioreceptor (counterpart) of target analyte,
here for example, specific antibodies. f) Adding sample solution, target analyte, here is
antigen, are binding with antibodies. g) Additional sandwich assay procedure, using
fluorescence labelled antibodies to confirm the antigen/antibody binding.
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This is a universal functionalization process for silicon-based devices. Multi-DOF
mode localized coupled resonators can utilize the APTES and GA treatment for
biosensing applications. Once the target analyte successfully binds with the
immobilized bioreceptor (counterpart), the effective mass value of the sensing resonator
proof mass is altered. Hence, the induced mass perturbations can be determined by
using the mode localization mechanism, the transduced signals are carried to the
interface circuit, and they can finally be monitored on external facilities.

The APTES and GA reagents are commercially available from Sigma-Aldrich. The

required chemical productions for the functionalization process are listed in Table 6.5.

Production Name Specifications

pH 7.4, sodium chloride (70.3%),
Phosphate buffer saline (PBS ) disodiumhydrogenorthophosphate (12.3%),
and potassium chloride (17.4%)

Piranha solution 3:1; H2S04/H202
De-ionized (D) water /
APTES 2% (v/v) APTES solution
GA 2.5% (v/v) Glutaraldehyde
Anhydrous toluene Anhydrous, 99.8%

Sodium chloride (85.7%), borate

Borate buffer saline monosodium salt (9.3%) and boric acid (5%)

Table 6. 5: Chemical productions used for silicon surface functionalization.

A protocol of APTES & GA silanization based process for silicon surface

functionalization is organized:
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1) Pre-clean the sensing surface of the multi-DOF coupled resonator. The sensing
surface is kept in piranha droplets for 15 minutes. Then the surface is rinsed with DI
water couple of times, after that the device is required to dry under a stream of
nitrogen gas for 20 minutes. Or oxygen plasma treatment for 10 min at 80 sccm, 150
mT, 225W RF. Then the sensing surface is rinsed with DI water couple of times and
dried under a stream of nitrogen gas for 20 minutes.

2) Moving the device to oven dryer at 110 °C for ~1 hour to ensure the moisture on the
surface is removed.

4) Preparing APTES solution in pre-heated anhydrous toluene (100-120 °C). Then
depositing certain volume of the prepared 2% (v/v) APTES onto sensing surface.

5) Washing the APTES modified sensing surface with PBS and then keeping the surface
to react with 2.5% (v/v) GA solution for 30 minutes at room temperature.

6) Dispensing the capture antibodies (bioreceptor) solution onto the functionalized
sensing surface for immobilization. During the immobilizing progress, 1% Tween20
shall be introduced. The immobilization is performed at room temperature for
15 minutes to form a stable antibody layer. Generally, the capture antibody solution
has a concentration of 0.1 mg/ml.

7) Adding target analyte onto the functionalized resonator sensing surface to bind with
the immobilized selective antibodies. The sensing surface is treated with the target

analyte for 10~30 minutes to ensure the antibody/antigen binding interaction.

6.5 Chapter Summary

This chapter described the interface circuit designs for multi-DOF mode localized
coupled resonators. The motional current pick-up circuit and the corresponding
experimental design and measurement platform for the 3-DOF electrostatic coupled
resonator were discussed. Subsequently, a high speed peak detector circuit design was
introduced, which achieved the mass to stiffness sensing transduction in the QCM/3-

DOF coupled resonator hybrid system.

136



Next, the interface circuit for the 2-DOF coupled BAW disk resonator was
illustrated, including different methods of feedthrough signal compensation. The
experiment materials that were used for the multi-DOF coupled resonator mass
sensitivity characterizations were shown, and a magnetic nanoparticle preparation
protocol was proposed. Finally, this chapter explained the silicon surface
functionalization processes, and covalent bond based on chemical silanization was

selected as the major functionalization process.
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Chapter 7

Experiments

7.1 Experiments

7.1.1 A Mass Sensor Based on 3-DOF Mode Localized Coupled Resonator under

Atmospheric Pressure

A solution containing 10 um diameter magnetic nanoparticles with a concentration
of 5mg/ml was added on resonatorl. Magnetic nanoparticles were used as mass
perturbation material due to their low cost, easy handling, and simple removal method
to achieve reversibility. The added mass was controlled through the concentration of
the nanoparticles in the solution (details of magnetic nanoparitcle preparation are
introduced in chapter 6). The magnetic nanoparticles comprised a magnetic core and
were covered with a SiO2 shell. Originally, the magnetic nanoparticles were stored in
deionized water or oil. For the purpose of mass sensing, a rapidly evaporating solution
was necessary. Accordingly, the carrier solution of magnetic nanoparticles was altered
to 70% ethanol solution.

First, the concentration of magnetic nanoparticles was diluted to 2mg/ml with an
Eppendorf tube. Next, a SonoPlot GIX Microplotter was used to dispense a small
droplet (~20nL) of diluted magnetic nanoparticles solution on resonatorl.

After the carrier solution (70% ethanol) evaporated, the solid magnetic
nanoparticles were firmly attached to the resonator surface and accordingly a change of

effective resonator mass was achieved. Figure 7.1 shows the dispensing process and
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magnetic nanoparticles on resonatorl, respectively. After deposition, the 3-DOF
coupled resonator chip, with a mass perturbation on resonatorl, was tested with the
interface circuit measuring the motional current of resonatorsl and 3. The
corresponding system frequency response was captured by a Lock-in amplifier
(Anfatec eLockIn204/2).The resonance frequency shift, amplitude change and
resonance amplitude ratio were acquired and calibrated with the data obtained from the

unperturbed system.
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a) b) c)
Figure 7. 1: a) Microplotter capillary tip above resonatorl of 3-DOF coupled resonator

chip. b) Magnetic nanoparticles attached to resonatorl. c) Magnetic nanoparticles had
been washed away.

The frequency responses of the 3-DOF coupled resonator system for three mass
perturbations are shown in Figure 7.2 a) & b). The added mass perturbations were
computed according to the method depicted in equation 6.1 to 6.4 and Figure 6.15. The
three consecutive added masses were 180ng, 265ng and 390ng, respectively. Moreover,
the theoretical frequency responses of both reasontorl and resonator3 were obtained by

MATLAB simulations and are illustrated in Figure 7.2 ¢) & d).
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Figure 7. 2: Frequency response of 3-DOF coupled resonator system after three
consecutive mass perturbations. a) Frequency response of resonatorl. b) Frequency
response of resonator3. ¢) Simulated frequency response of resonatorl. d) Simulated
frequency response of resonator3.

According to extracted experimental data, the total noise value was Vnoise, s =
402uV . The total noise includes a variety of noise sources: mechanical noise due to the
air damping, phase noise, thermal noise due to the interface circuit and environmental
noise. Theoretically, simulation models without noise would give infinite resolution and
sensitivity. However, by including a more realistic total noise value into the MATLAB
simulation model, the maximum system resolution could be extracted with respect to
the total noise floor. Using this methodology, the minimum detectable mass value for
3-DOF mode localized resonator operating at atmospheric pressure was 1.7ng. This is
mainly due to the relatively high air damping and thus low Q-factor.

The unperturbed 3-DOF coupled resonator system response in comparison with the
magnetic particles removed by rinsing are shown in Figure 7.3 a) & b), respectively.
After the rinsing step, the relative error in comparison with the unperturbed case was

less than 1%.
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a) b)
Figure 7. 3: Frequency response of 3-DOF coupled resonator system. a) Frequency
response of Resonatorlwithout perturbation/after rinsing. b) Frequency response of
Resonator3 without perturbation/ after rinsing.

The corresponding resonance frequency shift, amplitude change and the change of
resonance amplitude ratio versus normalized mass perturbation are presented in Figure
7.4. The amplitude change is the deviation in resonator amplitude compared to the
unperturbed amplitude at the unperturbed resonance frequency, whereas amplitude ratio
is the ratio of vibration amplitudes of resonatorsl and 3 at resonance. Also, a
comparison with a theoretical model is included. As can be seen from Figure 7.4, the
variations between theoretical amplitude ratio and measured data are larger than for
frequency shift and amplitude change. The main reason is the influence of the damping,
as the system is operating in air; with the observed low Q factor of approximately 8,
the mode aliasing effect as discussed in chapter 2 & 3 occurs. Another explanation is
fabrication tolerances; the unsymmetrical structure of the proof masses will induce
inherent mode localization even without external perturbations. To improve the
measurements, two approaches can be used: Firstly, put the system into a vacuum
environment. However this method makes experiments cumbersome as a vacuum
chamber is required and furthermore, it loses the potential of the resonator chip to be
used as a biosensor if it only operates in vacuum. Secondly, an extra calibration
electrode could be integrated into the 3-DOF coupled resonator system. By providing a
controllable DC voltage to the calibration electrode, an electrostatic force can be
generated. This electrostatic force can be used for compensating the inherent mode
localization caused by fabrication tolerances. The second approach will be the main

approach of improving the 3-DOF coupled resonator as a mass sensor in future work.

The mass sensitivity of the 3-DOF coupled resonator with output metric using the
change of the resonance amplitude ratio, the resonance amplitude change and the
resonance frequency shift can be computed by using equation 7.1, 7.2 and 7.3
respectively, where AR,is the unperturbed amplitude ratio, A, is the unperturbed

resonance amplitude and F, is the unperturbed resonance frequency.
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_ d(amplitude ratio)/AR
S3RPOF = 7 - (7.1)
2(37)
B d(resonance amplitude) /A
S3zP0F = N, . (7.2)
2 (%)
_ d(resonance frequency)/F
SEPOF = 7 - (7.3)
2 (%)

The calculated mass sensitivities of each output metric are summarized in Table
7.1. The comparison is based on the percentage of variations in three different output
metrics with respect to the same percentage of mass changes. It can be seen that the
change of the resonance amplitude ratio yields a sensitivity around two times larger

than amplitude change and around two orders of magnitude larger than frequency shift.

Criteria Value
Frequency Shift 0.27
Amplitude Ratio 25.31

Amplitude Change 17.29

Table 7. 1: Calculated mass sensitivity.

Sensitivity

—+— Theoretical amplitude ratio
—=%-- Measurement amplitude ratio

Theoretical frequency shift / -
390ng

Measurement frequency shift /

3| —— Theoretical amplitude change
Measurement amplitude change 265ng

-

(§XL/X3)/(X1/X3) &f/fO & §X1/orginal X1

0.04 0.05 0.06

Figure 7. 4: Theoretical (simulated) and experimental sensitivities of 3-DOF coupled
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resonator system.

It is expected that three different output metrics considered here also differ in
system resolution, linearity and dynamic range. As discussed in section 2 the MATLAB
model was used to derive the minimum detectable mass based on a total noise floor,
whose value was obtained from extracted experimental data. However, to compare the
dynamic range, resolution and linearity of using frequency shift, amplitude change and
amplitude ratio as output metrics, a comprehensive noise analysis has to be performed.
The coupling and cross-correlation of the various noise sources mechanism such as
Brownian noise, phase noise, electronic interface noise, extrinsic noise and phase to
amplitude noise coupling are still a subject of debate. This is outside the scope of this
work. Recent publications discuss noise, resolution, sensitivity and linearity in mode
localized coupled resonator systems in more detail [121, 122]. The results are
encouraging and can be used as a starting point for further investigations of the 3-DOF
mode localized coupled resonator as mass sensor. Finally, table 7.2 summarizes types
of existing MEMS resonant mass sensors (resonant frequency shift as output metric),
which can be used as contrasts for the proposed 3-DOF coupled resonator in this

research topic.

Sensor Tvpe Operation Resonant Sensitivity Reference
P Environment Frequency (Af/AM)
Cantilever Vacuum 45.9 KHz 0.43 Hz/pg [123]
Cantilever
Vacuum 73-75 KHz Not reported [63]
Array
FBAR Vacuum 2.3 GHz 6 MHz/fg [124]
BAW DRP Air 3.145 MHz 34 Hz/ng [125]
QCM Air 5 MHz 56.6 Hz/ug [126]
3-DOF CR Air 13.3 KHz 08Hz/ng | Fresentedin
this work

Table 7. 2: A summary of MEMS resonant mass sensors. It is needed to be concerned,
the mass sensitivities in the table are based on resonant frequency shift. Mode
localization metric (AR) had been proved theoretically and experimentally, which
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improved the normalized sensitivity for orders of magnitudes compared with resonant
frequency shift. Hence the 3-DOF coupled resonator that exploits mode localization
effect can yield higher sensitivity and possess common mode rejection ability.

With a novel reversible method to add nanoparticles as mass perturbations, this
work characterized the mass sensitivity of a 3-DoF mode localized electrostatic coupled
resonator operating under atmospheric pressure. As can be observed from Figure 11,
the reusability of MEMS coupled resonator sensor after mass sensing operations is
clearly demonstrated. Nanoparticles as mass perturbation to characterize the MEMS
mass sensors is an effective and cost-effective technique, accordingly, it can contribute
to the development MEMS mass resonant sensor developments in general. The mass
sensitivity of a novel 3-DOF mode localized coupled resonator sensor is successfully
obtained via a reversible nanoparticle depositions method. It demonstrates that the
change of the resonance amplitude ratio as output metric yields higher sensitivity in

comparison with amplitude change and frequency shift.

This work constitutes an important step towards realizing a high sensitivity
biosensor for concentration measurement using a mode localized sensor operating in

air.

7.1.2 A Novel QCM Mass Sensing System Incorporated with a 3-DOF Mode

Localized Coupled Resonator Stiffness Sensor

A quartz crystal microbalance (QCM) comprised of an AT-cut quartz crystal slice
is studied, which is deposited with conductive electrodes. Based on piezoelectric
material properties, QCM serves as a sensor for mass variation detection ranging from
ng to pg [127-129]. To characterize the QCM device, Sauerbrey's equation is used [130],

in which the fundamental resonant frequency can be calculated by:

fe (7.)
Pqlq

where u, is the shear modulus of quartz, with an assigned value of 2.947 x
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10' gem™'s72, p, is the density of quartz, with a value of 2.648 gcm™3, t, is the

crystal thickness.

Further, Sauerbery's equation also determines the relationship between the mass

loading (mass perturbation), resonant frequency and shifted frequency, as expressed:

20Amf,?

Af = —
A ugpq

(7.5)
where A is the area under piezoelectric effects, usually it is defined by the size of

deposited metal electrodes. The equation 7.5 can be rewritten in a simplified form, with
a parameter Cy = 2 fo?/- [ugpq Which correlates to the intrinsic property of the quartz,

the shifted resonant frequency in response to mass perturbation hence can be expressed:

C
M=_fxmn (7.6)

Benefiting from the acoustic resonator features, QCM devices are able to maintain
thousands of Q-factor when operating in air [131]. Even in heavily damped
environment such as liquid, QCM devices can still possess reasonable Q-factor values
[132, 133] which allow the sensing mechanism to implement. Besides the favorable Q-
factor in damped cases, QCM devices are robust and less complex in structure, as well
as the capability of batch fabrications. These advantages make QCM an attractive
sensor technology, particularly for biosensing applications. Generally, QCM devices
utilize three sensing schemes: the resonant frequency shifts measurements, the
impedance measurements (QCM-I) and dissipation measurements (QCM-D). Each
scheme offers distinct features for different biosensing tasks.

The 3-DOF mode localized coupled resonator, on the other hand, has already
demonstrated the superior ability in terms of sensitivity, common mode rejection and
adaptability for both mass and stiffness sensing applications. Although the potential of
the 3-DOF coupled resonator as biosensor has already been proved, the defect of such

device operating under heavily damped environment is inevitable. A low Q-factor of
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the 3-DOF coupled resonator will result in loss of SNR, sensitivity and more critically,
disturb the system vibration behavior that eventually lead to mode aliasing. A
simulation model is carried out to illustrate the 3-DOF coupled resonator responses in

vacuum, air and liquid respectively, as shown in Figure 7.5.
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Figure 7. 5: Simulation model of a 3-DOF coupled resonator operating in three different
environments: a) Responses of resonator 1. b) Responses of resonator 2.

It is can be observed, mode aliasing phenomenon occurred in both air and liquid
environments. Even though the damping coefficient in air is relatively large and the
vibration modes overlapped, the system sensing mechanism is still valid. This had been
proved by simulation models in chapter 4.2.2 and once again, had been verified by the
experiments of the 3-DOF coupled resonator under atmospheric pressure, as introduced
in section 7.1.1. On the contrary, the attenuated amplitudes in liquid condition are
beyond measurable. A conclusion can be drawn accordingly: the 3-DOF coupled
resonator has best performance in vacuum and it can be used in air for specific sensing
tasks for instance, biosensing applications. Unfortunately, such 3-DOF coupled
resonator is not suitable for liquid contact measurements.

The emergence of QCM/3-DOF coupled resonator hybrid system could bring cross
benefits for both sensing platforms. To counter the damping influences in 3-DOF
coupled resonator, the QCM is used as the forehead of the hybrid system, since QCM
is capable of handle sensing tasks in air or in liquid. As for the performance of QCM

itself, mode localization sensing mechanism can be exploited via the 3-DOF coupled
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resonator, consequently enhances the whole system sensitivity. To realize such hybrid
system, the most important section is the signal conversion stage. More specific, a
dedicate component is essential to establish connections between the output of the
QCM and the input of the 3-DOF coupled resonator. Fundamentally, the 3-DOF
coupled resonator is operating in vacuum condition to optimize its functionality, while
having the stiffness perturbation port connected with the output of the QCM. However,
to attain accurate and stable stiffness measurements from the 3-DOF coupled resonator,
the stiffness perturbations should be induced by electrostatic forces. Thus, the output
AC signals from the QCM are converted to DC form and then delivered to the stiffness
perturbation port of the 3-DOF coupled resonator to generate electrostatic forces.

As presented in chapter 6.1.2, a high speed peak detector is employed to achieve a
proper AC to DC conversion. High speed operational amplifiers, Schottky diode and
Zener diode constitute the high speed peak detector unit. After integrating electronic
components onto the prototype board, testing experiments of the peak detector circuit
are carried out.

The QCM mass sensor is commercially available from thinkSRS, having a resonant
frequency of 5 MHz. This QCM has both front and back side electrodes made of
Chromium/Gold (Cr/Au), where the quartz crystal has an AT angle of cut. The

dimension parameters are listed in Table 7.3.

Parameters Values
Front electrode diameter 12.8 mm
Back electrode diameter 6.4 mm
Quartz diameter 25.4 mm
Front route length 6.3 mm
Front route width 2.6 mm
Wrap over electrode width 14.5mm
Back route width 1.5mm

Table 7. 3: 5 MHz QCM device parameter values.
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The schematic of the QCM device is demonstrated in Figure 7.6.

Figure 7. 6: Schematic of a QCM device has a resonant frequency of 5MHz, AT-cut and
wrapped over electrodes

Firstly, a5 MHz QCM device verification experiment is commenced, as shown in

Figure 7.7.
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Figure 7. 7: Oscilloscope captured signal of an unperturbed QCM device, the QCM
device has a resonant frequency of 5 MHz.

The peak detector circuit is then connected to the QCM, as can be seen in Figure

7.8, the original AC output signal is converted to DC signal as desired.
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Figure 7. 8: Oscilloscope captured signal of an unperturbed QCM device connected
with a high speed peak detector.

The system diagram is shown in Figure 7.9. A solution containing 1 um diameter
magnetic nanoparticles with a concentration of 10 mg/ml was used to be added onto the
QCM. First, the concentration of the magnetic nanoparticles was diluted to 0.6 mg/ml
with an Eppendorf tube. Next, a pipette with 2 uL. volume was used for consecutive
dispensing the diluted nanoparticles solution onto the QCM. Figure 7.10 shows the 3D
printed QCM holder and dispensed magnetic nanoparticles on QCM, respectively.

Subsequently, the output signals from the QCM (with/without nanoparticles) were
processed by a peak detector circuit, which was directly connected to the stiffness
perturbation port (effectively a capacitor) of the fabricated 3-DOF coupled resonator.
Henceforth, the generated electrostatic force altered the effective stiffness of resonator
3, introducing a perturbation. The 3-DOF coupled resonator was integrated with an
interface circuit measuring the motional currents of resonators 1 and 3. The
corresponding system frequency responses were captured by a lock-in amplifier
(Anfatec elLockIn204/2). The resonance frequency shift, amplitude change and
resonance amplitude ratio were acquired and compared with data obtained from a
simulation model. Nanoparticles were consecutively added five times for sensitivity

characterization. After the experimental procedure, the attached magnetic nanoparticles
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on QCM could be easily removed using 70% ethanol and tissue paper. This allowed

reversibility of the experiment.

/ Operating in AIR \ ﬁ)crmmg in VACUUM
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!

QCM mass sensor Peak detector circuit

Lockfin
- N

(b)
Figure 7. 10: (a) QCM holder platform, (b) Dispensed magnetic nanoparticles on QCM.

The system frequency responses of the simulated model and measured
experimental data of the 3-DOF coupled resonator system for adding mass five times
on the QCM (1.2 pg to 6 pg with 1.2 ug steps) are shown in Figures 7.11 & 7.12. The
corresponding resonance frequency shift, amplitude change and the change of
resonance amplitude ratio are presented in Figure 7.13. Also, a comparison with the
theoretical model is included. It can be seen that the change of the resonance amplitude
ratio yields a sensitivity around three times larger than amplitude change and around 2
orders of magnitude larger than frequency shift.

In addition, a system level sensitivity comparison is established, which comprised
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of the sensitivity of the QCM device and the sensitivity of the hybrid system. The

sensitivity of the QCM based on the resonant frequency shifts as a function of added

masses (QCM device only), the sensitivity of the hybrid system on the other hand, based

on the amplitude changes and/or amplitude ratio changes of the 3-DOF coupled

resonator as a function of the added masses on the QCM. The comparison is illustrated

in Figure 7.14.
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Figure 7. 11: Simulation for the frequency response of QCM incorporated with 3-DOF
coupled resonator mass sensing system. a) Resonatorl. b) Resonator3.
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Figure 7. 12: The measured frequency response of 3-DOF coupled resonator system. (a)
Resonatorl. (b) Resonator3.
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Figure 7. 13: Theoretical and experimental sensitivities of QCM incorporated with 3-
DOF coupled resonator mass sensing system.
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Figure 7. 14: System sensitivity comparison.

It is can be seen, the mode localization sensing schemes (amplitude ratio and
amplitude change) in the hybrid system yield higher sensitivity compared with resonant
frequency shift in the QCM mass sensor. This is a first proof that the hybrid system can
not only overcome the dilemma of damped environment for mode localized coupled

resonator, but also significantly improved the system sensitivity. Table 7.3 summarizes
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the system normalized sensitives.

Hybrid Hybrid QCM resonant
Type amplitude amplitude frequency
ratio changes changes shifts
Nor.S 35.6 15 0.011
Multiple 2.4 1364

Table 7. 4: Hybrid system and conventional QCM mass sensor sensitivity comparison.
In this work a novel hybrid mass sensing system is proposed. A QCM mass sensor

is incorporated with a 3-DOF mode localized weakly coupled resonator stiffness sensor,
which demonstrated a mass to stiffness sensing mechanism. A reversible method to add
nanoparticles as mass perturbations on QCM s also introduced. Future effort of this
work will constitute an important step towards a biochemical sensor that can exploit
the advantages of mode localized coupled resonator but works directly in contact with

a liquid.

7.1.3 Investigations of a 3-DOF Mode Localized Coupled Resonator under Small

Stiffness Perturbations

Discussions about the best sensing metric for multi-DOF coupled resonator devices
are ongoing. By exploiting the mode localization mechanism, superior sensitivity can
be achieved in terms of eigenvector shifts and vibration amplitude ratio. However, the
conclusion that the amplitude ratio is the dominating metric remains arguable,
especially considering the aspect of sensor resolution. For example, Pandit et al. utilized
a close-loop configuration to characterize a 2-DOF coupled double-ended tuning fork
(DETF) resonator [134]. They performed a stability analysis of the output metrics based
on resonant frequency shift and amplitude ratio. The results showed that the amplitude
ratio as an output metric yields greater sensitivity and resolution for long term
measurements, owing to the inherent common mode rejection ability of the mode
localization mechanism. However, the resonant frequency shift as an output metric
performed better for short term measurements (small integration time). Additionally, it

possesses a better noise floor than amplitude ratio in the same time period.
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Juillard et al. investigated the resolution limits for both open-loop and close-loop
configurations of a 2-DOF coupled resonator [135]. The mode localization mechanism
has been analytically studied, and an alternative mechanism called mutually injection-
locked oscillators (MILOS) has been proposed. The research explored sensitivity in
terms of resonant frequency shift, phase difference, and amplitude ratio; it also
compared the resolution of different output metrics. The results showed that within a
proper range for the multiplication value of the coupling strength and Q-factor, the
phase difference yields greater sensitivity and resolution, making it the preferred output
metric. Amplitude ratio, on the other hand, was shown not to be a superior output metric
in some cases. As the conclusion states, under certain conditions, mode localized
coupled resonator sensors may exploit phase difference or frequency shifts as output
metric as a better compromise between the system sensitivity and resolution. On the
other hand, the amplitude ratio still possesses its intrinsic merit, namely, the superior
common mode rejection.

To investigate the resolution of the 3-DOF coupled resonator, a realistic noise floor
has to be extracted first. Noise sources include mechanical noise from the 3-DOF
coupled resonator, electrical noise (thermal noise) from the interface circuit, and
environmental noise. A reliable total noise floor is obtained by capturing the baseline
signal from a fully set-up experimental platform without the excitation of the 3-DOF

coupled resonator, as illustrated in Figure 7.15.
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Figure 7. 15: Extracted noise floor of the 3-DOF coupled resonator. a) Resonator 1. b)
Resonator 3.
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The extracted noise floor can be used to compute the mean value (0.46 mV) and
standard deviation (0.24 mV) of the total noise in the operation bandwidth of the device.
A further computation can be made using equation 7.7, which offers a total noise
equivalent stiffness perturbation (—2.47 x 10~5 N/m). This stiffness perturbation is
then entered into the simulation to verify the system response, as shown in Figure 7.16.
Ideally, this is the minimum detectable stiffness perturbation for a realistic 3-DOF

coupled resonator sensor system, which defines the sensor resolution.

Co
Akperb = T4z [(ch + AVperb)z - chz] (7.7)

where C, is the nominal capacitance in the stiffness perturbation port (formed by a
parallel plate structure between the proof mass and its adjacent electrode); d is the gap
between the perturbation port; V., is the DC coupling voltage, in this case 35 V; and

AVyerp is the injected DC perturbation voltage.
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Figure 7. 16: Simulated 3-DOF coupled resonator responses with noise equivalent
stiffness perturbation. a) Resonatorl. b) Resonator3.

However, such a small stiffness perturbation is difficult to obtain in laboratory
facilities. The general stiffness perturbation experiments were conducted using a
commercialized 0-30 volt DC power source. To explore the resolution limit under
laboratory conditions, stiffness perturbation experiments were carried out utilizing the

DC power source with a minimum step value of 0.02 V. All experiments were
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completed in vacuum (~8.8 x 10~®mbar). The results are shown in Figure 7.17. As
described in the theoretical analysis in chapter 3.1.1 and figure 3.2, out-of-phase
vibration mode responses to negative stiffness perturbations yield a sensitive and linear

behavior; hence, only out-of-phase mode related regions are captured.
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Figure 7. 17: Small stiffness perturbation experiments with DC perturbation voltage
from 0.02V to 0.1V. a) Resonatorl. b) Resonator3.

As can be seen from Figure 7.17, there are no apparent signal peaks in the data
obtained from resonator 1 under consecutive stiffness perturbations. The main reason
is fabrication tolerance or mismatching between the symmetrical resonator structures,
which results in an initial unwanted system perturbation. However, the experiments
presume the peak signal of resonator 1 still exists at the same peak frequency as in
resonator 3, which is around 13,300 Hz. To capture accurate vibration amplitudes and
resonant frequencies, a curve fitting technique is adopted to process the obtained signal
data. This technique can eliminate the noise components by mathematical algorithms
and, hence, discriminate between the entangled signals. Figure 7.18 depicts the curve-

fitted signals.
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Figure 7. 18: Curve fitting technique for small stiffness perturbation experiments: a)
Original data of resonatorl and polynomial fitting. b) Fitted curve of resonatorl. c)
Original data of resonator3 and polynomial fitting. d) Fitted curve of resonator3.

The same curve-fitting technique is applied to the data of the consecutive small
stiffness perturbations. After the curve fitting procedure, the accurate out-of-phase
mode frequencies, vibration amplitudes for resonator 1 and resonator 3, and their
changed values due to small stiffness perturbations are obtained. Subsequently, the
sensitivity in terms of resonant frequency shift and the amplitude ratio can be computed.
A further comparison is performed to investigate the output metrics under the condition

of small stiffness perturbations, as shown in Figure 7.19.
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Figure 7. 19: Output metrics of 3-DOF coupled resonator with small stiffness
perturbations. a) Resonant frequency shift. b) Amplitude ratio. c) Comparison of the
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two output metrics.

amplitude ratio was distorted. Within the limitations of laboratory conditions, 0.02 V is
the minimum DC voltage that could be achieved from the power source. Even in such
conditions, resonant frequency shift as an output metric is functional but the amplitude
ratio is invalid. Although the normalized sensitivity level of the amplitude ratio is
higher than the resonant frequency, the resolution of the resonant frequency is superior.
To verify the system functionality, experiments based on relatively large stiffness

perturbations were carried out.

The resonant frequency shift demonstrated a linear behavior, whereas the
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A short summary of these findings can be provided. Compared with amplitude ratio,
resonant frequency shift as a function of small stiffness perturbations possesses superior
linearity and stability and results in better limit of detection and resolution. The
experiments were completed below a perturbation voltage of 0.1 V, with a step value of
0.02 V. It has been experimentally shown that amplitude ratio is not a preferred output
metric to handle stiffness perturbations smaller than 0.0054 N/m (0.1 Vperb). In
contrast, resonant frequency shift as an output metric can attain a minimum detection
level of 0.0011 N/m (0.02 Vperb), as well as a better linear response and stability.

Nevertheless, it is not correct to assert that the resonant frequency shift has greater
performance in terms of resolution. To be more specific, it is not correct to conclude
that the enhancements of sensitivity achieved by the mode localization mechanism are
less effective under the restriction of resolution. Firstly, the small stiffness perturbations
were created by a DC power source that utilized its minimum step value. It could
certainly have been affected by the instability of the power source itself; for example,
transmission interferences and inaccuracy due to non-calibration. Secondly, the curve-
fitting technique used in the experiments was not optimized. This technique might assist
the data processing of the resonant frequency shift, but it causes errors for amplitude
measurements. Thirdly, the fabrication tolerances and asymmetrical structures induced
intrinsic perturbation that disturbed the vibration behavior, resulting in the absence of
out-of-phase peak in resonator 1. This may have caused errors in computing the out-of-
phase amplitude ratios. Finally, resonant frequency drifting due to temperature
variations was mixed with resonant frequency shifts due to perturbations, thus yielding
relatively better responses in comparison with the amplitude ratio, especially for small
perturbations.

A further analysis based on the vibration amplitude changes was performed. The
out-of-phase vibration amplitudes of resonator 3 were captured and computed as a

function of normalized stiffness perturbations, as shown in Figure 7.20.
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Figure 7. 20: Output metrics of 3-DOF coupled resonator with small stiffness
perturbations. a) Vibration amplitude changes. b) Compared with resonant frequency
shifts.

As Figure 7.20 shows, vibration amplitude change as an output metric yields
greater sensitivity, around two orders of magnitude higher than that of resonant
frequency shifts. Vibration amplitude changes also possess a linear response and
comparable stability with resonant frequency shifts. It should be pointed out that the
vibration amplitude change is another output metric based on the mode localization
mechanism and is theoretically correlated with the eigenvector shifts.

Intuitively and theoretically, the mode localization mechanism (vibration
amplitude changes and amplitude ratios) is superior to conventional resonant frequency
shift. However, the amplitude ratio as an output metric depends on multiple factors,
particularly the fabrication perfectibility and system integrality. The dependency scales
with the quantity of stiffness perturbation, small perturbations requiring better

conditions of the fabricated mode localized coupled resonator.

7.2 Chapter Summary
This chapter discussed three applications based on the 3-DOF mode localized

coupled resonator: i) a 3-DOF mode localized coupled resonator as a mass sensor; ii) a

QCM/3-DOF mode localized coupled resonator hybrid system for biosensing; and iii)
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a 3-DOF mode localized coupled resonator under the condition of small stiffness
perturbations. All experimental data were verified by theoretical calculations and
simulations. It is experimentally shown that the 3-DOF mode localized coupled
resonator has the potential to be employed as a mass or biosensor. Additionally, it can
be used as a flexible platform that interacts with other MEMS components, and it can

also serve as an extremely sensitive stiffness or force sensor.
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Chapter 8

Future Works

8.1 3-DOF Mode Localized Weakly Coupled Resonator for Multi-

Mass Detection

As discussed in chapter 3, the proposed 3-DOF coupled resonator can be employed
as a stiffness change sensor or a mass change sensor. The perturbations (stiffness or
mass) on resonator 1 or resonator 3 in the coupled system can be measured by exploiting
the mode localization mechanism. To maximize the displacements of resonator 1 and
resonator 3, the middle resonator in the 3-DOF coupled system was designed to be at
least two times stiffer than the adjacent resonators.

All theoretical computations, simulations, and experiments for the 3-DOF coupled
resonator were based on sensing the perturbations affecting resonator 1 or resonator 3
only. The author proposed a novel design of a 3-DOF coupled resonator, which utilizes

two of the three resonators to accomplish multi-mass detection.
8.1.1 Theoretical Analysis

In terms of structure, some adjustments had to be made to the original 3-DOF
coupled resonator, resulting in the use of three identical resonators; the middle resonator

is no longer stiffer. Accordingly, the system equations of motion can be expressed as:

MX1(t) + b1X1(t) + (K + Kc)X1(t) — KcX2(t) = F1(t)  (8.63)
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(M + AM)X2(t) + b2X2(t) + (K + 2Kc)X2(t)

—Kc(X1(t) + X3(t)) = F2(t) (8.64)

(M + AM)X3(t) + b3X3(t) + (K + Kc)X3(t) — KcX2(t) = F3(t) (8.65)

Two independent mass perturbations are applied on resonator 2 and resonator 3.
The equations of motion can be re-written in a matrix form and hence can be solved
using an eigenstates computation method. The damping coefficients b1, b2, and b3 are
disregarded in the following equations, allowing the derivation of expressions for the
vibration amplitudes, amplitude ratios, and mode frequencies of the multi-mass sensing

system.

M 0 0 Up,1
An [0 M+ AM, 0 uanzl
0 0 M + AM, ] [Ua,3
(8.66)
K+ Kc —Kc 0 Up.1
=| —=Kc K+2Kc —Kc ||%¥2
0 —Kc K + Kcl 14,3

The plotted mode frequencies as a function of mass perturbations (two independent
mass perturbations) and the amplitude ratio versus the same mass perturbations are

illustrated in Figure 8.1.
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Figure 8. 1: Theoretical analysis of a 3-DOF mode localized coupled resonator for
multi-mass detection. a) Mode frequencies versus two independent mass perturbations
on resonator 2 and resonator 3 respectively. b) Amplitude ratio (resonatorl/resonator3)
versus mass perturbations of resonator3. ¢) Amplitude ratio (resonator2/resonator3)
versus mass perturbations of resonator2.

The mutual-phase in the theoretical calculations represented the third vibration

mode, in which each resonator vibrates out-of-phase with others.

8.1.2 Simulations

System responses of the 3-DOF coupled resonator for multi-mass detection can be
simulated using the models from chapter 4. A first group of simulations are carried out
to determine the system behavior under five consecutive mass perturbations (10 ng to

50 ng) of resonator 3, as shown in Figure 8.2.
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Figure 8. 2: Simulated responses of multi-mass detection (only resonator3 has mass
perturbations): a) Resonatorl. b) Resonator2. c) Resonator3. d) Amplitude ratio change
of resonatorl/resonator3. €) Amplitude ratio change of resonator2/resonator3.
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In what follows, resonator 2 has been subjected to five consecutive mass
perturbations (20 ng to 100 ng, in 20 ng steps), and resonator 3 has concurrently been
subjected to another five consecutive mass perturbations (10 ng to 50 ng, in 10 ng steps).
The amplitude ratio changes are plotted and then compared with the previous resonator
3 mass perturbations case, as illustrated in Figure 8.3.

Evidently, the amplitude ratio changes in term of resonator 1/resonator 3 and
resonator 2/resonator 3 both demonstrated value shifts in response to different mass
perturbations on resonator 2. More specific, after the first group of perturbations on
resonator 3, second group of perturbations on resonator 2 will alter the system behavior

again.
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Figure 8. 3: Simulated responses of multi-mass detection (both resonator2 & resonator3
have independent mass perturbations): a) Resonatorl. b) Resonator2. ¢) Resonator3. d)
Amplitude ratio change of resonatorl/resonator3. e) Amplitude ratio change of

resonator2/resonator3. The label named multi indicates multi-mass perturbations.

It is intriguing to observe the tendency of amplitude ratio changes in terms of
resonator 1 and resonator 3 and of resonator 2 and resonator 3. With mass perturbations

on both resonator 2 and resonator 3, the amplitude ratio changes of resonator 1 and
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resonator 3 for all vibration modes shifted to lower values. In contrast, the amplitude
ratio changes of resonator 2 and resonator 3 for all vibration modes shifted to higher
values. Figure 8.4 shows a COMSOL model of the vibration behavior of multi-mass

perturbations.
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Figure 8. 4: COMSOL simulation of a 3-DOF coupled resonator for multi-mass
detection. a), c), €) Only resonator3 has mass perturbation; b), d), f) Both resonator2
and resonator3 have mass perturbations.

All the simulations provided reliable evidence that the 3-DOF coupled resonator
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can be employed as a multi-mass detection sensor. Qualitatively, the tendency of
amplitude ratio changes can be used to determine whether there are mass perturbations
on either resonator 2 or resonator 3. Quantitatively, the shifted values of amplitude ratio
changes can be used to calculate the amount of added mass perturbations on resonator
2, resonator 3, or both.

Accordingly, such a 3-DOF coupled resonator multi-mass detection sensor can be
further developed to handle multi-biomolecule sensing tasks. Figure 8.5 depicts a multi-

analyte biosensor using the 3-DOF coupled resonator.

Glucose molecule Y Biotin-Avidin (BAS)

>

Resonator2 Resonator3
(Glucose functionalization) (Biotin-Avidin functionalization)

Figure 8. 5: 3-DOF coupled resonator as a multi-analyte biosensor.

Future research in this direction will constitute an important step towards
developing a biosensor that can not only exploit the advantages of mode localized
coupled resonators but also perform mixed-sample detections; for example, a multi-

analyte blood test.

8.2 3-DOF Mode Localized Weakly Coupled Resonator with

Embedded Micro-channel

Another possible approach to the design of 3-DOF mode localized coupled

resonators is embedded micro-channels (EMC). Although this approach requires
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adequate fabrication technology, it is certainly a feasible way of improving the original
3-DOF coupled resonator design (in particular, it could overcome the drawback of a
damped environment). The embedded micro-channels approach has already been
experimentally proved [136]. Figure 8.6 depicts a resonator with embedded micro-

channels in the 3-DOF coupled resonator system.

Inlet

Outlet

Figure 8. 6: A resonator with embedded micro-channels (EMC).

Two possible ways of designing of an EMC 3-DOF coupled resonator are proposed:
1) grow mesoporous silica on the side walls of the micro-channels and exploit the
mesoporous property to perform biochemical sensing; ii) utilize magnetic nanoparticles
that flow in the micro-channels as a magnetic medium. In ii), when the device is
exposed in a magnetic field, the magnetic nanoparticles are attracted by the external
magnetic field and hence generate magnetic forces that perturb the coupled system. In
summary, EMC technology can enhance the performance of 3-DOF mode localized

coupled resonators as biochemical sensors or as physical sensors.

8.3 Research Questions and Future Directions
Although some possible areas for future works have been proposed in the

aforementioned sections, research questions raised by present results can render

valuable information and guide the future directions of this topic.
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Firstly, all the experiments so far were based on open-loop configurations, where
the frequency responses from coupled resonator system were extracted by exploiting
Lock-in amplifier. The vibration amplitudes and corresponding mode frequencies were
garnered via frequency sweep function in the Lock-in amplifier. This greatly extended
the system operation time and caused a time consuming procedure to obtain the desired
parameters. In practical, some applications require the sensor system to response the
rapid changing perturbations, which is obviously an impact to the open-loop
configuration. Consequently, a close loop system for the multi-DOF mode localized
coupled resonators is demanded. In order to monitor the multi-DOF mode localized
coupled resonator in real-time, efforts toward to capture the vibration amplitudes are
necessary, rather than focusing on the resonance mode frequencies. An integrated
algorithm to direct compute amplitude ratios could potentially benefit the performance
of the close-loop system. In these circumstances, a proper designed self-oscillating
electronic circuitry in combination with analogue and digital components is a feasible
starting point.

Additionally, it could be an intriguing work to experimentally study the common
mode rejection ability of the proposed multi-DOF coupled resonators. Especially, in
some biosensing applications, humidity and temperature can potentially affect the
results.

Ultimately, it will always be an interesting topic to explore the possibility of other

materials for the MEMS sensors, such as graphene.

8.4 Chapter Summary

This chapter introduces two potential applications of the 3-DOF coupled resonator.
The multi-mass detection application requires experimental verification. An additional
fabrication process is needed to develop a modified 3-DOF coupled resonator with three
identical resonators. The mass sensitivity characterization method that exploits

magnetic nanoparticles can be adopted to subject resonator 2 and resonator 3 to two
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independent mass perturbations. Future research will determine the practical
application of multi-mass detection. The EMCs on the other hand, require more effort

in fabrication as well as modifications in device structure and experiment designs.
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Chapter 9

Conclusions

9.1 Research Contributions and Novelties

This research introduces the use of a novel 3-DOF electrostatic weakly coupled
resonator as a mass sensor. Using mode localization, the system sensitivity has been
improved by orders of magnitude over conventional resonant frequency-shift based
sensors. In the mode localization scheme, eigenvector shift (correlated with vibration
amplitude change) was used as one sensing metric that significantly improved the
sensitivity. The amplitude ratio provided even greater sensitivity, as well as high
common mode noise rejection.

The contributions of this research were divide into five sections. Firstly, the 3-DOF
weakly coupled resonator was studied by mathematical computations. The eigenstate
method was introduced to solve the system equations of motion, and hence obtain the
vibration mode shapes and corresponding mode frequencies. General expressions of
mode frequency, vibration amplitude, and amplitude ratio were all deduced. All
expressions were also reformed either for stiffness perturbation or for mass perturbation.
Normalized sensitivities as a function of stiffness and mass perturbations were derived
accordingly.

Secondly, three different simulation models were established to verify the 3-DOF
weakly coupled resonator behavior. A novel Simulink/ MATLAB model offered an
accurate, fast, and flexible system-level simulation for any proposed multi-DOF

coupled resonator. Compared with the eigenstate method, the Simulink/ MATLAB
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model involved complex parameters such as the damping coefficient, non-linearity, and
noise sources. Unlike COMSOL models or equivalent RLC circuit models, which
depend on either mesh precisions or definitions of electronic components, the
Simulink/MATLAB model was based on system transfer functions and was therefore
more accurate.

Thirdly, several aspects of the system were investigated, such as mode aliasing,
damping influences, and coupling strength. The 3-DOF coupled resonator as a mass
sensor under atmospheric pressure was developed using the created simulation models.
The simulation results showed that the 3-DOF coupled resonator was able to handle
mass and biosensing tasks, whereas the damped environment (low Q-factor) resulted in
a reduction of functionality.

Fourthly, in order to overcome the problems of the damped environment, two novel
designs were proposed: a QCM mass sensor incorporated with a 3-DOF coupled
resonator stiffness sensor, and a 2-DOF coupled BAW disk resonator. Both of the
designs were studied theoretically and verified by different simulation methods.

Finally, a novel reversible and controllable mass perturbation technique was
proposed. By adopting magnetic nanoparticles and a micro-plotter machine,
consecutive mass perturbations were attained. The magnetic property of the
nanoparticles was utilized to achieve reversible measurements. This technique is a

universal solution that could be used in any MEMS mass sensor.

9.2 Practical Works

The 3-DOF coupled resonator and the 2-DOF coupled BAW resonator were
fabricated by three different SOI based processes: two steps of release, dry release and
a dicing-free technique, and a dicing-free technique that exploits a carrier wafer. The
fabricated devices were firstly bonded and packaged, then mounted on designed PCBs.
The experimental data were acquired via a lock-in amplifier, and further data processing
was completed on a PC. Experiments in the vacuum environment were conducted under

8.8 x 10~°mbar conditions.
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The mass sensitivity characterization for the 3-DOF coupled resonator was carried
out under atmospheric pressure. Magnetic nanoparticles were prepared and dispensed
according to an organized operation protocol. The experiment results agreed well with
those of the simulation model, and reversibility was demonstrated by removing the
dispensed nanoparticles properly. Although the 3-DOF coupled resonator did not render
the highest level of mass sensitivity in terms of resonant frequency shift, by exploiting
mode localization it can still surpass most existing MEM mass sensors. This work
constitutes an important step towards realizing a high-sensitivity biosensor for

concentration measurement using a mode localized sensor operating in air.

The QCM/3-DOF coupled resonator hybrid system was tested by dispensing
consecutive masses onto the QCM mass sensor. The added masses were realized by the
deposition of magnetic nanoparticles. The AC output signals from the QCM were
converted into DC voltages and then fed to the 3-DOF coupled resonator as electrostatic
forces based stiffness perturbations. The QCM mass sensor operated in air, while the
3-DOF coupled resonator was placed in vacuum. The experiment results agreed well
with those of the simulation models. Future work based on this research will constitute
an important step towards a biochemical sensor that can exploit the advantages of a
mode localized coupled resonator and yet work directly in contact with a liquid.

The detection limit of stiffness perturbations for the 3-DOF coupled resonator was
investigated under laboratory conditions. Experiments demonstrated that resonant
frequency shift exhibited better resolution than amplitude ratio for perturbation voltages
smaller than 0.1 V. This was mainly due to the fabrication tolerance and asymmetrical
structures. However, the conclusion was still open, particularly another mode
localization metric: vibration amplitude change exhibited superiority in terms of
resolution and sensitivity. Further research is needed to explore the resolution of

different output metrics, and a comprehensive noise analysis is essential.
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Appendix A

Interface Circuit PCB

To perform signal collection and processing, different interface circuit designs were
included in this research topic. According to the sensing schemes and the configurations
of the proposed multi-DOF coupled resonators, types of PCB layouts were developed.
Since the principle of interface circuit design has already been introduced in chapter 6,

this section covers the created PCB layouts, as exhibited in Figure A.1.
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Figure A. 1: PCB layouts of the multi-DOF coupled resonator interface circuits. a) PCB
layout of the 3-DOF coupled resonator interface circuit. b) PCB layout of the 2-DOF
BAW coupled resonator interface circuit that exploits variable capacitor for feedthrough
compensation. ¢) PCB layout of the 2-DOF BAW coupled resonator interface circuit
that exploits dummy MEMS for feedthrough compensation. d) PCB layout of the 2-
DOF BAW coupled resonator interface circuit that exploits dummy MEMS &
differential scheme for feedthrough compensation.
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Appendix B

Bonding and Packaging

The fabricated multi-DOF coupled resonators were first glued in proper chip
carriers, subsequently a TPT HB-16 semi-automatic wire bonder machine was
employed to perform wire bonding tasks. The wire bonding materials and parameters

are listed in Table B.1.

Parameter Names | Parameter Values/Materials
Glue SMD
Wires Aluminum 18 um diameters
Type of welding Wedge
Bonding mechanism Thermo-ultrasonic
Operating mode Manual

Table B. 1: Wire bonding materials and parameters.

Two types of chip carriers were adopted in this work: i) 28-pin Au plated J-lead
carrier (SSM P/N CCJ02803) which were commercialized from Spectrum-
Semiconductor Materials, inc. ii) Self designed 28-pin carrier. Bonding diagrams for

different multi-DOF coupled resonator designs are demonstrated in Figure B.1.
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Figure B. 1: Wire bonding diagrams. a) 3-DOF coupled resonator with bias ports
bonded. b) 3-DOF coupled resonator without bias port. c) 2-DOF coupled BAW

resonator 2-ports differential sensing scheme. d) 2-DOF coupled BAW resonator 1-port
sensing scheme.

The actual bonded coupled resonator chips are illustrated in Figure B.2.

Figure B. 2: Actual bonded coupled resonator chips. a) DIY 28-pin carrier. b) 28-pin J-
lead carrier, 3-DOF coupled resonator. ¢) 28-pin J-lead carrier, 2-DOF coupled BAW
resonator.
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Appendix C

Publication List

Journal Publications:

Y. Wang, C. Zhao, C. Wang, D. Cerica, M. Baijot, Q. Xiao, et al., "A mass sensor
based on 3-DOF mode localized coupled resonator under atmospheric pressure,"
Sensors and Actuators A: Physical, vol. 279, pp. 254-262, 2018.

Q. Xiao, Y. Wang, S. Dricot, and M. Kraft, "Design and experiment of an
electromagnetic levitation system for a micro mirror," Microsystem Technologies,
pp. 1-10, 2019.

D. Tsikritsis, H. Shi, Y. Wang, S. Velugotla, V. Srsen, A. Elfick, et al., "Label-free
biomarkers of human embryonic stem cell differentiation to hepatocytes,”
Cytometry Part A, vol. 89, pp. 575-584, 2016.

Conference Proceedings:

Y. Wang, C. Wang, C. Zhao, H. Liu, D. Cerica, M. Baijot, et al., "A Novel Qcm
Mass Sensing System Incorporated with A 3-Dof Mode Localized Coupled
Resonator Stiffness Sensor,” in 2019 20th International Conference on Solid-State
Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS
& EUROSENSORS XXXIII), 2019, pp. 1823-1826.

Y. Wang, C. Zhao, C. Wang, D. Cerica, M. Baijot, V. Pachkawade, et al., "A
Reversible Method to Characterize the Mass Sensitivity of a 3-Dof Mode Localized
Coupled Resonator under Atmospheric Pressure,” in Multidisciplinary Digital
Publishing Institute Proceedings, 2017, p. 493.

C. Wang, H. Liu, Y. Wang, X. Song, J. Bai, and M. Kraft, "Genetic algorithm for
electro-mechanical co-optimization of a MEMS accelerometer comprising a
mechanical motion pre-amplifier with a 2nd-order sigma delta modulator,” in Proc.
DTIP, 2019, pp. 1-4.

C. Wang, H. Liu, X. Song, F. Chen, I. Zeimpekis, Y. Wang, et al., "Genetic
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Algorithm for the Design of Freeform Geometries in a MEMS Accelerometer
Comprising a Mechanical Motion Pre-Amplifier,” in 2019 20th International
Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors
XXX (TRANSDUCERS & EUROSENSORS XXXIII), 2019, pp. 2099-2102.
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