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Abstract

The present thesis focuses on the physics of various solid-state systems sharing the
common feature of involving 3d electrons with a low-dimensional aspect for transport,
and studied using Density Functional Theory. Exploiting an original hybrid functional
approach for the exchange-correlation energy, with improved accuracy compared to
local/semi-local functionals, we present the seminal two-dimensional electron system
(2DES) at the (001) interface of band insulators SrTiO3z and LaAlOg, and review two
of the most popular hypotheses about its origin, namely the electric-field driven Zener
breakdown model and polarity-induced surface oxygen vacancies model. This analysis
is extended to the interface between SrTiOs and the (Srj_xLay)(Ti;—xAlc)O3 alloy. We
also study, based on experiments and theoretical modelling, how the composition of the
alloy overlayer affects the charge density of the 2DES. We then address the effect of
structural confinement on the 2DES when the host layer thickness is reduced toward
the very-thin limit, and how such effects are witnessed in angle-resolved photo-emission
spectroscopy experiments. We study the effects of capping the SrTiO3/LaAlOs het-
erostructures with SrTiOs, highlighting how experiments may be interpreted from the
aforementioned electric-field driven models. This work also focuses on the thermoelec-
tric properties of layered oxides, specifically CazCosOg9 and SrTiOs-based superlattices,
discussing the relevance of their layered structure for improving the thermoelectric prop-
erties. Importing the concepts of low-dimensional transport found in SrTiOs-based sys-
tems to the iron-based Heusler FeoY Z family, we explore the effect of electron doping,
highlighting magnetic instabilities related to their Fe 3d orbitals, which impact signif-
icantly the thermoelectric properties. Finally, shifting our attention on FesTiSn, we
rationalize experimental results provided by collaborators from first-principles, address-
ing the role of native defects and their relevance for tailoring transport.
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Résumé

Les travaux de recherche présentés dans cette these concernent la physique de différents
composés solides qui partagent comme point commun des états électroniques 3d avec un
caractere basse dimensionnalité, étudiée via la théorie de la fonctionnelle de la densité.
Ce travail trouve son originalité dans I'exploitation d’une fonctionnelle hybride pour la
modélisation de ’énergie d’échange-corrélation, qui améliore sensiblement la précision
de nos calculs. Nous présentons d’abord le systéme électronique bi-dimensionnel a
I'interface (001) des isolants SrTiO3 et LaAlOs, et examinons en détail deux des hy-
potheses les plus populaires concernant son origine, a savoir un claquage Zener ou la
stabilisation de lacunes d’oxygene a la surface du LaAlOs, les deux étant provoqués par le
champs électrostatique de la couche LaAlOg. Cette étude est étendue a I'interface entre
SrTiO3 et lalliage (Sri_yxLay)(Tii—xAlx)Os. Nous étudions également, en combinant
expériences et modeles numériques, comment la composition de cet alliage influence
la densité du systéeme électronique bi-dimensionnel. De plus, nous étudions 'effet du
confinement structurel et son impact sur les propriétés de ce systeme électronique et
comparons nos résultats a des expériences de spectroscopie photoélectronique résolue en
angle. Enfin, nous étudions également des hétérostructures SrTiO3/LaAlO3 couvertes
par une fine couche de SrTiOs, et relativisons les résultats expérimentaux au regard des
hypotheses susmentionnées concernant les mécanismes a ’origine du systeme d’électron
bi-dimensionnel. Ce travail contient également des résultats de recherche portant sur les
propriétés thermoélectriques d’oxydes a structure stratifiée, spécifiquement CazCo4Oq
ainsi que des super-réseaux a base de SrTiO3. Nous explorons de la pertinence de leur
nature stratifiée pour 'amélioration des propriétés thermoélectriques. Important les
concepts de transport basse dimensionnalité des composés a base de SrTiO3 a la famille
des Heusler FeoY Z, nous étudions l'effet du dopage en électrons, mettant en évidence
des instabilités électroniques et magnétiques liées aux orbitales 3d des atomes de fer,
avec un effet significatif sur les propriétés thermoélectriques. Enfin, nous focalisons
notre attention sur FeoTiSn, nous rationalisons des résultats expérimentaux fournis par
nos collaborateurs a partir sur base de simulations numériques, en abordant le role des
défauts natifs dans les échantillons, et de leurs effets sur le transport électronique.



Acknowledgements

It took time, but this manuscript is finally brought to completion. In principle, a doctoral
thesis is supposed to be an individual work, but such a simplistic picture would ignore
all the help and interactions that I received and which contributed directly or indirectly
to this work. Hence, it is necessary for me to acknowledge and thank all the people
involved in the development of the present work.

First, I would like to express my deepest gratitude to my supervisor Pr. Philippe
Ghosez for the opportunity to work in his laboratory, his precious advices, as well as
his patience. His passion has always manifested during his lectures, and it is amongst
the main reasons behind my motivation to pursue a doctoral degree in the field of solid
state physics. Moreover, I will always be impressed by his spot-on insights.

My thanks also go to Julien Varignon, for introducing me to the CRYSTAL code and
helping me at the very beginning of this adventure. I would also like to thank my first
direct collaborators, Matthieu J. Verstraete and Daniel 1. Bilc for introducing me to
the world of thermoelectricity and for many other things as well. Then, I would like to
express my deepest gratitude to Fabio Ricci, who has been an exceptional collaborator,
with an exquisite taste in beers, and skilled in coffee management. I would also like
to thank Nick B. Bristowe, who took the time to introduce me to the most intricate
theoretical aspects of electron systems at oxide interfaces.

Of course, I would like to thank everyone in the PhyTheMa research group, includ-
ing former members: Eric, Henu, Naihua, Alina, Ruihao, Begiim, Denis, Karan Deep,
Julien, Safari, Hania, Jordan, Yajun, Marcus, Alain, Danila, Wen-Yi, Alexandre, He,
and Camilo. Also, from the NanoMat group: Antoine, Nick (P.), Gabriele, Momar, Bin,
and Micael. I would also like to thank Jean-Yves and Wilfredo, who both shared my
enthusiasm on thermoelectrics. Many thanks to the executive secretary Florence Gem-
ine as well. Overall, great personalities contributing to an exceptionally nice working
environment.

Then, I would like to thank my collaborators, starting from the people from the DQMP
Group of Pr. Jean-Marc Triscone (University of Geneva). My thanks goes to Denver,
Stefano, Zhenping, Margherita and of course Pr. Jean-Marc Triscone, for the opportu-
nity to collaborate on one of the most stimulating topic in the field of oxide interfaces.
My thanks also go to Pr. Marc Gabay and his former student Manali Vivek for the inter-
esting discussions we had. I would also like to thanks my collaborators from CNR-SPIN
and CNR-IOM, namely Ilaria Pallecchi as well as Alessio Filippetti. Finally, I would also
like to thank Marco Caputo and Vladimir N. Strocov of the Swiss Light Source (Paul
Scherrer Institute) for the opportunity to collaborate on their spectroscopy experiments.

I would also like to pay homage to Brahim Belhadji, as a former colleague, but also as a
friend. I also want to pay homage to Roberto Orlando: we only exchanged e-mails, yet
he fixed a code without which several results in this manuscript would never have been
computed.

I also want to thank Peter Schlagheck as well as all the folks from the IPNAS Coffee
Club. Special thanks to Alexandre (for the beers, the noisily debated polemics and for
his C++ coding tips), Florence, Cyril, Guillaume and Céline.



vi

To be able to perform the intensive calculations necessary to produce the results pre-
sented in this manuscript, I needed access to powerful supercomputers. Calculations
have been performed on the Belgian CECI facilities funded by F.R.S-FNRS Belgium
(Grant No. 2.5020.1) and Tier-1 supercomputer of the Fédération Wallonie-Bruxelles
funded by the Walloon Region (Grant No. 1117545). I acknowledge Sunil Patel and
Steven Gunn for the ITEX template used for this manuscript.

Now is the time to thank all the people from outside the lab, starting with my parents
Mirella and Antoine, my brothers Ludovic and Axel, and my grandparents Luigi and
Santina. I would also like to thank all of my friends: Bernard, Antony, Victoria, Rémy,
Simon, Ghilan, Burhan, Milan, Gaél, Robin, and many others as well !

Last but not least, I would like to thank my dear Alice, for her love and support during
all these years. Of course, many thanks to her family as well.



Contents

Abstract - Résumé

Acknowledgements

Contents

List of Figures
List of Tables

Abbreviations

Physical Constants

1 Introduction
1.1 Material science and modelling . . . . .. .. .. ... ... L.
1.2 Low-dimensional systems . . . . . .. .. .. ... L L L
1.3 Purpose of the present work . . . . . .. . . ... ... L.

2 Methodology
2.1 Introduction to first-principles methods . . . . . . . ... ... ... ...
2.2 Ground state properties . . . . . ...
2.2.1 The many-body problem . . . . . . . . ... ... ... ... ...
2.2.2  Density Functional Theory . . . .. ... ... ... ... .....
2.2.3 DFT in practice and the Kohn-Sham ansatz . . . . . . ... .. ..
2.2.4  Approximate exchange-correlation energy functional . . . . . . ..
2.2.5 Solving the Kohn-Sham equations . . . . .. .. ... ... ....
2.2.6 Boundary conditions and summation in reciprocal space . . . . . .
2.2.7 Pseudopotentials . . . . . ... .. oo
2.2.8 Simulation programs implementing DFT . . . . . ... ... .. ..
2.3 Boltzmann transport theory . . . . . .. .. ... 0oL

iii

vii

xi

xvil

xix

xxi

25

2.3.1 Computing the thermoelectric tensors with the BoltzTraP software 29

2.4 Insummary . . . . . . ..o e e e e e e e e e

30

3 Reviewing the origin of the 2D electron system at the SrTiO3;/LaAlO3

interface
3.1 Interfaces and two-dimensional electron systems . . . . . . . ... ... ..

vii

31
31



Contents viii

3.2 General technicalities . . . . . . . . . . . ... 33
3.2.1 Structural models . . . . . .. ... ... 33
3.2.2  Methodological details for the DF'T calculations . . . ... .. .. 35

3.3 SrTiO3 and LaAlOg in their bulk form . . . . . . . .. ... ... ..... 36
3.3.1 Structural properties . . . . . .. ... o 38
3.3.2 Electronic properties . . . . . . . ... oo 38
3.3.3 Dielectric properties of SrTiO3 and LaAlOs . . . . . ... ... .. 40
3.3.4 Electronic structure of reduced SrTiOg_s . .. ... ... .. ... 41

3.4 The band alignment between SrTiOs and LaAlOs . . . . . . .. ... ... 43

3.5 The polar discontinuity at the SrTiO3(001)/LaAlO3 interface . . . . . . . 45
3.5.1 A critical thickness of LaAlOg3 as a threshold for conductivity . . . 47
3.5.2 A two-dimensional electron gas at the n-type interface . . . . . . . 49

3.6 A controversy for the origin of the carriers . . . . . . ... ... ... ... 53

3.7 Electric-field driven mechanisms from first-principles . . . . . . . ... .. 54
3.7.1 Electric-field driven Zener breakdown . . . .. ... ... ... .. 54
3.7.2 Electric-field driven surface redox mechanism . . .. ... ... .. 61
3.7.3 Discussion . . . . . . ... e 67
3.7.4 Tuning the polar discontinuity at oxide interfaces . . . . . . .. .. 68

3.8 Conclusions . . . . . . . . . e 73

4 Confinement and Electronic Structure at Polar Oxide Interfaces 75

4.1 Probing Confinement and Electronic Structure at Polar Oxide Interfaces . 75
4.1.1 Experiments . . . . . ... .. 76
4.1.2 Theoretical study . . . . . . . . ... 7
4.1.3 Results . . . . . e 79
4.1.4 DISCUSSION . . .« . v v v e e e e e e e e e 85

4.2 Finite size effects . . . . . . . . . . 85
4.2.1 ARPES experiments . . . . . . ... ... 86
4.2.2 Theoretical results . . . . . . .. ..o 88

4.3 Conclusions . . . . . . . . . e e e e 90

5 First-principles study of capped SrTiO3(001)/(LaAlOs3),,/(SrTiOs3), struc-

tures 93

5.1 Introduction . . . . . . . . . . . . e 93

5.2 Technical details . . . . . . . . . . . . ... 96

5.3 Pristine heterostructures . . . . . . . . .. .. ... o 97

5.4 Revisiting the surface redox model for capped structures . . . . . ... .. 102

5.5 Results and discussion . . . . . . . ... ... o 108

5.6 Conclusions . . . . . . . . . . . e e 110

6 A modest introduction to thermoelectrics 113

6.1 Introduction . . . . . . . . . . . . e 113

6.2 Phenomenological approach to thermoelectrics . . . ... ... ... ... 116
6.2.1 The Seebeck effect . . . . . .. ... ... oL 116
6.2.2 Peltier and Thomson Effects . . . .. ... ... ... ....... 117

6.3 Basic principles and thermoelectric coefficients . . . . . . . ... ... .. 118

6.4 Transport equations and Figure of Merit . . . . . . . .. .. .. ... ... 119



Contents ix

6.5 Optimizing the thermoelectric properties of materials . . . . . . . . .. .. 123
7 Thermoelectric properties of layered-oxides 127
7.1 Layered-oxides as thermoelectrics, why such interest 7 . . . . . . ... .. 127
7.2  Misfit-layered calcium cobaltite . . . . . . . . ... ..o 128
7.2.1 'Technical details . . . .. ... .. ... oo 129
7.2.2 Structural parameters . . . . . . ... ... 131
7.2.3 Magnetic structure . . . . . ... Lo L oo 133
7.2.4 Electronic properties . . . . . . . ..o 137
7.2.5 Thermoelectric properties . . . . . . . . . ... L. 140
726 SUMMATY . . . . .o e e e e e e e 148

7.3 SrTiOs-based layered oxides . . . . . . . . . . . .. ... 149
7.3.1 Thermoelectric properties of bulk StTiOs . . . .. ... ... ... 149
7.3.2 Thermoelectric properties of SrTiOs-based heterostructures . . . . 153
7.3.3  The specific case of the SrTiO3/LaAlOs interface . . . . . . . . .. 155

7.4 Conclusions . . . . . . . . . e 156

8 Tailoring low-dimensional transport in Fe-based Heusler compounds 159

8.1 A brief introduction to Heusler compounds . . . . .. .. ... ... ... 159

8.2 Doping-induced magnetic instabilities in full-Heusler compounds and im-
pact on the thermoelectric properties . . . . . . . ... ... ... ..... 163
8.2.1 Computational details . . . . . . ... ... oL 164
8.2.2 Donor density effects . . . . . ... oL 167
8.2.3 Chemical effects . . . . . . .. . ... oo 168
8.2.4  Origin of the magnetic instability . . . . . .. .. .. ... ... .. 169
8.2.5 Thermoelectric properties . . . . . . . . . ... ... 171
8.2.6 Summary . . . .. ... e e 173

8.3 Thermoelectric properties of chemically substituted FesTiSn;_,Sb, com-
pounds . . ..o 175
8.3.1 Experiments . . .. . ... .. o 175
8.3.2 Computational details . . . . . . ... ... ... ... ... .... 176

8.3.3  Results for undoped FesTiSn samples annealed at different tem-
peratures . . . .. ... Lo e 176
8.3.4 Results for Sb-doped FeyTiSn samples . . . . . .. ... ... ... 182
8.3.5 Theoretical results . . . . . ... ... oo 185
8.3.6 Discussion . . . . . . . . .. 186
8.4 Conclusions . . . . . . . . e 189
9 Summary, concluding remarks and perspectives 191
A Chemical potential of oxygen 193

B From single-crystal transport tensors to polycrystalline properties 197

C List of scientific publications 201



Contents b'e

Bibliography 203



List of Figures

1.1

1.2
1.3

1.4

2.1
2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

A small and non-exhaustive representation of numerical methods in the
field of material sciences, placed on logarithmic scales in size and time. . .
Number of citations per year of the original DFT paper . . . .. ... ..
(a) a bee in a hallway; (b) a hippopotamus in the same hallway and (c),
a pedestrian walking on a flat surface. . . . . ... ... ... ... ...
Representation of the wave function isosurfaces for 3d orbitals . . . . . . .

Schematic representation of the adiabatic connection . . . . . ... .. ..
Schematic representation of the self-consistent loop for solution of Kohn-
Sham equations. . . . . . . . . . . . e
A 2-dimensional crystal lattice composed of two atoms X and Y, with a
periodic pattern all over space . . . . . . . . . . ... ... ...
The unit cell of a 2-dimensional periodic system containing two atoms X
and Y is expanded as a 2 x 2 supercell . . . . ... ... oL
(a) An heterostructure of two stacked materials and (b) a surface modelled
by including a vacuum region . . . . . . . ... ...
The Fermi-Dirac distribution, at 0 K and at finite temperature. . . . . . .

Schematic representation of a STO(001)/LAO heterostructure . . . . . . .
(a) b-atoms cubic cell of the ideal perovskite structure ABOs; (b) the
same cell with a rotated BOg octahedron; (c) the same cell, with an
off-centring motion of the B cation . . . . . . ... ... ... .......
The unit cells of STO and LAO in the cubic phase, with excess charge in
(001) planes as calculated from the oxidation numbers of the species . . .
Electronic band structures of (a) cubic STO, (b) cubic LAO, (¢) rhombo-
hedral LAO, calculated with the B1-WC functional. . . . . ... .. ...
Micrographs of a STO crystal showing the effect of removing oxygen
atoms through a thermal treatment . . . . . . .. ... ... ... .....
(a) Electronic DOS of the 4 x 4 x 4 supercell of cubic STO, containing 1
Vo; (b) isosurfaces of electron density for the localized defect state and
(c) for the delocalized electron in the conduction band . . . . . . ... ..
Electronic DOS projected on the different sublayers of off-stoichiometric
STO125/LAO 2 5 symmetric superlattices, with (a) two n-type interfaces
and (b) two p-type interfaces, calculated with the B1-WC functional . . .
Examples of surface classification by Tasker based on the planar formal
ionic charges . . . . . . . .. L
The polar discontinuity at the STO(001)/LAO interface, with a schematic
representation of the formal planar charge p, the electric field £ and the
potential V' . . .. oo

xi



List of Figures xii

3.10

3.11

3.12
3.13

3.14

3.15

3.16

3.17

3.18

3.19
3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29
3.30

3.31

4.1

4.2

Sheet carrier densities at the n-type LAO/STO interface measured via

Hall, HAXPES and RIXS experiments . . . . . ... ... ... ...... 49
Conductance of LASTO:x films measured at room temperature for com-

positions (a) x = 0.50, (b) x = 0.75,and (¢) z =1 . . . . ... ... ... 50
Spatial mapping of resistance near the STO(001)/LAO interface . . . . . 51

Band energies of the STO/LAO interface calculated from DFT-VPSIC
calculations, for different amount of electrons transferred at the interface . 52
a- and ¢ axis lattice parameters of the LAO overlayer grown of top of
STO(001), as a function of film thickness . . ... ... ... .. ..... 53
Band diagram representation of the Zener breakdown scenario. . . . . . . 56
(a) Electronic band gap for STO(001)/LAO,, /vacuum heterostructures,
for different LAO thicknesses and (b) associated macroscopic average of

electrostatic potentials . . . . . . . . ... ... Lo o 57
Layer-resolved density of state of STO(001)/LAO,,, heterostructures . . . 58
Isosurfaces of electron charge density calculated for a STO(001)/LAOg/vacuum
heterostructure with a n-type interface . . . . . . . .. .. ... 59
Comparison between the Zener breakdown model and the DFT results . . 59
Isosurfaces of hole charge density calculated for a STO(001)/LAOg/vacuum

heterostructure with a p-type interface . . . . . . . ... ... .. ... .. 61

Temperature dependence of the resistance of STO/LAO samples (with
LAO thicknesses ~20 nm) grown at different po,; (b) carrier mobilities

at 4 K for samples grown at different deposition po, . . . . ... ... .. 62
Layer-resolved density of state of STO(001)/LAO,/vacuum heterostruc-
tures with Vo (n = 1/40) at different positions . . . . . . . ... ... .. 63
Layer-resolved density of state of STO(001)/LAO,,, /vacuum heterostruc-
tures with Vo (9 = 1/40) located in the AlOy layer at the surface. . . . . 63
Schematic band diagram of the STO(001)/LAO interface along the trans-
verse direction . . . . . ... oL Lo 64

(a) Formation energies of Vo at the LAO surface versus LAO thickness
d"A0 for different vacancy densities; (b) equilibrium density of Vo with

respect to LAO thicknesses . . . . . . .. . ... ... ... . .. 66
Electrical potential built-up at the interface between STO and LASTO:0.5 69
Geometry of the investigated STO(001)/LASTO:0.5/vacuum system . . . 69
Layer-resolved density of state of STO(001)/(LASTO:x),,/vacuum het-

erostructures . . . . . . .. L. 70

Electronic band gap for STO(001)/(LASTO0:0.5),,/vacuum heterostructures 71
Equilibrium density of Vo at the surface of the LASTO:0.5 overlayer 7,
calculated within the surface redox model . . . . . . . .. ... ... ... 72
Polar layer threshold thickness of STO(001)/LASTO:z heterostructures
as a function of chemical potential of oxygen puop as predicted by the
surface redox model . . . . ... L oL 72

(a) Ilustration of the interfacial structure with atomic arrangement and
charges per atomic plane; (b) sketch of the STO/LASTO:0.5 field-effect
device and (c) oscillation of in situ RHEED intensity during the growth
of a 10 u.c. thick LASTO:0.5 overlayer . . . . . . . ... ... ... .... 7
Structure of (a) a (STO)12/(LAO)y and (b)(STO)12/(LASTO:0.5) off-
stoichiometric superlattices . . . . . . . . .. ... ... ... ... 78



List of Figures xiii

4.3
4.4
4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.1

5.2

5.3

5.4

5.5

5.6
5.7

5.8
5.9
5.10
5.11

5.12

5.13

Field dependence of the relative dielectric constant of STO, 5TO(E),
which is used in the Poisson-Schrodinger calculation . . . . .. .. .. .. 80
Experimentals results on STO/LAO and STO/LASTO:0.5 heterostructures 81
(a) Schematic of atomic structure of the LASTO:0.5/STO interface; (b,c)
charge density profile from the DFT and the Poisson-Schrédinger calcu-
lations . . . . . . .o 83
(Top) Band structures of the (STO)30/(LAO)2 and (STO)30/(LASTO:0.5)2
superlattices, calculated from DFT. (Bottom) Schematics of the atomic

arrangements, built-in electric potential, quantum confinement potential

and dgy-d;. . band splittings . . . .. ... 0o 84
(a) Schematic representation of the samples, and AFM image showing the
topography of the topmost layer; (b) XRD data of an example sample . . 86

Schematic representation of the electronic structure along the I'X direc-
tion of the 2DES of a “standard” bulk STO/LAO interface and experi-
mental electronic structures for the n = 20, 10 and 5 u.c. samples. . . . . 88
Detail of the electronic structure (left panel) of the n = 5 u.c. sample
along the I'X direction . . . . . . . . . . . ... o 89
Mulliken decomposition of the 2DES in (STO),,/(LAO)2 superlattices,
projected onto (a) the Ti dy, orbitals and (b) the Ti d,,,, orbitals . . . . 90
Computed electronic band structure of (STO),,/(LAO)s superlattices
(m=2,4,8 12and 22 u.c.). . . . . .. ... ... 90

Electronic properties of STO/LAO heterotructures at 300 K for different
separation distances between the n-type and p-type interface for STO(001)/LAO
heterostructures capped with STO . . . . . . ... ... ... ....... 94
Temperature dependence of the sheet resistance R,(7") for different thick-
nesses of the LAO interlayer in STO(001)/LAO heterostructures capped
with a 10 u.c. thick layer of STO . . . . . . . ... ... ... ... .... 94
Temperature dependence of the sheet resistance R4(T") for STO(001)/LAO
heterostructures capped with STO; evolution of the sheet resistance of

samples with a 10 u.c. thick STO capping for varying LAO thickness . . . 96
Transport properties of a STO(001)/LAO4/STOqg sample . . . . .. .. 97
Sheet conductance og measured on STO(001)/LAO,,/STO,, samples pro-
vided by the Triscone Group (DQMP, University of Geneva) . . . . . . .. 98
Structures in the slab geometry used in the DFT calculations . . . . . .. 98
Coloured map of the band gap with respect to LAO and STO thickness
in term of number of monolayers . . . . ... ... Lo 99
Rumpling in STO(001)/LAO,,,/STO,, heterostructures . . . . . ... ... 100
Density of state of STO and LAO systems . . . . . .. .. ... ... ... 101
Macroscopic electrostatic potential in capped heterostructures, calculated
onslabs (2,n) . . . . .. 102
Layer-resolved density of state of STO(001)/LAQO,,/STO,, heterostruc-
tures, form=2and 3u.c . . . . ... ... 103

Schematic band diagram of the STO(001)/(LAO),,/(STO),, system along
the transverse direction with and without oxygen vacancies at the surface 104
Layer-resolved density of state of STO(001)/LAO,,/STO,,/vacuum het-
erostructures with oxygen vacancies at the TiOs surface of the capping
layer, with area density n =1/400 . . . . . . . . ... oo, 106



List of Figures xiv

5.14 Formation energies of oxygen vacancies (uo = 0 eV) at the TiO9 surface
of a bare STO film calculated within supercells of different size to probe

different area densities n . . . . . . ... Lo oL 107
5.15 Equilibrium density of surface oxygen vacancies e, for STO(001)/LAO

capped with STO as determined by the surface redox model . . . . . . . . 110
5.16 Charge distribution of STO(001)/LAO,,/STO,, heterostructures with Vo

at the surface layer at density n =1/400 . . . . . ... .. ... ... ... 111
6.1 Global primary energy consumption per year, from 1917 to 2017 . . . . . 115
6.2 Schematic representation of a Seebeck power module which generates elec-

trical power from a temperature gradient . . . . . .. ... oL 115
6.3 One of the two Voyager probes . . . . . . ... ... .. ... ....... 116
6.4 The experimental setup used by Seebeck to discover the first thermoelec-

triceffect . . . . .o L 117
6.5 A basic thermoelectric circuit . . . . . . . ... 0000 118
6.6 A diagram of a single-couple refrigerator . . . . . . . ... ... L. 120
6.7 Maximum efficiency of a thermoelectric generator . . . . . . ... ... .. 123
6.8 Figures of merit ZT of the best thermoelectric compounds . . . . . . . .. 125
7.1 Calcium cobaltite CagCosOq9 . . . . . . . . . . . .. 129
7.2  Two supercells used to model the misfit character of CCO . . . . . .. .. 130
7.3 Electronic densities of state of CCO for each approximant and functional,

for both magnetic phases . . . . . . .. ... oo oL 139

7.4 Spin-up and spin-down partial density of state of CCO projected into 3d
orbitals of Co atoms in the CoO2 subsystem and in the RS subsystem . . 141
7.5 Diagonal components of the Seebeck tensor and electrical conductivity

tensor with respect to the chemical potential, at 300 K . . . . . . ... .. 142
7.6 Maps of calculated in-plane Seebeck coefficient S,, with respect to carrier

density and temperature. . . . ... ..o Lo 143
7.7 Maps of calculated in-plane electrical conductivity o/, /7T, with respect to

carrier density and temperature. . . . .. ... Lo 144
7.8 Maps of calculated in-plane power factor PF,, (7 = 8.0 x 10716 5), with

respect to carrier density and temperature. . . . ... ... ... ... L. 145
7.9 Calculated in-plane Seebeck coefficient S,, of CCO, up to 600 K, for

np = 1.4x10% em™ .. 146
7.10 Calculated in-plane resistivity p,, of CCO with 7 = 8.0 x 10716 s, up to

600 K, for np, = 1.4x10% em™ . . . ... 147
7.11 Calculated S;; and S,, from the ground state band structure and the

FEM phase, up to 600 K, for n, = 1.4x10*  ecm™3. . . . ... ... ... 148
7.12 Thermoelectric properties of cubic STO calculated with the B1-WC func-

tional, at 300 K . . . . . . ... 151
7.13 Fermi surfaces of n-type STO . . . . . . . .. ... ... 152
7.14 Fermi surfaces of p-type STO . . . . . . . . . ... ... ... .. ..... 153
7.15 Investigated geometries of STO-based layered structures and Ruddlesden-

Popper structures . . . . . ... 154

7.16 Power factor (estimated at 300 K within B1I-WC, 7 = 4.3 fs) dependence
on chemical potential of investigated STO-based layered structures and
Ruddlesden-Popper structures . . . . . .. .. .. ... ... ... .. 154



List of Figures XV

7.17

7.18

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

Densities of state, calculated with the B1-WC functional, of investigated
STO-based layered structures and Ruddlesden-Popper structures . . . . . 155
Total and band-by-band t24 04, and Sz, as a function of the total charge
at the LAO/STO interface, calculated using a multiband model, according
to different band splitting scenarii . . . . . .. ... oo 157

L2 crystal structure: red (black) line highlights the primitive (conven-
tional) fec cell. . . .. L. L 160
Temperature dependence of the electrical resistivity (a) and Seebeck co-
efficient (b) of Feo VAL as measured from experiments . . . . . . .. .. .. 161
Electronic band structures and thermoelectric power factors with respect
to chemical potential, estimated from first-principles at 300 K, for Feo VAL,
FesNbGa, FesTaln, FeoTiSn, FeoZrGe and FeoHfST . . . . . . . . . .. .. 162
Fermi surfaces associated with optimal n-type doping, corresponding to
the chemical potentials maximizing the power factor at 300 K, for Fea VAL
FeoTiSn and FeoNbGa . . . . . . . . . . . . . 163
Map of the thermodynamical stability of FeoY'Z compounds (as measured
by the energy with respect to hull) computed at 0 K as a function of the
Y and Z atomic radii . . ... ..o Lo oo 165
Supercells for the FeoY Z1_, A, compounds, for (a) x =0, (b) 2 = 1/48,
(c)x=1/32and z=1/48. . . . . . . ... 165
Density of state of FeaTiSng}, compounds (x = 0, 1/48, 1/32, 1/16), with
the atomic contributions . . . . . . . ... ... L o 168
Schematic arrangement of the doped FesTiSng, magnetic moments sur-
rounding the Sb impurity. . . . . . . . ... L oo 169
Spin-resolved FeoY Z4 B1-WC band structures in the associated irre-
ducible Brillouin Zone . . . . . .. ... oo 170
Top row: FeoTiSn band structures at different Uri; bottom row: majority
and minority spin-projected DOS at Er and total magnetization with
respect todoping . . . . . .. 172
Calculated thermoelectric properties of doped Heusler compounds . . . . 174
OsoHfSn orbital-weighted band structures calculated from DFT+U (a)
without SOC interaction and (b) with SOC interaction. . . ... ... .. 174
Rietveld refinement plot of the as-cast FeaTiSn sample . . . . . . . .. .. 177
Temperature dependence of (a) the resistivity of FeaTiSn samples with
different heat treatments. (b) carrier densities of the extracted from Hall
effect measurements. (c) mobilities of the same samples. . . . . . . . ... 179
Field dependence of magnetoresistivity of FesTiSn as-cast (upper panel)
and annealed (lower panel) samples. . . . ... ... ... ... ... ... 180
Temperature dependence of (a) Seebeck coefficients, (b) thermal conduc-
tivities, (c¢) thermoelectric figures of merit, and (d) power factors of the
different samples. . . . . . ..o 181
Zero-field-cooled and field-cooled magnetic susceptibility x(7") curves of
FesTiSn samples prepared with different heat treatments. . . . . . . . .. 182
Temperature dependence of (a) resistivities, (b) carrier densities extracted
from Hall effect measurements, and (c) carrier mobilities of FeoTiSnj_Shy
(x =0, 0.1 and 0.2) samples annealed at 700 °C. . . ... ... ... ... 183
Temperature dependence of (a) Seebeck coefficients, and (b) power factors
of FeaTiSn;_«Sby (z =0, 0.1 and 0.2) samples annealed at 700 °C. . . . . 184



List of Figures xvi

8.20 Theoretical results from DFT and Boltzmann transport theory calcula-

Al

B.1
B.2

B.3

tions on FeoTiSn . . . . . . . .. 187
Chemical potential of oxygen puo(p,T) . . . . . . .« o oL 195
Polycrystal model composed of several grains . . . . ... .. ... .... 198

Circuit model for lumped single-crystal thermoelectric material and for a
polycrystalline material. . . . . . . . ... ..o 199
Circuit model with composed of several different grains in series. . . . . . 199



List of Tables

3.1

3.2

3.3

5.1

7.1
7.2

7.3

7.4

7.5

8.1

Relaxed lattice parameters of LAO and STO, for different F,. functionals,
in the cubic phase, the ground state phase (I4/mem for STO, R3c for
LAO) and in a constrained, tetragonal phase where a = b is fixed to the
value for relaxed cubic STO . . . . . . . . . . ... ... ... ... ....
Indirect (Ey;) and direct band gap (E4q) of cubic STO, cubic LAO,
tetragonal LAO and rhombohedral LAO . . . . ... ... ... ......
Components of the relative static dielectric tensor of cubic STO, cubic
LAO, tetragonal LAO and rhombohedral LAO . . ... ... .......

Comparison between the surface redox model and the DFT formation en-
ergies calculated from capped STO(001)/LAQO,,/STO,, heterostructures
with surface oxygen vacancies at area density n =1/400 . . ... ... ..

Initial and final magnetic configurations in CCO . . . . . ... ... ...
Experimental and optimized lattice parameters for the FIM and FEM
phases of CCO . . . . . . . . .
Ground state average atomic positions in the CoOs and CasCoOg3 sub-
systems in the rational approximant model, for the LDA functional . . . .
Ground state average atomic positions in the CoOs and CasCoOg sub-
systems in the rational approximant model, for the B1-WC functional
Atomic magnetic moments of Co atoms belonging to the CoOs and rock-
salt subsystem . . . . . ...

Self-consistently determined U for the transition metal atoms in the stud-
ied XoY Z compounds; obtained energy gap and relative optimized lattice
parameters for the DFT4+U and B1-WC calculations, and experimentally
available lattice parameters . . . . . . . .. . ... ... ...

Xvii






Abbreviations

2DES 2-Dimensional Electron System

2DHS 2-Dimensional Hole System

ARPES Angle Resolved PhotoEmission Spectroscopy
CBM Conduction Band Minimum

(6]6]0) Ca3Co0409

CRTA Constant Relaxation Time Approximation

DFT Density Functional Theory
DOS Density Of State

EDC Energy Distribution Curve
EDX Energy Dispersive X-ray
IBZ Irreducible Brillouin Zone
LAO LaAlO;3

MBE Mobolecular Beam Epitaxy

MIT Metal-Insulator phase Transition

PF Power Factor

PLD Pulsed Laser Deposition

RBS Rutherford Backscattering Spectroscopy

RHEED Relection High-Energy Electron Diffraction
SOC Spin Orbit Coupling

SQUID  Superconducting Quantum Interference Device
STO SrTiO3

TE ThermoElectric

VBM Valence Band Maximum

XRD X-Ray Diffraction

xix






Physical Constants

Speed of Light c = 2997924 58 x 10 ms~1
Planck constant h = 1.05457180x 1073 Js'!
Boltzmann constant kg = 1.380 648 52 x 10723 JK!
Vacuum permittivity ey = 8.854 18782 x 10712 CV~Im™!
Bohr magneton up = 9.274 009 99 x 10724 JT—!

Lorenz number L = 244300288 x 1078 WQK™!

xxi






Dedicated to my beloved Alice;
and my parents, Mirella and Antoine. . .

xxiii






Chapter 1

Introduction

It is usual for a thesis work to focus on a specific theme. However, the present manuscript
covers different topics in the field of material science; specifically, it is about the 2-
dimensional electron gas system appearing at the interface between band insulators
oxides (namely LaAlOs and SrTiO3), as well as thermoelectricity in oxides and iron-
based Heusler systems. A priori, these two topics are seemingly unrelated. This is not
necessarily the case: on one hand, even if the underlying materials discussed in the
following Chapters have different compositions, they share some features in the form of
low-dimensional transport that are related to the nature atomic orbitals at the origin
of their transport properties. On another hand, all the compounds of interest in this
work are studied by the means of first-principles calculations, which are the state-of-the-
art methods for modelling materials at the nanoscopic scale. We aim to show how the
versatility of first-principles methods can help to build bridges between these thematics.

1.1 Material science and modelling

Controlling matter has always been a prerequisite to the development of technology.
From an historical point of view, materials science has mostly progressed empirically,
based of experiments with the aim to address the emerging macroscopic properties from
a phenomenological point of view, without necessarily understanding the underlying
natural laws behind.

In this regards, the advent of the theory of quantum mechanics in the early 20th cen-
tury, elaborated to provide a consistent explanation to various physical phenomena
(black body radiation, photoelectric effect, quantized energy transfer between light and
matter...), shed light to a fundamental issue regarding as to why the nuclei and electrons
forming matter actually “stick” together, forming molecules, liquid or solid and ordered
matter, based on new laws of physics occurring at their scale. In a methodological re-
ductionist fashion, quantum mechanics and the laws of electromagnetism lay what we
call the first principles ruling the material world, and based on these first principles, it is
therefore possible to understand why some material conduct electricity while some not,
why some crystals undergo structural phase transitions with pressure or temperature,
and so on.
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FIGURE 1.1: A small and non-exhaustive representation of numerical methods in the
field of material sciences, placed on logarithmic scales in size and time.

Concomitantly with these conceptual advances, tremendous progress in technologies led
to the development of calculators with the abilities to solve mathematical problems
beyond a human brain capacity, opening new methodologies for scientific enquiries: nu-
merical simulations. Simulations are often performed to study the behaviour of complex
systems based on the knowledge of the properties underlying sub-systems. Materials
science as a whole profited from this new way of performing research, half-way between
virtual experimental methods and pure theoretical developments. Depending on the
scale of the problem (in size and in time), several methods have been developed rely-
ing on theory adapted to the scale, some examples being given in Figure 1.1: from the
macroscopic scale where the macroscopic properties of materials are modelled to see
how they interact with each other, down to the nanoscopic scale where atoms and elec-
trons interactions are purposely modelled. Of course, between these two limits, there
is a handful of other scales, and usually, the corresponding methods are not exclusive,
often bridged together in order to get an understanding of the properties’ interplay
between the different scales. Often, the multi-scale modelling is done through a bottom-
up approach, by exploiting the properties determined at the lower scale, as in “second
principles” approaches.

In this work, the theoretical framework is based on Density Functional Theory (DFT),
whose principles are described in Chapter 2. The practical implementation of this theory
has been formalized by Lu Jeu Sham and Walter Kohn [1] in 1965, who obtained the 1998
Nobel Prize in Chemistry (conjointly with John Pople) for this work. At the time, due to
the low computational power available, the theory was mainly used for small systems. As
the computational power increased, larger and more complex systems became accessible
to DFT, and the method grew in popularity, as can be seen by the increasing number
of citations per years of the original article [1], shown in Figure 1.2. One of the main



Chapter 1. Introduction 3

2500|||||||||||||||||||||||||||||||||||||||||||||||||_
[ J

2000

1500

1000

Citations per years

500

1970 1980 1990 2000 2010 2020
Years

FIGURE 1.2: Number of citations per year of the original DFT paper by Kohn and
Sham [1]. The data has been extracted from the Scopus database.

advantages of DFT is the transferability of the method, and it can be used to study all
kind of materials, independently of the composition or the dimensionality.

1.2 Low-dimensional systems

In the vast field of material science, a particular sub-field concerns low-dimensional
systems. Low-dimensional is a generic terminology to designate systems where the
motion of the particles is limited in a given direction of space compared to their mean-
free-path. An example is given in Figure 1.3.(a) and (b): if we consider a hallway, a bee
in that hallway is free to move in all directions of space, and it can be considered as a
3-dimensional system. However, if a hippopotamus were to move in the same hallway, its
motion would be restricted in a single direction, and therefore it can be considered as a
1-dimensional system. In these very specific examples, the dimensionality of the system
is determined by the relative size between the bee or the hippopotamus and the hallway.
The low dimensionality in the hippopotamus case is a consequence of confinement, yet,
this is not the only strategy to achieve a low dimensional system. Another example
would be the motion of pedestrians on a flat surface: in this case, the combined effects
of the gravitational and the normal reaction forces compel the pedestrians to move along
the plane of the surface, and such a system would be a 2-dimensional system, as shown in
Figure 1.3.(c). In this case however, the low-dimensional aspect is not just determined by
confinement, but is also a consequence of the forces applied to the pedestrians. These
examples show that the relationship between confinement and dimensionality is not
always straightforward.

This is especially true in solid state physics, where the particles are usually electrons,
and there exists several strategies to achieve low-dimensional electron systems, by re-
ducing the thickness of a given compound to the atomic limit (graphene, silicene) for
example. However, it is not the only way to achieve a low-dimensional electron system.
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FIGURE 1.3: (a) a bee in a hallway; (b) a hippopotamus in the same hallway and (c),
a pedestrian walking on a flat surface.

Indeed, it is possible to find low-dimensional systems in structures with a bulk-like char-
acter. For example, the topical 2-dimensional electron gas near the interface between
SrTiOsz and LaAlQj is located in the SrTiOj side of the junction, but remains confined
within only a few nanometres of the interface whereas the electrons are highly mobile
in the plane of the interface. Another example can be found in the topical iron-based
full Heusler compounds, where the electronic carriers have highly anisotropic effective
masses, constraining their motions under an applied electric field. The underlying mech-
anisms behind the confinement effects in these examples are related to the symmetry
of the quantum states holding the carriers: the states in the vicinity of the conduction
band arises from transition metal (Ti or Fe in these examples) 3d orbitals, which have a
highly directional character due to their symmetry (shown in Figure 1.4). It is therefore
possible to exploit these 3d orbitals to achieve low-dimensional electron systems.



Chapter 1. Introduction 5

z
\
X

/, |

/ /3dyz 3d,2.2

y X

FIGURE 1.4: Representation of the wavefunction isosurfaces for 3d orbitals within the
hydrogen-like atomic model, with the nodal planes where the wave function is null.
Figure adapted from Reference [2]

1.3 Purpose of the present work

The present manuscript focuses on the physics of various systems sharing the com-
mon feature of involving 3d electrons for transport with a low-dimensional aspect, and
studied from first-principles. It is organized as follows: in Chapter 2, we present the
methodology upon which the studies are performed, introducing the basics of DFT, its
practical implementation and the Boltzmann transport theory used to calculate trans-
port coefficients. The manuscript is then split in two parts: Chapters 3, 4 and 5 are
about the peculiar conducting interface between band insulators LaAlOs and SrTiOs,
and we will discuss its possible origins and its properties based on first-principles calcu-
lations. Then, in Chapter 6, we present a small introduction to thermoelectricity, and
how low-dimensional systems can potentially increases the performance of thermoelec-
tric materials. We present insights on the thermoelectric properties of layered oxides
in Chapter 7, specifically calcium cobaltite CagCoq4Og and SrTiOs-based layered com-
pounds. Finally, going beyond oxides, we investigate how low-dimensional transport
can be achieved in iron-based bulk Heusler compounds in Chapter 8, how they may
be exploited to reach high thermoelectric properties, and their properties if chemically
doped with donors.






Chapter 2

Methodology

The objective of the present Chapter is to review the different aspects of the ab initio
techniques used in this work. We will present the purpose of first-principles methods, the
basic theoretical principles of DFT, its practical implementation within the CRYSTAL
simulation package, as well as the semi-classical Boltzmann transport theory and its
implementation in the BoltzTraP code to obtain the thermoelectric properties of the
compounds, based on their electronic and structural properties as determined from first-
principles. The following Sections are inspired by several References [3-5] that the
interested reader may look at to get a more complete understanding of the methods
from which the results of this manuscript are calculated.

2.1 Introduction to first-principles methods

A crucial element of any scientific inquiry is a robust methodology to highlight the
different properties of a given system. This can be quite complicated in material sci-
ences, specifically in the fields related to the atomic scale physics, which target the
understanding of the microscopic mechanisms behind emergent phenomena observed at
human scale.

Tremendous progress has been done during the past decades in both experimental and
theoretical methodologies which can often be used concomitantly: indeed, experiments
often provides a specific information of a system, which need to be interpreted within
a given model. For example, one can perform X-Ray diffraction spectroscopy (XRD),
and the obtained data can interpreted in terms of Bragg’s law, to assess the structure,
symmetry and the constituents of a given crystalline compound. However XRD cannot
provide an explanation as to why the atoms are arranged as they are; theoretical methods
can provide such an information.

Historically, theoretical studies in physics are associated with the finding of the analyt-
ical solution to the equation associated with a given problem (for example, two bodies
in interaction). However, equations can quickly become impossible to solve as the com-
plexity of a problem increases (three, four, ... bodies in interaction), which is typically
the case in material sciences. One is then left with two possibilities: either to simplify
the problem, by modelling the system as simpler entities in interaction, or to solve the
equations numerically. Sometime, both are necessary.

7
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In this regard, the development of numerical methods, concomitant with the develop-
ment of computer technologies, has been quickly adopted in the field of material sciences.
Atomistic simulations can for instance be performed by modelling the interactions be-
tween the atoms, usually by Lennard-Jones potentials adjusted to experiments.

Ab initio or first-principles methods are characterized by the fact that they treat ex-
plicitly the interactions between electrons and nuclei, using the basic laws of quantum
mechanics and electromagnetism. In a sense, because they do not require any exper-
imental input, they are predictive. One of the most successful ab initio technique is
Density Functional Theory (DFT). The majority of the developments and results in this
manuscript are based on DFT.

2.2 Ground state properties

2.2.1 The many-body problem

A crystal consists in a primitive unit cell containing atoms and repeated periodically in
all spatial directions, forming the Bravais lattice. The Bravais lattice, containing the
interacting nuclei and electrons, constitutes the problem to solve from the equations of
quantum mechanics.

Let us consider a quantum system which contains N° nuclei, and N electrons in inter-
actions. Such a system can be characterized by a wave function which can be obtained
by solving the static Schrédinger equation:

H(r,R)|¥(r,R)) = E|¥Y(r,R)) (2.1)

where |U(r, R)) is the eigenfunction and H is the hamiltonian operator, which is the sum
of distinct operators related to the kinetic and interaction energies between electrons and
nuclei:

H(I‘, R) = Tcore(R) + Ucore—core(R) + Te(r) + Uee (I‘) + Ucore—e(r; R) (22)
The mathematical expressions in this Chapter will make use of the following notations:

e NY is the total number of nuclei in the system,
e N is the total number of electrons in the system,
e the indices xk and &’ refer to the nuclei,

e the indices ¢ and j refer to the electrons,

r; is the position of the electron 1,

R, is the position of the nucleus &,

Z,, is the charge of the nucleus x.

If we work in atomic units', we have:

1
=1 h=1 =1
4eq ©
Me— =1 c = 137.036

'From this point and onward, we will make use of atomic units, unless specified.
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and the different terms in Equation 2.2 can be written as:

NO
1
Tcore(R) = _Z 2M ARH (23)
Ucore—core<R) = Z |R R/ (2'4)
K<k
N1
Te(I') - - Z iArl (2 5)
=1
1
Uee(r) = +Z ’R "R ‘ (2 6)
i<j Tt 7
Zy
Ucore_e(r, R) = — Z m (27)

These terms are identified as follows:

is the operator related to the kinetic energy of the nuclei,

)

.4) is the operator related to the interaction energy between the nuclei,
.5) is the operator related to the kinetic energy of the electrons,
)

is the operator related to the interaction energy between electrons,

[ ]
~~ ~~ —~ —~

2.7) is the operator related to the interaction energy between the nuclei and the
electrons.

In practice, such a Schrodinger equation is impossible to solve analytically. Moreover,
it is computationally difficult to obtain a numerical solution. It is therefore necessary
to make use of a few approximations in order to simplify the problem.

We notice that the nuclei have masses that are large compared to the mass of the
electrons (M,, ~ 103 m,). So, the Teore(R) term is very small compared to Ti, and we
can consider it as a small perturbation. It means that the electrons are more mobile
than the cores and follow adiabatically the ionic motions. In other words, the inertia
of the electrons is considered negligible compared to that of the ions. This is the Born-
Oppenheimer approximation [6], which constitute the first hypothesis to simplify the
problem.

The unperturbed Hamiltonian is the Born-Oppenheimer Hamiltonian:
HBO (I’, R) = Ucore—core (R) + Te(r) + Uee(r) + Ucore—e(ra R) (28)

and the Born-Oppenheimer energy can be obtained by solving the Born-Oppenheimer
Schrédinger equation:

HBO(I" R) ‘@D(I‘, R)> = EBO(R> ’¢(I‘, R)> (2'9)

Since the Born-Oppenheimer hamiltonian does not have any differential operator on R,
R can be considered as a simple parameter of the hamiltonian. By fixing R, Ucore—core(R)
becomes a global shift of the electronic energy, thus that we can further write:

Hpo(r,R) = Hq(r,R)+ UCOre—Core(R> (2.10)
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with
Hy(r,R) = To(r) 4 Uee(r) 4+ Ugore—e(r, R) (2.11)

In practice, the Born-Oppenheimer approximation permits to treat the electrons and
the nuclei problems separately :

1. the electronic ground state can be found for any given geometrical configuration
of the nuclei by solving

Ha(r,R)|¥(r,R)) = Eq(R) [¥(r,R)) (2.12)
or by using the variational principle:

Ea(R) = ming (U] Hy |T) (2.13)

2. then the ground state configuration of the nuclei R" and the related energy are
found as the minimum of the Born-Oppenheimer energy

EBO(R) = Eel(R)+Ecore—core(R) (214)
— Epo(R?) = ming [E(R) + Ecore—core(R)] (2.15)

The central problem therefore consists in solving Equation 2.12 to get the eigenvalue
E4(R) and the associated wave function |¥(r,R)). This is the so-called electronic
many-body problem, which is impossible to solve; this can be easily understood from
the following example: the water molecule HyO contains N = 10 electrons. In three-
dimensional space, this means that the spatial part of the many-body wave function
|¥(ry,r2,...,rN)) is defined in a Euclidean space of dimension 3N = 30. The water
molecule is roughly ~ 2 A large. If we take a cubic box 4 A wide, with a M = 20 x
20 x 20 = 8000 mesh to interpolate the wave function, the determination of any matrix
elements requires M3YN = 80003° ~ 1017 operations. However, this should be repeated
several times if one desires the ground-state wave function from the variational principle
(Eqn. 2.13). If one desires to get just a single matrix element with a computer performing
10'7 calculations per second, it would requires roughly 10'%° seconds, or ~ 3 x 1092 years.
For comparison, the observable universe is only 13.8 x 107 years old. If the many-body
problem cannot be solved for a molecule as simple as HoO, one can easily give up to
study more complex quantum systems. The main issue is that the complexity of the
problem increases exponentially with the number of electrons. If the problem cannot be
solved, it remains possible to change the problem to one that is solvable. This is the
basis of DFT, which will be presented in the next Section.

2.2.2 Density Functional Theory

In the previous discussion, the impossibility to solve the many-body Schrédinger equa-
tion stems from the fact that we explicitly considered the many-body wave function
|[¥(r,R)) as the “variable” of the problem. The basis of density functional theory is to
consider that the fundamental variable is no longer the many-body wave function, but
the electronic density instead, and that the associated ground state properties, such as
the energy, can be derived from the knowledge of the density, instead of the knowledge
of the wave function.
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If the wave function |¥) associated to the ground state of the N-electron system depends
on the spatial coordinates ri,ra,rs,...,ry, the electronic density n(r) is defined as:

N
d(r) = Z(S(r—ri) (2.16)
n(r) = (¥(ry,ro,...ry)|d(x)|¥(r1,re,....rN)) (2.17)

As the density only depends on spatial coordinates, the problem of 3N variables is
reformulated as a 3 variables problem, expected to be simpler to solve and requiring less
computational resources. Hohenberg and Kohn demonstrated that it is indeed possible
to reformulate the many-body problem. We will explain in the following Section the
Hohenberg-Kohn theorems, as well as how the theory is put in practice through the
Kohn-Sham ansatz.

2.2.2.1 The first Hohenberg-Kohn theorem

We will now see how the many-body problem can be recast into a problem which only
make use of the electronic density.

The first Hohenberg-Kohn theorem [3] stipulates:

“The electronic density of the ground state no(T) of the many-body electronic system is
entirely and uniquely determined by the external potential Ueyi (1) modulo a constant”

Proof? : Ad absurdum. We consider two external Ue(it)(r) and Ug@(r) which differs
beyond a simple shift through a constant term, and we assume that both are associated
to the same ground state electronic density ng(r). Because these two potentials are dif-

ferent, then there is two Hamiltonians associated with Ue(iz (r) and Ue(ig (r), respectively
H® and H® | also associated their ground state wave functions U} and |2} re-
spectively. As |\Il(2)> is not the ground state of the system associated to the Hamiltonian

H (1), we can write successively:

EM = (wW g0 p)
< (U@ O |pA)
< (@AHA W) 4+ (v@ g0 - g@)|p?)
< B+ [ ar 08 -8 motr
— EW < g® 4 / dr [Ug;g _Ugg} no(r) (2.18)

2The proof reported here is only valid for a non-degenerated system. The extension of this proof to
degenerate case can be found in the literature [7].
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In the same fashion, as ‘\IJ(I)> is not the ground state of the system associated with the
Hamiltonian H®), we can write an analog development:

B2 — <\p(2)’H(2)|\1;(2)>
< <\I/(1)]H(2)|\If(1))
< (@O HEOEOY 4 (v HE - gO)|p?)
< B0+ / dr [UZ) USR] nofe)
— E® < g0 4 / dr® [Ue(it) —Uéi@} no(r) (2.19)

Summing 2.18 and 2.19 yields the strict inequality EV) + E® < E@) + ED) which is not
possible. Therefore, the assumption that the same electron density ng(r) is associated

with both U(l)(r) and U2 (r) is incorrect.

ext ext

Hence, the electronic density is only determined by the external potential (modulo a
constant).

2.2.2.2 The second Hohenberg-Kohn theorem

The second theorem can be summarized as [3]:

“A universal functional E[n|, which gives the energy in regards to the electronic density
n(r), exists for any external potential Uegt(r). For each Ueyi(7), the ground state energy
is the energy which minimizes this functional, and the associated density n(r) is the
exact ground state density no(r)”

Proof: As any properties of a given system are determined the electronic density n(r),
they can be expressed as density functionals. Particularly, the total energy can be
written as a functional of the density:

Eln] = Tln]+Uln] + / Usaa (r) n(x)dr (2.20)

= FIn] +/Uem(r) n(r)dr (2.21)

In Expression 2.21, F[n] is a partial contribution of the electronic system (kinetic and
electrons-electrons energies) to the total energy, and is also a density functional, which
does not depend on the external potential, and is the same for any electronic system.
Hence, F[n] is a “universal functional” of the density.

Now, we consider a system which has a ground state density n!) associated to the

external potential U, 6(2 (r). In this case, the Hohenberg-Kohn functional is equal to the

expectation value of the Hamiltonian with the ground state ‘\If(l)>:

B — <q,<1> ‘ H(l)’ \1,(1>> (2.22)
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If we consider another density n(?) associated to another wave function |‘11(2)> (different
from ‘\I/(l)>, therefore not associated to the ground state), we can see that the energy
E@) of this other state is superior than the ground state energy E():

E(1)2<@(1)‘H(1)‘qj(1)> < <\I,<2>‘H(1>‘q,<2>>

< E® (2.23)

The direct consequence is that the aforementioned energy functional E[n], expectation
value obtained for the ground state density ng(r), must necessarily be inferior to the value
obtained through any other density n. From the knowledge of the universal functional
F[n], minimizing E[n] by tuning the electronic density n (and under particle conservation
constraints) leads to both the ground state density and total energy. Unfortunately, the
exact analytic form of F[n] is not known.

2.2.3 DFT in practice and the Kohn-Sham ansatz

The theorems enunciated in the previous Section demonstrates the possibility to shift
from the many-body wave function as a variable to the electron density. However, there
is no practical way to implement it, as the universal functional F'[n] is unknown. An
alternative approach was proposed by Kohn and Sham, and consists in mapping the
unsolvable problem to one that is easily solvable, yielding the same solution in term of
electronic density. This is the Kohn-Sham ansatz: a fictional system of non-interacting
particles is considered, which are moving in an external potential vs, yet produce the
same ground state density no(r) as the real, many-body system. Such a system would
be characterized by the following one-electron Schrédinger equation:

2
(-5 +u) 6 = & lose) (224

where |¢;(r)) are the one-body wave functions and ¢; the one-body eigenenergies.

To map the non-interacting Kohn-Sham system to the many-body one, we need to
determine vg(r). The many-body energy as given by Equation (2.21) can be rewritten
as follows:

Bin) = [ Ualem(eias + Tl + 5 [ [ ’mdrdr'+Em[n] (2.25)

Basically, we just rewrote the unknown universal functional F[n] as a sum of three
density functionals: T.[n] is the kinetic energy of the electrons, the third term is the
Coulomb interaction between electrons rewritten as a functional of the density (named
Hartree energy Er[n]), and the last term is the exchange-correlation energy. The Kohn-
Sham ansatz consists in rewritting F'[n] as follows:

Fln] = T.[n]+ Egln] + Epc[n] (2.26)
— F[n] = T%S[n] + Eyln] + EX5[n] (2.27)

with  EX°[n] = Eye+ Teln] — T%5(n] (2.28)
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Basically, a term of kinetic energy T%°[n] has been introduced, which corresponds to
the kinetic energy of the non-interacting particles. The exchange-correlation energy has
been rewritten to include the difference of kinetic energy from the many-body system
Te[n] to the non-interacting one (which are not identical). Hence, technically, F'[n]| has
not changed, and it has been reformulated as the sum of three terms, the first two
(T®S[n] and Eg[n]) with known analytical forms.

The ground state density ng(r) can be found by minimizing F[n] with respect to n(r)
in Equation 2.25 by the means of Lagrange multipliers accounting for the conservation
of the number of particles V:

% [E[n] —1—,u/n(r)dr} =0 (2.29)
=0, (2.30)

where 1 is the Lagrange multiplier and has a relevant physical meaning: it is the chemical
potential of the electron system, defined as the derivative of the energy with respect to
the number of particle (OE/ON = p). Hence, we have:

6E[n]  0T%%[n] SERS
on on Uear( /r—r’\d + on F (2:31)

If we consider the Kohn-Sham hypothesis, there exists a system of non-interacting par-
ticle moving in a potential vs(r) yielding the same ground state density no(r) as the
many-body system. The variational principle for this system is written as:

0E[n| ST®5[n]

5 5n +os(r)=p (2.32)

Equations (2.31)and (2.32) have the same mathematical form and coincide whenever:

o JEze[n]
v,(r) Ueat( /|r— 5n(r) (2.33)

Therefore, with this reformulation of F[n], then the many-body problem can be recast
as a one-body problem yielding the same electronic density, if the external potential
vs(r) takes the form as given in Equation 2.33. Moreover, as we know that the ground
state density of a non-interacting particles system can be calculated from the one-body
wave functions, solutions of a Schrédinger equation, then one simply need to solve the
Kohn-Sham equations:

2
(V+Um t d+u4[pywm=amm>

n(r) =Z< i(r)|¢i(r))

)

(2.34)

which is the form taken by Equation (2.24) with the constraint (2.33), the orthonor-

malization of the wave functions (¢;(r)|¢;(r)) = d;; and where we wrote U,.(r, [n]) =
SEXS[n]/on(r).

Note that the Kohn-Sham equations can be rewritten with variational formulation. Con-
sidering Equation (2.37) rewritten as functional of one-body wave functions |¢;(r)) and
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N
1
that TXS = Z (pi(r)] — §V2 |pi(r)), then the minimization under orthonormalization

K3
constraint of ¢;(r) is written as:

_ d KS
0 = m [T [n]—l—/Uem(r)n(r)dr)
+ En] + Exe[n Z&J ((¢ildj) — bij) (2.35)
Or equivalently:
<;V2 + Ueat + U + U:r:c> i) = Zfij |95) (2.36)
J

where Uy = 6Ep/on. Setting the gauge &; = 0;;¢; leads Equation 2.36 back to its
standard Kohn-Sham formulation.

At this stage, we notice that the third term in Equation (2.33), the Kohn-Sham exchange-
correlation potential Uy.(r, [n]), remains unknown. In principle, it should encompass dif-
ferent terms accounting for physical effects which are not explicitly considered in the non-
interacting picture: the indiscernibility of the electrons (and the related Pauli exclusion
principle), the spatial correlations between electrons (quantum fluctuations), and the
error (self-interaction) originating from the Hartree formulation of the electron-electron
Coulomb interactions. Also, it should contain the difference of kinetic energy between
the real system (interacting particles) and the Kohn-Sham system (non-interacting par-
ticles), as explicitly written in Equation 2.28. Finally, as Efcs [n] does not depend on the
external potential but only on the electronic density, it is a universal density functional,
and should have the same form for all systems.

The total energy F[n] of the interacting particle system is not the sum of eigenvalues ¢;
of the Kohn-Sham system, and is given by:

Zel / ve(t)n(r)dr — Ex[n] + Eyeln] (2.37)

and can therefore be retrieved from the Kohn-Sham eigenvalues and eigenfunctions.

We have shown that it is possible to determine the electronic density of the many-body
system from the Kohn-Sham ansatz. Even though the equations are simpler, there
remains the issue related to the E,.[n] term, as we do not know its exact analytical
expression. Fortunately, it is still possible to approximate it, which will be the topic of
the next Section.

2.2.4 Approximate exchange-correlation energy functional

In principle, the E,.[n] is a universal functional of the density n and should have the
same analytical form independently of the system. Yet, its analytical form is not known.
Moreover, the kinetic energy of the real system is not guaranteed to be equal to the
kinetic energy of the fictitious Kohn-Sham system. The E,.[n] is therefore expected to
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contains the difference between these two kinetic energies. There are many different
possibilities to approximate the E,.[n] terms, which will be briefly reviewed in the
following sections.

2.2.4.1 LDA - Local Density Approximation

The first approximation of E,.[n] is the local density approximation (LDA), and built
from the homogeneous electron gas model. Indeed, for such a simple system, it is
straightforward to obtain an analytical expression for the exchange part of FE,.[n].
All physical properties of the homogeneous electron gas depends on a single parame-
ters, the density n(r), which is by definition the same for any r: n(r) = ng. There-
fore, the exchange-correlation energy of the gas also depends on the density E,. =
E.c[n(r)] = Eiclno]. From the knowledge of the total energy, one can extract the
exchange-correlation term. If we assume that the exchange-correlation energy density
at a given point r, €(r), only depends on the density at this point and that it is equal to
the exchange-correlation energy per particle of a homogeneous electron gas of density ng,
we can use €. locally for any system where n(r) is not uniform (as it is the case in most
realistic systems), we can write the exchange-correlation energy as a local functional of
the density n(r):

EEPMn) = [ ne)ebem e (239
(2.39)
where €29™ is the exchange-correlation energy density of the homogeneous electron gas at

a given uniform density. The exchange-correlation energy of the homogeneous electron
gas can be written as the sum of two contributions, the exchange part E!°™ and the
correlation part ERom:

Ep™n] = By n] + E¢°"[n] (2.40)

The exchange term has an analytical form, derived from Hartree-Fock methods [3]:

5
EMompn] = 3 (3) ’ /n4/3(r)dr (2.41)
4\ 7
The correlation term Eilom [n] is not calculated analytically. Instead, it is approximated
by fitting an analytical function on curves obtained using Quantum Monte-Carlo sim-
ulations of a homogeneous electron gas, and by subtracting the known exchange and
kinetic part of the total energy.

The most popular formulations are those of Vosko, Wilkes and Nussair [8] (VWN) and
Perdew and Zunger [9] (PZ).

Being the first E,.[n] approximation, the LDA is widely used even today, and indeed, this
simple approximation managed to be quite efficient at predicting properties of crystalline
systems, with good accuracy compared to experiments. Nevertheless, the approximation
also has shortcomings: indeed, structures relaxed within the LDA tend to have their
lattice parameters underestimated. Moreover, strong electronic correlations cannot be
treated efficiently within the LDA, and this may strongly impact the accuracy of the



Chapter 2. Methodology 17

predicted electronic properties (band gaps of semiconductors or insulators tend to be
underestimated, for example).

The exchange-correlation energy expressed above is valid for spin-degenerate systems.
The generalization of the LDA to magnetic system by accounting for the spin state of
the electrons, assuming that the magnetic properties originates solely from the intrinsic
magnetic moment of the electrons. The principle is to treat two different electron den-
sities: the spin-up electronic density n'(r) and the spin-down electronic density n*(r).
This usually means that magnetic systems have twice more equations to solve.

The exchange-correlation energy must be rewritten to be spin-dependant, E,.[n] =
Ez[n",n*]. In the case of collinear magnetism, this is done by using two exchange-
correlation potentials:

ol = 5Exc[nT7n¢] and ut = (SE;CC[RT,TZH
xc (STIT xc (57’l¢

The generalized approximation is the local spin density approzimation (LSDA) and the
exchange part is expressed as:

1/3
ELSPART nh) = —2%% <3> / (nT% + n%) dr (2.42)
T

2.2.4.2 GGA - Generalized Gradient Approximation

The shortcomings of the LDA motivated the use of more elaborated functionals: indeed,
there is no reason that the electronic density n(r) does not depend on the electron density
in its vicinity n(r+dJr). The generalized gradients approximations (GGA) are semi-local
approximations of F,.[n] which locally account for the variations of the electron density
by expressing the exchange-correlation energy as a functional of the density and as a
functional of its gradients (and higher order derivatives):

ESCGAIn] = /n(r)ezc[n,Vn,V2n,...]dr (2.43)

Amongst the most used formulations reported in the litterature, there are the one of
Perdew, Burke and Ernzerhof (PBE) [10] and Perdew and Wang (PW91) [11].

2.2.4.3 Beyond LDA and GGA: DFT+U and hybrid functionals

As local and semi-local approaches, the LDA and GGA are known to illy treat strong
exchange-correlation effects (for example, low band gap semiconductors are predicted
metallic). A popular solution at minimal computational cost is the DFT+U formal-
ism, which consists in adding a Hubbard correction U in the Hamiltonian to increases
Coulombian repulsions in d and f orbitals: as these populations are very localized,
Coulombian repulsion is underestimated with semi-local approaches. The introduction
of extra-Coulombian repulsion in d or f orbitals usually open the electronic band gap
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in illy treated semiconductors, and is written as an additional orbital-dependent term
in the Hamiltonian:

1
2U;ninj (2.44)
ok

where U is the screened Coulomb parameter and n; is the occupation number of orbital
1. The U parameter can either be chosen so that the calculated gap corresponds to the
experimental one, as an empirical parameter. Another possibility is to calculate the
value of U from DFT in a self-consistent approach (as proposed in Reference [12] for
example).

Another solution to overcome the shortcomings of LDA and GGA are hybrid functionals
of F,.. They have been introduced in the early nineties and were mainly used in quantum
chemistry calculations for atoms and molecules. Later, their use has been extended to
periodic systems. The principle behind hybrid functionals is rather simple, and consists
in mixing the typical semi-local functional (LDA and GGA) with a fraction of Hartree-
Fock exchange. Non-local effects of the exchange energy are therefore explicitly treated.

The relevance of this approach is justified by the so-called adiabatic connection for-
mula [13]. In principle, the exchange-correlation energy of the Kohn-Sham system is
not equal to the echange-correlation energy of the many-electron interacting system:
this difference arises from the transfer of part of the many-body kinetic energy T... to
the exchange-correlation term of the Kohn-Sham system. However, it has been shown
that there exists an ezact (yet unknown) relation connecting 7. and Eg. [13]. Let us
consider the following family of Hamiltonians Hj(\) with different electron-electron in-
teraction characterized by a single parameter A varying from 0 (non-interacting limit)
to 1 (fully interacting limit):

Hel(/\) = To4+ AUg + uy (2.45)

This function is decomposed into different terms: T, is the kinetic energy operator, Uee
the electron-electron potential energy operator and wu) is defined in such a way that
all Heg () produce the same ground-state density n. For A = 1, we have the fully
interacting many-body system and w) corresponds to the external potential (uy—1 =
Uext). For A = 0, then we have the non-interacting Kohn-Sham system (uy—g = vy
which is the Kohn-Sham potential associated to density n). It can be shown that the
Kohn-Sham exchange-correlation energy corresponds to the average of the exchange-
correlation potential energy for A € [0,1]; the integration over A generating the kinetic
part of F..:

1
Epe = / Egex dX (2.46)
0

where F,.  is the potential energy of exchange-correlation at intermediate A, written
as:

Exc,)\ = <\I[)\|Uee‘\ll>\>_EH (247)

where Ep is the classical Hartree energy and W) the ground-state wave functions at
given coupling strength \. Equation (2.46) is the adiabatic connection formula [13, 14],
and its behaviour is illustrated in Figure 2.1: for A = 0, then E;.x—0 = E, where
E, = (U|Uee|¥o) — Ep is the exchange energy of the system as exactly defined within
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Ex = Exc,)\=0

Txc Y

FIGURE 2.1: Schematic representation of the adiabatic connection. The Kohn-Sham

exchange-correlation energy F,. (light blue area) is obtained as the potential energy of

exchange-correlation of the many-body interacting system E . —1 corrected with the

transfered kinetic energy Ty, (light red area) along the path of integration of coupling
constant A between 0 and 1.

the Hartree-Fock method on the basis of the Kohn-Sham wave functions ¥g. For A =1,
then E,.—1 is the potential energy of exchange-correlation of the many-body system.
The quantity E,. as defined in Equation (2.46) corresponds to the light blue area of
Figure 2.1 and differs from the many-body exchange-correlation energy of the fully
interacting system by Ty, (light red area), corresponding to the transfer of many-body
kinetic energy along the integration path over A from 0 to 1.

Hence, it should be possible in principle to obtain F.. by mixing the exchange energy as
defined in Hartree-Fock methods (F,) and the many-body exchange-correlation potential
energy (Ege=1). However, the exact value of this mixing is unknown and depends on
the shape of the A dependence of E,. . If the dependence is strictly linear between
A=0and XA =1, then:

1
Ea:c = i(Ez + E:rc,)\zl) (248)

An hybrid functional based on Equation (2.48) is then built by substituting E,. x=1 by
its LDA formulation, as proposed by Becke [15]:

1
ElybBecke (B, + BLPA) (2.49)
In order to better capture the non-linear A dependence, more sophisticated mixing
schemes have been proposed. In their generic analytical formulation, hybrid functionals
are expressed as a combination of various LDA and GGA functionals with Hartree-Fock

exchange:
Ex"[n] = EyP* + ao(B)Y — EPA) + ag(BOA — EPA) + ac(BEOA — BIPA)
The different terms are:

e ELDA: exchange-correlation functional as defined in the LDA.
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ENF . Hartree-Fock exchange obtained for the non-interacting particles system.
ELDA
x

: LDA exchange functional.
ESIGA

: GGA exchange functional.

Ei“DA: LDA correlation functional.

GGA
EC

: GGA correlation functional.

The coefficient ag, a; and a. are optimized with different LDA and GGA exchange-
correlation functionals and weight the semi-local approximations in Ery°[n].

A nomenclature has been adopted for hybrid functionals, related to the different terms:
the first letter correspond to the GGA functional used for the exchange energy, followed
by the number of coefficients ag, a; and a. to be optimized, followed by the letters
corresponding to the GGA functional used for the energy: for example the popular B3-
LYP functional uses the Becke GGA functional for the exchange energy [16], and the
Lee-Yang-Parr GGA functional for the correlation energy [17]. The three coefficients
are :

ag = 0.20
a, = 0.72
a. = 0.81

The B1-WC functional has been optimized by D. I. Bilc et al [18] at the Université de
Liege and uses the Perdew-Burke-Ernzerhof GGA functional for the correlation energy,
and the Wu-Cohen [19] GGA functional for the exchange energy. Only ag is optimized.
A value of ag = 0.16 has been obtained. The other coefficients are fixed at: a, =1 — ag
and a. = 1.

The B1-WC was designed to predict properties of oxides with a better agreement to ex-
periments as compared to the semi-local approaches, specifically perovskite BaTiO3 and
PbTiO3. The performance of hybrid functionals has been reviewed in References [20, 21],
concluding that it is an ideal formalism to get past the typical shortcomings of semi-
local functionals. Numerous manuscripts have been published, based on the B1-WC
functional in several fields of material physics, such has ferroelectrics [18, 22|, ferromag-
nets [23] or thermoelectrics [24, 25]. Additionally, it has proven to properly characterize
the 2-dimensional electron gas at the SrTiO3/LaAlO3 interface [26-29]

The calculations involved in the present work have been mostly performed using the
B1-WC functional.

2.2.5 Solving the Kohn-Sham equations

The Kohn-Sham ansatz allows one to calculate the exact density and energy of the
ground-state of a many-body electron system by solving independent-particles equations.
The approximation of the exchange-correlation energy FE.. chosen, there remains to
effectively solve the equations. In practice, the external Kohn-Sham potential v4(r)
depends implicitly on the electronic density n(r). Hence, both electronic density and
external potential must be determined self-consistently. The routine for finding both is
illustrated in Figure 2.2.
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Initial guess
n(r)
|
Y
Calculate effective potential
Vs (I‘) = Uczt(r) + UH(r) + Uzc(r)

\
Solve the Kohn-Sham equation
Linear mixing -4V + 0, (1)][1(0)) = €16 (x))

input __ output _ input
Npew = ONg1g + (1 a)nold
A

y

Calculate the electronic density

|¢i(r)) = n(r)

'

Self consistency
reached ?

NO

Output quantities

Energy, eigenvalues, forces, ...

FIGURE 2.2: Schematic representation of the self-consistent loop for solution of Kohn-
Sham equations.

First, an initial guess of the density n(r) (which can be, for example, the sum of contribu-
tions calculated for the individual atoms) generates a Kohn-Sham potential vs(r). Then,
the Kohn-Sham equations are solved with this external potential: the calculated single
particle wave-functions |¥;(r)) determines a new electronic density (different from the
initial one), which is then used to generate a new external potential v,(r). This proce-
dure iteratively generates n and vs and should converges to a self-consistent Kohn-Sham
solution. The convergence criteria are usually based on the difference of energy, density
or potential between two successive steps, which should decreases as the procedure goes
on.

The procedure can only converges with a judicious choice of the new potential and
density calculated at the last iteration. However, converging toward a self-consistent
solution is not always straightforward. Often, strong oscillations can lead to large com-
putational times, if not a complete divergence of the solution. A simple solution to
reduce oscillations is the approach of linear mizing: instead of using the new calculated
density n(r) to generate vs(r), the electronic density input at step i + 1 is estimated as

. . . input tput . .
a fixed linear combination of n;"™"" and n;""""" at step i, as given by:
input output input __ input output input
nig = an; +(1—a)n, " =n,"" +a(n; —n; ) (2.50)

where « is the mixing parameter. In the absence of any other information during the
calculation, linear mixing forces the procedure to evolve in an approximate steepest
descent direction for minimizing the energy.
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F1GURE 2.3: A 2-dimensional crystal lattice composed of two atoms X and Y, with a
periodic pattern all over space. The crystallographic unit cell is defined by the dashed
line.

2.2.6 Boundary conditions and summation in reciprocal space

Crystalline materials are characterized by a highly ordered microscopic structure, form-
ing a crystal lattice. The bulk properties of a crystal can be conveniently modelled by
accounting for a single unit cell, usually the small unit that can be used to reproduce
the pattern of the lattice, repeated infinitely in all directions as illustrated in Figure 2.3.
With these considerations, we can use periodic boundary conditions when modelling
such systems, to account for the translational invariance.

Moreover, periodic boundary conditions allows one to use the Bloch theorem to model
the electronic wave functions within the unit cell. This theorem imply that, within a
periodic potential, the electronic wave function ), k(r) can be written as the product
of a plane wave and a function u, k(r) that has the same real-space periodicity of the
crystal lattice:

Yna(r) = €T w1 (1) (2.51)

where k is a reciprocal space vector and n the band index. The function u, x(r) has to
be expanded on a well defined basis set, usually plane-waves or local functions (atomic
orbitals). In the reciprocal space is defined the reciprocal lattice associated to the
lattice in real space, and according to the symmetries of the system several vectors
k correspond to the same solution %, k(r). As these k vectors are redundant in the
description of the physics, the reciprocal space is restricted to a small region containing
all the non-equivalent k vectors. This region is called the irreducible Brillouin Zone
(IBZ), and correspond to a Wigner-Seitz cell of the reciprocal lattice.

In the limit of an infinite periodic system, the sum over a fixed amount of k-points in the
IBZ can be substituted by an integral over all the k-points within the IBZ. In practice
however, the value of the sum converge quickly with a finite number of k-points, in a
uniform mesh within the cell. The sampling of the Brillouin zone must be carefully
tested to have a satisfying level of precision.

Periodic boundary conditions are very useful to describe bulk materials, but are not
appropriate when studying systems where the long-range microscopic order is no longer
valid, like at surfaces, for isolated thin films, molecular systems, or systems with defects,
which are not expected to be ordered in real solids.
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FIGURE 2.4: The unit cell of a 2-dimensional periodic system containing two atoms X

and Y is expanded as a 2 x 2 supercell contains 4 X atoms and 4 Y atoms, which can

contains one defect. Here, a Y atom is substituted by a defect D, leading to a defect

density of 1/4. A larger 3 x 3 supercell can be used to model a defective system with
a lower density of defects of 1/9.
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FIGURE 2.5: (a) An heterostructure of two stacked materials, alternating between four

monolayers of atomic planes X and three monolayers of atomic planes Y. (b) Surfaces

can be modelled by including a vacuum inside the unit cell. In this simple schematic
representation, there is two types of surface, of both X and Y terminations.

In the particular case of point defects (vacancies, antisite defects, substituted atoms,...),
a convenient way to model them is the supercell approach. In this approach, the periodic
conditions remain in application, and so does the Bloch theorem, but the crystallographic
cell no longer corresponds to the unit cell of the pristine lattice: it is larger, and it is
possible to include the point defects in such a cell (as illustrated in Figure 2.4). Of course,
given the periodic conditions, the distribution of defects also follows the new periodicity.
If one is interested into the properties of the isolated defect, one must consider using a
rather large supercell, and check if the interactions between the defect and its periodic
images are negligible.

The supercell approach can also be used to study heterostructures made of different
materials stacked on top of each other (where the “building blocks” are the unit cells
of the parent compounds), as seen in Figure 2.5.(a) and thin films with a vacuum.
When modelling a surface, a vacuum area is explicitly included in the cell, as shown in
Figure 2.5.(b). If this vacuum area is large enough, the interactions between the surface
and the periodic image become negligible, and we can consider the surface as isolated.
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2.2.7 Pseudopotentials

In quite a lot of situations, the interesting properties of a material is due to the outer
shells electrons of the different atomic species constituting the material, as they are
the electrons involved in the bonding between neighbouring atoms. The principle of
pseudopotentials is to replace the strong Coulombian potential of the atomic nucleus
and the effect of the inner shell electrons (tightly bound to the nucleus) by an effective
potential acting on the outer shell electrons, accounting for both Coulombian interactions
from nucleus and inner shell electrons. The pseudopotentials can be calculated from the
individual atoms, and be transferred to study more complex systems. Finally, using
pseudopotentials have the advantage of reducing the complexity of a given problem and
to be less computationally intensive, as only the outer shell electrons a treated explicitly
in the Kohn-Sham calculations. This is necessary when using a plane-wave basis set, yet
less important when using a local basis set. An introduction to pseudopotentials can be
found in Reference [3].

2.2.8 Simulation programs implementing DFT

There exists a large variety of computer programs that implement DFT. Some of them
are open-source, such as ABINIT or SIESTA, whereas some are proprietary, such as
VASP or CRYSTAL. The different DFT codes differ by how they implement DFT,
as well as by different optimization algorithms, the functionals for exchange-correlation
(semi-local functionals, hybrid functionals), the boundary conditions (periodic or finite),
and so on.

The choice of a given DFT package can also be motivated by the basis set used to expand
the electronic wave functions: in many cases, wave functions are usually built either
from plane-wave basis sets (ABINIT, VASP,...) or with localized basis sets (SIESTA,
CRYSTAL,...). The later offers the advantage to be less computationally demanding
and more appropriate when modelling finite systems (films, molecules). Indeed, at the
surface of a film, or outside of a molecule, the charge density decreases drastically, and
it is more straightforward to reproduce this behaviour from localized function than with
spatially extended plane waves.

Almost all the calculations involved in the present work has been performed using the
CRYSTAL package (unless specified otherwise) which is briefly presented in the following
section.

2.2.8.1 The CRYSTAL package, general features

The CRYSTAL [30, 31] package can perform ab initio calculations of the ground state
energy, energy gradients, electronic wave function, density and various properties of solid
state systems.

With CRYSTAL, the single particle wave functions 1;(r; k), solutions of the Kohn-Sham
equations, are expanded as a linear combination of Bloch functions, defined in term
of functions u, k(r) (Equation (2.51)), which are built as linear combinations of local
functions (atomic orbitals). These local functions are linear combinations of Gaussian
type functions x(r), whose exponents and coefficients are defined beforehand and shall
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be optimized depending on the desired accuracy. Different functions of symmetry s, p,
d, f and even sp can be used to build the basis functions.

As mentioned previously, localized basis sets are more appropriate to study finite sys-
tems, motivating their use in the present work. They also present other advantages:

e the exchange energies are easier to calculate, however this is not the case for kinetic
energies;

e the interactions between electrons localized in 3d orbitals around the Fermi level
are better reproduced with local functions than plane waves, as these orbitals are
much more localized in real space.

Each atomic orbital is a combination of Gaussian functions x:

x(r,0,0) = [ 30 Cre™ | [11Yin(6,0)] (2.52)
J

with «; being the exponents and C; the coefficients of the radial parts of the atomic
orbitals whereas Y},,,(0, ¢) are spherical harmonics. The choice of the basis set is a fun-
damental and crucial step in defining the level of calculation and its accuracy, especially
when dealing with periodic systems where many chemical bonds can be found.

With CRYSTAL and its post-processing tool properties, we are able to compute the
following properties (amongst several others):

e the electronic structure of periodic and non-periodic systems: wave functions,
electronic density, eigenenergies and related band structure and density of states,
the total energy;

e forces and stresses to relax the atomic structure and find the configuration of
minimal energy;

e magnetic properties within the collinear-spin approximation.

2.3 Boltzmann transport theory

Part of this work focuses on the thermoelectric properties of novel materials exploiting
low-dimensional electron systems to increase their performance. These materials are
often characterized by a dimensionless factor ZT, related to their efficiency in converting
an applied electric voltage to heat and vice-versa. :

S20
Ke + Ki

ZT = T (2.53)
In the above relation, S is the Seebeck coefficient, o the electrical conductivity, 17" the
temperature and k. and k; the electronic and lattice contributions to the thermal con-
ductivity. This factor is known as the thermoelectric Figure of Merit, and more infor-
mations and discussions on the involved quantities are given in Chapter 6. In order to
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study thermoelectric compounds from first-principles, one should be able to compute
these properties for any given compound, and we will describe in this Section how to
proceed to do so from the Boltzmann transport equation. In the following discussion,
we will mostly focus in the electronic properties, hence we will avoid further discussion
on k;. All the others coefficients S, o and k. are properties that can be derived from
the electronic structure.

The Boltzmann transport equation can be written® as:

df (r,k,t)
dt

= Ve v+ Vi (e 1)+ PG ORIy 5y

scatt

This equation describes the statistical behaviour of a fluid not being in the thermo-
dynamic equilibrium. In the present case, we only consider a fluid of electrons*. The
different quantities involved in this equation are:

f(r,k,t), which is the statistical distribution of the electrons (Fermi-Dirac) and
can be both space and time dependent (the r and k values are altered by external
fields and collisions);

€k is the energy of the electrons with a momentum k;

F is the force driving the group motion of the electrons and is related to the applied
fields;

, k)
at scatt

vk is the group velocity of electrons with a momentum k.

is the variation in distribution due to scattering;

The group velocity of electrons vy is calculated from the derivatives of the eigenenergies
in the reciprocal space:

Vk — %Vkek (255)
Let us consider that the electrons are submitted to a temperature gradient and an
electric field. Under such constraints, their statistical distribution changes and reach a
steady state. For the steady state case with small temperature gradient and/or electric
field, we can assume that the time variation of the distribution is much smaller than the
spatial variation of the distribution; hence, we can neglect the term 0f/0t, and we can
rewrite Equation (2.54):

O 4 v, (—e) Oy _ 9 (2.56)

Vior dexc ot

scatt

where (—e) is the charge of electron, T is the temperature and E is the electric field.
An additional approximation can be made to further simplify the equation, known as
the relaxation time approximation. It consists in considering a linear evolution from the
equilibrium distribution fl(() to the steady state distribution fx under the temperature

3For clarity, these equations will be written in SI units in this Section.
4The Boltzmann transport equation is more general and can be used in different context, like phonon
transport.
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FIGURE 2.6: The Fermi-Dirac distribution, at 0 K and at finite temperature.

gradient and/or applied electric fields, as follows:

9 fx N
VkaiTVT + Vk.( e)TekE = 77_1( (257)

where 7 is the relaxation time.

In the case of fermions like electrons, the equilibrium distribution follows the Fermi-Dirac
statistic:

1
- elex—n)/ksT |

i (2.58)
where flg is the electronic distribution at the equilibrium and p is the chemical poten-
tial. This distribution has a step-like shape at 0 K, and gets smoother as temperature
increases (as shown in Figure 2.6). Let us now take a look to the different transport
quantities, the electric current J and the thermal current Q. These currents originates
from the applied electric field and thermal gradients, and the relation between the causes
and the effects can be written with the following expressions:

J=LggE+ LgrVT (2.59)
Q= LrgE + LrrVT (2.60)

The electrical conductivity is defined under an electric field only (VT = 0):
J=cE — o=VLgg (2.61)
The thermal conductivity is defined when there is no current (J = 0):

Lrg - LET) (2.62)

Q = —/ieVT — Ke — — (LTT —
Lgg

The Seebeck coefficient S is also defined when J = 0, and using Equations (2.59)
and (2.60) it follows that:

L
E=SVl = §=_—-2L (2.63)
Lgg

Now that these quantities and coefficients are well defined, we can go back to the sim-
plified Boltzmann equation (2.57). We have:

0
fx = f}? — Tk Vk %VT — Tk Vk (—6)

Jx

2B (2.64)
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If we make the reasonable hypothesis that the steady state distribution fi is a small
deviation from the equilibrium distribution fg, hence we have flg ~ fx and, based on
the knowledge of the analytical formulation of fl(() given in Equation (2.58), the following
derivatives can be expressed:

Vie g VT~ Ve VT < - ) B, kyr (2.65)
Jx fe
Vi ( )86k Vi ( >aEkE (2.66)

We now have the linearized Boltzmann equation:

0 afe fe
fe = e = evie 5 VT = TV (—e >8ekE (2.67)

The thermal current Q and the electric current J can now be expressed in term of the
steady state electronic distribution fy, only accounting electronic transport:

—e) Z vifk = Z Vi VKTk [e fk E - %J;lf VT] (2.68)
k
= é Z Ekkak = 5 Z €EkVKkVKkTk [aa];lf VT — gfll: E:| (2.69)
k k

where 2 is the volume of the unit cell the crystal. Expressions (2.68) and (2.69) show
that the coefficients Lpg, Lgr, Lrrp and Lpp in Equations (2.59) and (2.60) can be
calculated from the derivatives of the energies €, and the derivatives of the equilibrium
distribution. As the function 0 fl({) /Oex only takes significant values around the chemical
potential u, the electrons who contributes to the conductivity are those with energies
around p, in agreement with band theory.

While the Seebeck coefficient S, the electrical conductivity o and the thermal conduc-
tivity k are usually referred to as as coefficients, they may actually be anisotropic and
shall actually be referred to as second-order temsors. Similarly to the density of state,
the conductivity distribution tensor is a distribution over the energies and accounts for
all the contributions to the conduction from electrons with a given energy e:

oaple) =e Z TkVa (k)vg(k)o(e — ek) (2.70)
In Equation (2.70), the group velocities are summed and expressed with respect to their
individual components.

If we assume that, for any k, the relaxation time is constant and equal to 7« = 7, then
the conductivity distribution becomes:

oap(€) = =e?r Zva (€ —ex) (2.71)
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Once the conductivity distribution is calculated, the different transport properties can
be calculated by integrating over the energies [32]:

os () = ¢ [ oapte) [-2LLT e (272

s (T = o [ uate) (e w? [ 220 (2.73)
" () (e — oy [T T

S (T, 1) = % /‘“’ /Hj i:;(e) [M) a[ 7 ;T;ii de] ’ (2.74)

Again, the factor —Jf/Je appears in the integrands in Equation (2.73), (2.74) and (2.74),
hence only the electronic states of energy close to u will be involved in these different
properties.

2.3.1 Computing the thermoelectric tensors with the BoltzTraP soft-
ware

BoltzTraP [32] is a computational tool which can be used to compute S, o and k.,
amongst other electronic structure related properties, and is based on the Boltzmann
transport theory within the constant relaxation time approximation (CRTA). The differ-
ent eigenenergies €y, Fermi level, symmetries in real and reciprocal space and additional
structural information (volume) are typically output from DFT calculations, and can be
used as input for BoltzTraP to compute the aforementioned properties. As Boltzmann
transport theory involves derivatives of the energies, the electronic band structure must
be well-resolved to be properly interpolated by analytical functions. The BoltzTraP code
includes a routine for the expansion of the band structure, based on smooth Fourier in-
terpolation. As the fitted functions are analytical, it is straightforward to compute the
group velocities and the tensors Sug, 0ap and k55, from the formula (2.71), (2.73), (2.74)
and (2.74).

The Boltzmann transport equation in the constant relaxation time approximation does
not provide a value of the relaxation time 7. This is not a problem for the Seebeck
tensor, as a constant 7 disappears in the expression (2.74) of S. However, it does not
disappears from k. and o. Therefore, BoltzTraP can only provide the values of /7
and ke/7, and T has to be determined by other means. A simple solution is to fit the
relaxation time to conductivity measurements at known carriers densities.

In general, the Fermi level p and the temperature 1" are parameters which control the
behaviour of the properties in a given energy landscape. The Fermi level is well defined
for a metal (with a defined Fermi surface), and falls within the electronic band gap in
case of a semiconductor. In the semi-classical picture, the position of u with respect to
the band edges also depends on the majority carrier density (holes or electrons), which
can be controlled via doping (chemical substitution...). These considerations highlight
another implicit hypothesis when calculating the transport coefficients: the rigid band
approximation. In a lot of cases, we can purposely consider the band structure of the
host material as rigid and ignore the effect of impurities and carrier concentration. This
hypothesis greatly reduces the complexity of the problem, as it is computationally inten-
sive to compute the properties of defective system, and usually requires large supercells
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to probe realistic densities of dopant. In the later part of the manuscript, we will come
back on theses approximations and their shortcomings in specific cases.

2.4 In summary

In this Chapter, we presented the general framework behind DFT, the practical im-
plementation of the theory through the Kohn-Sham ansatz to solve complex electronic
problems, the different aspects of the approximate exchange-correlation functionals, the
principle and advantages brought by pseudopotentials and a brief presentation of the
CRYSTAL package and its main features. As a general theory, DFT can be used to
study a large amount of solid state electronic systems. In this work, we will present
different systems: bulk crystallines phases, superlattices, heterostructures with surfaces
and defectives systems. The technicalities for each study will be detailed in their spe-
cific Chapter. Of course, we purposefully ignored to detail every intricacies of DFT,
deemed irrelevant for the present work, and we encourage the curious reader who desire
a deeper understanding of the theory to read the work of Richard Martin [3] or Sholl
and Steckel [33].

In addition to the general aspect of ab initio calculations, we introduced Boltzmann’s
transport theory, how to calculate the transport tensors involved in thermoelectricity,
and the BoltzTraP code implementing this theory based on the ab initio band structure.



Chapter 3

Reviewing the origin of the 2D
electron system at the

SrTiO3;/LaAlO3 interface

In this Chapter, we review the origin of the two-dimensional electron system (2DES) at
the interface of polar/non-polar oxides. Specifically, we will focus on the seminal inter-
face between SrTiO3 (STO) and LaAlO3 (LAO), which hosts a two-dimensional electron
gas without relying on chemical doping. We will review the different propositions, avail-
able in the literature, aiming to explain the origin of the 2DES, and we will present in
detail the specificities of an electric field driven mechanism, commonly referred to as
“polar catastrophe”.

3.1 Interfaces and two-dimensional electron systems

A 2DES consists in an electron gas where the electrons are free to move in a two dimen-
sional plane, but are tightly confined in the transversal direction to that plane. This
confinement ensures quantized energy levels for motion in this transversal direction. The
realization of such a 2DES can be realized within quantum wells, which can be engi-
neered at interfaces between different insulating materials. Such materials with a well
defined interface are called heterostructures.

In a perfect and infinite crystal, the atoms are perfectly arranged in a Bravais lattice.
However, this picture is not exact in reality, as crystals present defects and interfaces
with other materials/phases, and the properties of the electrons and atoms near the
interface are not the same as those of the bulk phase. These new emerging effects can
be exploited for specific applications.

The most common 2DES are found within metal-oxide-semiconductor field-effect tran-
sistors (MOSFETSs). MOSFETs are made of different compounds, namely a metal, an
insulating oxide, and a doped semiconductor (usually, silicon): with a good combination
of band alignment, band bending at the interface, and with the application of a gate
voltage, a thin sheet of electrons can be formed in the semiconductor close to its interface
with the oxide, highly mobile in the plane of the interface. These MOSFETs are the

31
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most common transistors in digital circuits and provide the basic switching functions
(between an insulating and a conducting phase) required for the implementation of logic
gates.

In the precedent example, the 2DES is not a steady state of the interface, and must be
activated by gating. It is however possible to achieve a 2DES at the interface between
polar and non-polar oxides, where the interface is at the origin of a quantum well, while
the polar oxide provides the electron carriers, bringing them within the quantum well.
While the density of carrier within the well can still be controlled by a gate voltage, the
2DES already exists without the application of a gate voltage.

The realization of such an interface is performed through the deposition of a film on
the surface of a substrate material. When the deposited film bonds with the substrate,
the growth is called epitaxy, and the nature of the substrate surface determines the
orientation of the deposited film. For an efficient bonding, the atomic structure of
the deposited film and the substrate must be similar, but the two materials do not
necessarily need to have the same crystal class or symmetry. If the film is thin, then
its crystal structure will adapt to the substrate to fit its geometry. Hence, the in-plane
lattice parameters are either increased or decreased depending on the substrate lattice
parameters compared to their bulk values, and the relative difference in in-plane lattice
parameters defines the epitaxial strain. In addition to the in-plane strain, an out-of-plane
strain also occurs through the Poisson effect: if the film is expanded in-plane, then the it
is contracted in the out-of-plane direction, and vice-versa. Hence, for the same overlayer
termination, the choice of a specific substrate can be used to tune the properties near
the interface, such as the ferroelectric, magnetic, orbitals ordering, orbital degeneracy
and splitting.

The technique of growth of oxides heterostructures with satisfying quality is rather
recent compared to the growth of semiconductor-based heterostructures, for different
reasons: on one hand, the apparent lack of direct applications did not motivate their
development, and experimental limitations made these systems less studied despite the
large array of physical properties. Nowadays, the techniques have improved, and it is
possible to synthesize good substrates with a well defined surface (for example, for STO,
the novel chemical treatments make it possible to obtain a perfect SrO or TiO4 layer for
a (001) surface [34-36]).

Once the substrate obtained, the deposition of the film on top of the substrate can be
done by several methods, the most popular ones being pulsed laser deposition (PLD)
and molecular beam epitaxy (MBE). PLD is based on the principle of vapour deposition:
in a chamber, high power laser pulses strikes a target material which will constitute the
film to be deposited on the substrate. The target is vaporized from the impact and
transformed as a plasma, the ions in the plasma have high velocities and are redirected
toward a heated substrate, where they condense and form the film. The process can
be done either in an ultra high vacuum or in the presence of a background gas: this is
the case for oxide heterostructures, which are grown in presence of gaseous oxygen to
properly oxygenate the deposited film. The growth conditions (in terms of laser fluence,
temperature and oxygen partial pressure) are important parameters which control the
quality of the heterostructures and their overall properties (for example, low oxygen
partial pressure leads to large concentration of oxygen vacancies). MBE is processed in
an ultra high vacuum chamber, where the target material to be deposited is heated until
sublimation, then migrated toward the substrate where it is adsorbed at the surface
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to form the film. The main advantage of MBE is that the species have lower kinetic
energy as they approach the substrate, limiting the formation of defects during growth.
The growth process can be monitored with reflection high-energy electron diffraction
(RHEED). The pattern of the electron diffracted at the surface yields information on
the roughness of the surface, and can be used to control with precision the number of
deposited layers.

3.2 General technicalities

Before going further, we specify the general technicalities of our first-principles calcu-
lations, for which the results are presented and discussed in this Chapter, as well as
Chapter 4 and 5. We use the CRYSTAL code [37] to compute from DFT the structural
and electronic of bulk LaAlO3 and SrTiOgs systems, as well as heterostructures based on
these compounds.

3.2.1 Structural models

As our methodology limits the size of the systems we aim to study, we need to use
appropriate structural models in the same spirit as described in Section 2.2.6. The key
quantity to model is the interface between LAO and STO, as shown in Figure 3.1.(a).
Such a system has to be reduced in a thin film geometry, usually a few nanome-
tres thick. Examples of possible STO/LAO heterostructures along the (001) direc-
tion are shown in Figures 3.1.(b-g): (b) displays the unit cell (black dashed line) of
a vacuum/(STO)4/(LAO)s/vacuum slab with a TiO2/LaO interface where periodic
boundary conditions are applied in all directions. The large vacuum region' ensures
that the LAO surface does not interact with the STO surface. The STO sublattice
has to be thick enough to mimic a STO substrate. This type of heterostructures has
the disadvantage to present a STO surface which pollutes the computed results (with
the presence of surface electronic states, surface distortions, ...); to circumvent this, a
symmetry plane (or center) can be imposed to the system, resulting in a symmetric slab
with two identical surfaces as shown in (c) and ensures that the two surfaces are treated
equivalently in the calculations while suppressing the STO surface (in the illustration,
the system consists in vacuum/(LAO)y/(STO)7.5/(LAO)y/vacuum).

Beyond the heterostructures with surfaces explicitly included in the unit cell, it is possi-
ble to build periodic superlattices with no vacuum region. An example is shown in (d) as
a stoichiometric (STO)s5/(LAO)s5 superlattice. If the superlattice is stoichiometric, then
the cell must include necessarily a TiO2/LaO interface and a AlOy/SrO interface. As
discussed in the next Section, the LAO sublattice is polar with a built-in electric field,
and therefore, the closed circuit electrical boundary conditions imposed by the periodic
boundary conditions lead to an (opposite) electric field in the STO sublattice so that
the average electrostatic potential over the whole cell is zero. Another possibility are
symmetric off-stoichiometric superlattices, shown in (e) and (f) with respectively two
TiO2/LaO and two AlO2/SrO interface. The off-stoichiometry of the LAO sublattice
leads to a doped system, with no electric-field in the LAO layer. These superlattices are

!The thickness of the vacuum region depends on the system: in the slab geometry, CRYSTAL fixes
the size of the simulation box to 500 A, ensuring that the vacuum region has a similar thickness, usually
between 450 and 500 A.
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FIGURE 3.1: (a) Schematic representation of a STO(001)/LAO heterostructure with a
visible surface. The key system to model at the atomic scale is the interface shown in the
zoom on the right. Several structural models can be used while keeping the periodic
boundary conditions: (b) a (STO)4/(LAO)s/vacuum heterostructure; (c) a symmet-
ric vacuum/(LAO)2/(STO)7.5/(LAO)2/vacuum heterostructure; (d) a stoichiometric
(STO)5/(LAO)s superlattice, without any vacuum region; (e) an off-stoichiometric and
symmetric (STO)s 5/(LAO)4 5 superlattice with two n-type (TiO2/LaO) interfaces; (f)
an off-stoichiometric and symmetric (STO)s 5/(LAO)2 5 superlattice with two p-type
(AlO5/SrO) interfaces; (g) the film featured in (c) expanded as a 2 x 2 supercell in-
cluding one oxygen vacancy (Vo) at the surface. The unit cell is displayed as dashed
black lines. The green vertical dashed lines show the symmetry planes in the symmetric
superlattices.
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particularly useful to study the doped interfaces, as it fixes the carrier density to 0.5
electrons (e™) (0.5 holes ( A™)) per unit cell (O).

To mimic the strain induced by the STO substrate to the LAO layer, the in-plane cell
parameter is fixed to the relaxed value of bulk cubic STO.

Finally, it is possible to incorporate defects by the means of supercells. An example
is given in (g), where a symmetric slab with a surface region in expanded as a 2 x 2
supercell incorporating one oxygen vacancy at the AlOs surface in LAO. The periodic
boundary conditions leads to an area density of oxygen vacancies of 1/4C1.

In the present Chapter as well as Chapters 4 and 5, calculations are performed either
on the bulk compounds, off-stoichiometric superlattices (Figure 3.1.(e-f)), pristine sym-
metric films including a vacuum region (Figure 3.1.(c)) and defective symmetric films
including a vacuum region (Figure 3.1.(g)). The thicknesses of the films will be specified
for each type of calculations.

The symmetric heterostructures in the slabs geometry shall be referred to as STO(001)/LAO,,
for different LAO thicknesses m, independently of the thickness of the STO layer acting
as the STO substrate.

3.2.2 Methodological details for the DFT calculations

Regarding the Gaussian basis set, all the electrons have been included for Ti [38], O [39]
and Al [40], while we use a Hartree-Fock pseudopotential [39] for Sr and the Stuttgart
energy-consistent pseudopotential [41] for La. The basis sets of Sr and O have been
optimized for STO. In the basis set of La, the Gaussian exponents smaller than 0.1
were disregarded and the remaining outermost polarization exponents for the 10s, 11s
shells (0.5672, 0.2488), 9p, 10p shells (0.5279, 0.1967), and 5d, 6d, 7d shells (2.0107,
0.9641, 0.3223), together with Al 4sp (0.1752) exponent from the 8-31G Al basis set,
were optimized for LAO.

The exchange-correlation energy is modelled with the B1-WC hybrid functional [42]. A
Monkhorst-Pack mesh [43] of 6 x 6 x 6 special k-points is used for cubic bulk LAO and
STO, ensuring a proper convergence of the total energy and forces below 1 meV. The
sampling is then refined into a 12 x 12 x 12 mesh of special k-points for the computation
of properties such as the electronic density of state or the vibration modes at the I' point
in the IBZ.

For the heterostructures, the Brillouin Zone sampling is adapted to a 6 x 6 x 1 mesh.
It is then refined to 12 x 12 x 2 to compute the electronic band structure and related
density of state. A smearing of the Fermi surface has been set to kg7 = 0.001 Ha.
The self-consistent DFT cycles are considered to be converged when the energy change
between cycles are smaller than 1078 Ha. The optimization of the atomic positions
are performed with convergence criteria of 1.5 x 10~* Ha/Bohr in the root-mean square
values of the energy gradients, and 1.2 x 1073 Bohr in the root-mean square values of the
atomic displacements. The evaluation of the Coulomb and exchange series is determined
by five parameters, fixed to their default [44] values: 7, 7, 7, 7 and 14.

The technical details for the calculations of the systems with oxygen vacancies are similar
to the ones used for the pristine slabs in term of basis sets, convergence threshold and
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investigated geometrical configurations for the heterostructures. Oxygen vacancies (Vo)
have been modelled by removing explicitly an oxygen atom from its site (core and
electrons), while leaving “ghost” oxygen basis functions on the site to properly model
the electron density within the vacancy. Different sizes of supercell have been used in
the study (mainly 2 x 2 and 2 x 3 supercells), with adapted Brillouin zone sampling with
respect to supercell size. formation energies E?’ =0 are calculated in the O-rich limit
from the relation:
0 1 1

Ef,,u:O = niv Ey — [EO - n’UiEOQ:I (31)
where Ey and Ej are the calculated total energy of the systems with and without Vg,
n, the number of Vg in the supercell, and Ep, the calculated total energy of the single
O2 molecule in the triplet state.

Equation 3.1 only consider the enthalpic contribution at 0 K to the formation energies,
within a vacuum environment. To account for the atmosphere during growth, considering
the environment as a reservoir, one has to consider the chemical potential of oxygen
1o (p, T') relative to the gaseous phase at finite oxygen partial pressure p and temperature
T, so that:

1 1
Ej, = e By — [Eo = nvg (Eo, + f10,)] (3.2)
Ef, = E},o+popT) (3.3)

In the relation above, uo(p, T') is calculated from the thermodynamic model [45, 46]: the
details of the calculation can be found in Appendix A. uo(p,T) is usually considered as
a parameter depending on the environment; for the purpose of this study, we set up =
—2 eV according to the growth conditions of standard STO(001)/LAO heterostructures
and is identical to the value used in Reference [47].

3.3 SrTiO3 and LaAlQOj; in their bulk form

LAO and STO are two compounds of the ABQOg perovskite family, which forms a class of
oxide compounds that attracted a significant amount of interest in the field of material
science. This is due to the large panel of properties they offer and the many potential
applications related to these properties. The first perovskite compound discovered was
CaTiOg3 in 1839 by Gustav Rose, who simply named the crystal perovskite in honour of
Russian mineralogist Lev Perovski (1792-1856). The name nowadays refers to the AB X3
structure, where A and B are cations and X is an anion, oxygen in the case of oxides,
or fluorine for fluoride, or chlorine for chlorides. F, O and Cl are elements with large
electronegativity, hence these perovskites are known for their strong ionic character.

Within the 5-atoms unit cell of oxide perovskites, the B cation is located at the center of
an octahedron formed by the 6 neighbouring O atoms, while the A atoms are positioned
at the corner of the cubic cell, as shown in Figure 3.2.(a). The B cation is usually a
transition metal bonding with the neighbouring oxygens forming the octahedron, thanks
to O 2p — B d bonding.

The formal valence of oxygen in ABOs3 perovskites is most of the time O2?~, which
constraints the valence configurations for the cations: either A'* B3+ A%+ B4+ and
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A3 B3t generally (A*T B2t has been witnessed in PbTiO3). The valence of the cations
has a great importance when considering perovskites deposited as films on a substrate,
as the individual layers may hold different charges per unit cell. For example, in the
(001) direction, we can have respectively (AO°, ABY) neutral planes for A*B3*: or
charged planes (A0, AB; ) or (AO~, ABy) for A2t B** and A3* B3t respectively. As
a consequence, even though a perovskite is centrosymmetric in bulk form, it can display
a polarity in film form depending on the deposition process. We will come back to this
point when addressing the STO(001)/LAO interface.

The perovskite family is generally not strictly cubic: most of the time, the crystal
structure stabilizes in a symmetry subgroup involving rotations and distortions of the
BOS octahedra. The different structures of oxide perovskites have been described by
Goldschmidt [48], who proposed a tolerance factor « to classify the possible distortions
from the ideal cubic structure:

. TA+TO
¢ \/5(7“3 +7ro) (3'4)

where r4, rg and rg are respectively the ionic radii of the A, B and O species. Equa-
tion (3.4) may be rewritten as o = dAO/\/§dBQ where d 40 and dpo are the bond lengths
between A and O and B and O respectively. Depending on the value of a, the structure
will adapt:

e For a = 1, the adopted structure is the cubic one, as represented in Figure 3.2.(a).
This is the case, for instance, for BaZrOg. If this criterion is not satisfied, then
distortions occur and the symmetry is reduced. For a ~ 1, some distortions may
appear, like in SrTiO3 (a = 1.001).

e For oo < 1, in this case the radius of A is too small and does not fill the available
space in the cube. To maximize the AO bond properties, the BOg octahedra
rotates. The motions associated with this instability, with respect to the cubic
structure, are named antiferrodistortive motions: the O atoms no longer occupy
the center of the faces of the cube, as shown in Figure 3.2.(b); in addition to
this motion, the A cation can also moves through polar or anti-polar distortions.
Anti-polar motions appear in the Pnma phase due to the coupling with oxygen
rotation modes [49], which is stable for many perovskites with 0.8 < av < 1.0 (this
is the case for CaTiO3).

e For o > 1, the radius of B is too small compared to A, and the cubic structure is
unstable. The motion associated with this instability is the off-centering of the B
cations (shown in Figure 3.2.(c)), where B move away from its centrosymmetric
position. Such a distortion leads to the appearance of a polarization if all the B
cations moves in the same direction. Other distortions may also appears, but this
will not be a topic of discussion.

The variety of possible distortions for perovskites, in addition to other properties such as
magnetism (with spin ordering), charge ordering, orbital ordering, and superconductiv-
ity, makes this family an ideal system to study and for engineering possible applications.

In the present Section, we will review the basic properties of the bulk phases of LAO and
STO perovskites, in terms of experimental data and computational results, to highlight
the performance of the hybrid functional formalism (with the B1-WC functional) which
will be used in the rest of this manuscript to study the STO(001)/LAO interface.
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FIGURE 3.2: (a) 5-atoms cubic cell of the ideal, symmetric perovskite structure ABQOs;

(b) the same cell with a rotated BOg octahedron. Note that the translational symmetry

associated with the cubic primitive cell is lost; (c) the same cell, with an off-centring

motion of the B cation. The arrows highlight the displacements of the atoms. The
structures are drawn with the VESTA code [50].

We will also address the electronic properties of reduced SrTiOs_s from first-principles.

3.3.1 Structural properties

In terms of structure, both STO and LAO are members of the oxide perovskite family. At
room temperature, STO exists in its cubic form with a lattice parameter of a = 3.905 A.
However, at 110 K, STO undergoes a structural phase transition to a tetragonal phase
(I4/mcm), involving antiferrodistortive motions of the octahedra according to a a®a’c™
pattern the Glazer notation [51], with a subsequent increase of the c/a ratio. The
optimized lattice parameters of cubic STO (Pm3m) and tetragonal STO (I4/mcm)
are given in Table 3.1, as calculated with the B1-WC and the GGA-PBE functionals.
Notably the a value of the cubic phase as calculated with the B1-WC functional (a =
3.880 A) shows a good agreement with the experimental value.

LAO adopts a rhombohedral structure (R3c), which can be approximated by a pseudo-
cubic structure with a lattice parameter a = 3.811 A. The octahedral tilting in LAO
is characterized by a~a~a~ distortions with respect to the cubic phase?. Upon growth
on a STO substrate, the in-plane lattice parameter of LAO will be strained to adopt
the value of the lattice parameter of STO. Such a distortion will reduce to out-of-plane
lattice parameter of LAO through the Poisson effect. To estimate this distortion, we also
relaxed a tetragonal phase of LAO (P4/mmm) where a is set to the value of the relaxed
STO value, while ¢ is allowed to relax. The values of the lattice parameters are given in
Table 3.1, we also show the results obtained from GGA-PBE and values measured from
experiments. There is an overall improvement in accuracy of the predicted parameters
using the B1-WC, the relative error is about —0.52%, compared to 1.02% for the GGA-
PBE value.

3.3.2 Electronic properties

Both LAO and STO are band insulators, with electronic band gap of 5.60 eV and
3.25 eV respectively [54, 55]. Both have a strong ionic characters, with nominal valence

*In the following Sections, when addressing the STO(001)/LAO interface, we neglect the role of the
rotations in most cases.
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SI‘TiOg LaA103
Cubic Tetragonal Cubic | Rhombohedral Tetragonal
Pm3m I4/mem Pm3m R3c P4/mmm
a a c a a c a c c/a
B1-WC | 3.880 | 5.482 7.772 | 3.791 | 5.382 13.115 | 3.880 3.739 0.96
PBE 3.940 | 5.565 7.894 | 3.850 | 5.470 13.305 | 3.940 3.750 0.95
Expt. 3.905% 3.811° 3.905 3.750 0.96

TABLE 3.1: Relaxed lattice parameters of LAO and STO, for different E,. functionals,

in the cubic phase, the ground state phase (I4/mem for STO, R3c for LAO) and in a

constrained, tetragonal phase (P4/mmm) where a = b is fixed to the value for relaxed

cubic STO. The parameters corresponds to the crystallographic cell for the I4/mem
and R3c phases. The experimental values are taken from: ¢ [52],® [53]

F1cURE 3.3: The unit cells of STO and LAO in the cubic phase, with excess charge in
(001) planes as calculated from the oxidation numbers of the species: (Sr?2+027)? and
(Ti**037)° for STO, (La*t02?~)* and (A1*+037)~ for LAO.

Sr2FTi*t 03~ and La®tAI’*03 . In the (001) direction, the alternating AO and BOs
planes are neutral, in the case of STO, and charged in the case of LAO, as shown in
Figure 3.3.

The electronic band structure, calculated within B1-WC, for cubic STO, LAO and rhom-
bohedral LAO is displayed in Figure 3.4, with the associated indirect and direct (mea-
sured at the I" point) band gaps given in Table 3.4, calculated in the GGA (PBE flavor),
variational pseudo-self interaction correction functional [56] (VPSIC) and B1-WC, and
compared to the experimental values. Note that as the room temperature phase of LAO
is the rhombohedral one, the experimental value of the band-gap can be directly com-
pared to the calculated ones. The gaps for cubic STO and rhombohedral LAO calculated
from PBE are underestimated by about ~1 eV compared to the experimental values.
This relates to the well known band gap issue of standard (semi-) local DFT. The large
magnitude of the error on the electronic band gaps motivates the use of beyond stan-
dard DFT exchange-correlation functionals, such as VPSIC or the B1-WC, which both
reduces the absolute errors to 0.2 — 0.3 eV.

In addition to the gaps calculated for the room-temperature phases of LAO and STO, we
calculated those of constrained cubic LAO (in the Pm3m space group) and tetragonal
LAO (in the P4/mmm space group). For these phases, the direct and indirect gaps are
slightly altered compared to that of the R3c phase. The gaps calculated from B1-WC
remains above 5 eV in all cases. The correct description of the bands gaps of LAO and
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FIGURE 3.4: Electronic band structures of (a) cubic STO, (b) cubic LAO, (¢) rhom-
bohedral LAOQ, calculated with the B1-WC functional.

Symmetry Gap PBE VPSIC B1-WC  Expt.

SrTiO3 Pm3m  E,; 224 294 3.56  3.257
Eyq 260  3.30 3.91  3.75%
LaAlO§  Pm3m  E,; 386 523 5.19
E,q 422 551 5.53
LaAlOT  P4/mmm E,; 4.81 4.84 5.23
E,q 523 521 5.62
LaAlO} R3c E,; 459 5.78 5.60°
E,q 4.68 582  5.60°

TABLE 3.2: Indirect (E,;) and direct band gap (Ey 4 , at the I' point) of cubic STO,
cubic LAO (), tetragonal LAO (T) and rhombohedral LAO (}®). The VPSIC values
are taken from Reference [57]. The experimental values are taken from: ¢ [54],% [55]

STO at the bulk level is important in order to validate the methodology and address
the properties of heterostructures based on these compounds.

3.3.3 Dielectric properties of SrTiO; and LaAlO;

The dielectric properties of LAO and STO constitute key physical parameters deter-
mining the behaviour of the 2DES at the STO/LAO interface, as well as its origin in
terms of the polarity induced mechanisms. It is therefore important that the ab initio
calculations reproduce the experimental values of bulk LAO and STO, to ensure its
predictive power when treating explicitly the interface. The relative dielectric constants
of STO and LAO, calculated with the B1-WC functional, are listed in Table 3.3. For
LAO, we calculated the value of the component of the relative dielectric tensor for the
cubic phase, the tetragonal phase (where the lattice parameter ¢ = b is constrained
to match the STO lattice parameter), and the rhombohedral phase, to compare with
the experimental value. The calculated dielectric properties are in satisfying agreement
with the experimental data. The ab initio approach allows to probe the effect of the
strain on the out-of-plane dielectric component of strained LAO, which is decreased by
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Symmetry e,. €,, Expt.
SrTi0s  Pm3m 250 250  300°
LaAlO§  Pm3m 27 27
LaAlO] P4/mmm 36 23
LaAlOY R3c 21 21 21-24°

TABLE 3.3: Components of the relative static dielectric tensor of cubic STO, cubic
LAO (©), tetragonal LAO (7) and rhombohedral LAO (®), calculated with the B1-WC
functional. The experimental values are taken from: ¢ [58].% [59)

about ~15% of its bulk value. Moreover, the AlOg octrahedra tilting also decreases the
dielectric constant, which is related to the competition between the oxygen rotations
and the polar modes in perovskites. This result highlights the sensitivity of the LAO
dielectric constant to structural distortions. At this stage, we note that, although these
DFT calculations do not take into account the temperature as a parameter, the BI-WC
results (i.e. at 0 K) are in agreement with the room-temperature properties of LAO and
STO, as calculated for their room-temperature phases.

3.3.4 Electronic structure of reduced SrTiO;_;

An hypothesis for the origin of the 2DES at the STO/LAO interface is that the carrier
originates from oxygen vacancies (Vo) in the STO substrate. Indeed, it is known that
reduced SrTiOs_s behave like a metal in a large temperature range [60], despite STO
having a large band gap (and therefore is not usually referred to as a semiconductor).
The effect of vacancies is even visible to the eye, as the clear insulating STO turns into a
metallic dull crystal upon reduction, as shown in Figure 3.5. It is also superconducting
at low temperature, and the density of mobile carrier remains weakly dependent on tem-
perature from 1.3 to 50 K [61], as expected of a doped semiconductor in the saturation
regime. However, these observations are inconsistent with reports of deep donor states
for the Vg in STO as calculated from state-of-the-art first-principles methods?®, either
based on hybrid functionals [62, 64, 65] or DFT+U [66], which predicts a single state
with a double occupancy about ~0.7 eV below the conduction band of STO. This defect
state arises from the two dangling electrons of the Vo, which remain tightly bound in the
vacancy and at the Ti sites in its direct vicinity, with a a strong T1i d3,2_,2 character. In
this situation, the thermal excitation of carriers from the defect state to the conduction
band is in contradiction with the increase of resistivity observed with increasing tem-
perature [67]. Moreover, the carrier density of SrTiO3_gs is also lower in magnitude than
the density of Vg, suggesting that not all the electrons provided by vacancies actually
contribute to transport.

It has been shown since then from GGA+U calculations [69] (U = 4.36 V) that a single
Vo with two dangling electrons prefers the ionized state Vg than the neutral VY, with a
single bound electron and a defect state 0.4 eV below the conduction band, whereas the
other electron is promoted to the conduction band and is completely delocalized. In order
to verify if the B1-WC functional can reproduce this result, we performed a calculation

3As for the LDA/GGA functionals, the systematic underestimation of the band gap results in the
donor state lying in the conduction band, providing two electrons fully delocalized in the Ti t24 state [62,
63].
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SrTiO4 5

FIGURE 3.5: Micrographs of a STO crystal showing the effect of removing oxygen atoms
through a thermal treatment, leaving oxygen vacancies in the lattice: the clear oxidized
insulator turns into a dull blue conductive crystal. Adapted from Reference [68].

on a 4 x 4 x 4 supercell of cubic STO containing 1 neutral Vo (with two dangling
electrons), corresponding to a density of vacancy of ~ 2.7 x 1029 em ™2 (§ ~ 0.016), and
accounting for the spin-polarization of the defect state. The corresponding density of
state (DOS) is displayed in Figure 3.6.(a): in this DOS, a defect state with a single
electron (and therefore fully spin-polarized) is located ~1 eV below the minimum of the
conduction band (CBM), and is well localized within the vacancy and in the Ti nearest-
neighbours with a Ti d3,2_,2 character, as shown in Figure 3.6.(b). The other electron
is transferred to the conduction band and is fully delocalized, as shown in Figure 3.6.(c).

These results explains the properties of reduced SrTiO3z_s5: a Vg act as a single-donor,
with the apparition of occupied and localized in-gap states ~1 eV below the conduction
band, which have been observed in angle-resolved photo-emission spectroscopy (ARPES)
experiments ~1 — 1.3 eV below the conduction band minimum [70, 71] and which are
occupied by a single electron per state, whereas the other electron provided by the va-
cancy is promoted to the conduction band and is fully delocalized. In that regard, the
B1-WC result is quantitatively closer to the experiments than the GGA+U calculations
from Reference [69]. These results challenge the conventional picture of Vo in STO,
which predicts the neutral Vo (with a double occupancy) to be the most stable if the
Fermi level lies close the CBM [65]. The origin of this discrepancy lies in the Coulombian
repulsion between electrons in the localized level: inclusion of on-site Coulombian inter-
actions prevents the stabilization of neutral vacancies [72], and favours the charged V(I)Jr
state. This also implies that Vo acts as magnetic impurities. It should also be noted
that the strong Coulombian repulsion is related to the highly spatially localized nature
of the defect state, which is different than what is witness in doped semiconductors
where the effective Bohr radius is usually one order of magnitude larger than the lattice
parameter, leading to highly delocalized carriers with weaker Coulomb interactions.

These results show that the B1-WC functional can properly reproduce the effect of
screened Coulombian interactions, often modelled through mean-field static correla-
tion with the U term. In the following Section, we will address the properties of the
STO/LAO interface, and the different possible mechanisms at the origin of the 2DES;
as Vo provide free carriers which may be confined at the interface, and the in-gap states

“the energy difference between the two phases is —274 meV as calculated for the whole 4 x 4 x 4
supercell.
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FIGURE 3.6: (a) Electronic DOS of the 4 x 4 x 4 supercell of cubic STO, containing 1
Vo. In green, the donor state occupied with a single electron, fully-spin polarized. In
red, the delocalized remaining electron occupying the bottom of the conduction band.
The vertical dashed line is the Fermi level; the positive (negative) values account for
majority (minority) spin states. (b) Isosurfaces of electron density for the localized
defect state (5 x 10~* Bohr=3); (c) Isosurfaces of electron density for the delocalized
electron in the conduction band (5 x 1073 Bohr=3). In (b) and (c), the oxygen vacancy
is located at the center of the supercell.

associated with Vo appears in ARPES experiments on the STO/LAO interface [71], it
is a reasonable hypothesis and we will consider this scenario, which shall be addressed
in the present Chapter. We will also stress how theoretical methods with a quantitative
predictive power is important to avoid a spurious description of the system.

3.4 The band alignment between SrTiO3; and LaAlO;

For a LAO thin film deposited on top a STO substrate with a (001) surface, two possible
interfaces are identified: if the STO substrate is terminated by a TiOs plane, then the
first LAO atomic layer will be a LaO plane. This is usually referred to as the n-type
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interface in the literature, which is the interface which has been observed to host a 2DES.
If the STO substrate is terminated by a SrO plane, then the first atomic layer of LAO
will be a AlO5 plane. This one is referred to as the p-type interface, and has mostly
been reported as insulating, contrasting with the n-type interface, and attracting less
attention from the research community.

A crucial aspect of interfaces that need to be addressed is the relative alignment of
the valence and conduction bands of the two compounds across the interface. An issue
occurs when dealing with interfaces between insulating phases such as LAO and STO.
A single DFT calculation on a bulk structure provides the electronic band structure of
the compound where the occupancy of the bands is based on the number of electrons
in the system: hence, it is easy to identify the valence band and the conduction band
in an insulator from DFT with a well defined band gap. However, the corresponding
energies are given with respect to a reference which is defined by the code (the average
electrostatic potential for example) and which is system dependent. Therefore, the
references as calculated for bulk LAO and bulk STO are different, and it is not trivial
to determine how the valence and conduction bands of both systems align. In order
to obtain a single reference energy, it is usual to perform a DFT calculation on an
heterostructure, usually a superlattice as shown in Figure 3.1.(d), with an interface
explicitly present in the cell and to project the density of states along the different
layers to identify the band offset.

Regarding this superlattice method, another problem appears in the case of heterostruc-
tures including a polar layer: depending on the modelled interfaces, a built-in field ap-
pears in the polar layer, and the band profile evolves with the electrostatic potential
along the heterostructure. For a STO/LAO (001) superlattice, this occurs in the case of
a stoichiometric superlattice, as shown in Figure 3.1.(d): there is two different interfaces
in the supercell, one n-type and one p-type. As discussed in the next Sections, this
leads to a built-in electric field in the LAO layer, and an opposite electric field in the
STO layer so that the average electrostatic potential remains zero (due to the periodic
boundary conditions as discussed in Section 3.2.1). It is not trivial to calculate the band
offset in this situation. A flat potential can be achieved in the LAO overlayer with a
charge transfer from the p-type interface to the n-type interface: full compensation is
reached if 0.5 e~ /[0 are transferred to the n-type interface.

Following this, stoichiometric superlattices are not appropriate to study the band offsets.
To cancel the field in the STO and LAO subsystems, it is possible to build a cell con-
taining additional layers, leading to off-stoichiometry and two identical interfaces. For
example, adding one (LaO)* layer and one (TiO5)? layer results in two n-type interfaces,
as shown in Figure 3.1.(e). The additional LaO layer provides an extra charge, in this
case a single electron, which will be shared by the two n-type interfaces, 0.5 e~ /0J, cor-
responding exactly to the amount required to fully cancel the field in LAO. This method
is similar to semiconductor heterostructures with flat energy levels and an local dipole
across an interface, where the relative alignment of the bands are independent of the
thickness of the subsystems. For two p-type interfaces, additional (SrO)? and (AlOg)~
layers will results in an extra hole ejected to the STO subsystems, shared by the two
p-type interfaces. We expect the band alignment far from the interface to be unaffected
by the metallic character of this heterostructure (this is not guaranteed, as doping in-
duces band bending). With this method, based on a symmetric and off-stoichiometric
(STO)12.5/(LAO)12.5 superlattices, we calculated the band offsets for the two types of
interface, by plotting the layer-resolved electronic density of state (projected onto each
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STO and LAO sublayer, as well as the additional atomic planes). The results are dis-
played in Figure 3.7.(a) for the n-type interface and (b) for the p-type interface. To
evaluate the band offsets, we proceed as follow: the valence band offset is calculated
from the misalignment of the O 2p states near the top of the valence band. With the
same approach, the conduction band offset is calculated from the misalignment of the
Ti 3d and La 4d states. For the n-type interface, the LAO valence band lies slightly
lower than the STO valence band, with a valence band offset of —0.36 eV, close to the
experimental value of —0.35 eV [73] and a conduction band offset of 1.47 eV. For the
p-type interface, we evaluate a valence band offset of —0.13 eV and a conduction band
offset of 1.34 eV. Hence, we obtain an average value of —0.25 eV for the valence band
offset and 1.41 eV for the conduction band offset. The sum of the offsets (1.66 eV)
is in satisfying agreement with the difference of band gaps between both subsystems
(1.63 eV), validating this approach. The valence band of both subsystems are almost
completely aligned, which is why we will ignore the valence band offset in some of the
following schematic representations of the band structure of the STO/LAQO interface.

3.5 The polar discontinuity at the SrTiO3(001)/LaAlOj in-
terface

We have described the bulk properties of LAO and STO as well as addressed their band
profile if no electric field is present in either subsystems. We can therefore focus on the
mechanisms at the origin of the 2DES at the STO/LAO interface. Both STO and LAO
are centrosymmetric in their bulk form, but display a formal polarization depending on
the direction. When a surface or an interface is formed, the formal polarization leads
to the appearance of a built-in field. A way to determine whether or not an interface
is polar has been proposed by Tasker [74] and consists in using the formal ionic charge
of each atoms as a point charge, without any geometric or electronic relaxation. The
surface is then polar if the bulk unit cell contains a dipole moment; a few examples are
given in Figure 3.8. The underlying hypotheses behind this naive approach appears to
be satisfied in the case of centrosymmetric structures as discussed by Bristowe et al. [75]
and Stengel et al. [76], who applied the concepts of the modern theory of polarization
in the case of polar surfaces. Their main conclusion is as follows: a surface is polar if
the bulk polarization perpendicular to the interface of two materials are not equal as
described by the interface theorem in Reference [77]: if the system appears to be polar
by Tasker’s criterion, then it is equivalent to consider the net surface charge o = P -n at
each side of the interface. In the case of an interface between two-semi-infinite systems,
such charges at the interface and the surface produce a diverging electrostatic potential,
which makes the system highly unstable. This issue is known as a “polar catastrophe”.
Generally, the existence of a built-in field is accompanied by some charge screening,
and reconstruction (atomic and/or electronic) is expected for unstable surfaces. In the
case of a thin film however, the evolution of the electrostatic potential is finite and
may be stabilized without any reconstruction, depending on the energy costs of the
reconstruction mechanisms. Amongst the possible compensation mechanisms, there is a
distinction between extrinsic and intrinsic mechanisms. The first kind involves external
sources, for example, molecular adsorption can help the compensation of some polar
surfaces if the process involves doping of the surface, where the carriers can screen
the built-in field. Of course, this implies the presence of the dopant species in the
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FiGURE 3.7: Electronic DOS projected on the different sublayer of off-stoichiometric
STO12.5/LAO12 5 symmetric superlattices, with (a) two n-type interfaces and (b) two
p-type interfaces, calculated with the B1-WC functional. As the superlattices are sym-
metric, only half of the superlattice data is displayed. The band offsets are written on
the right, calculated from the central layers in each superlattice, the farthest from the
interface. Blue (red) corresponds to the STO (LAO) contribution. The orange back-
ground is the total DOS. The horizontal dashed line is the Fermi level: note that for
the n-type superlattice, the electron remains confined within the STO. For the p-type
superlattice, the hole spreads over the whole heterostructure.

atmosphere. On the other hand, intrinsic mechanisms do not involve external sources
of dopant, but a redistribution of the charges in the system.

The STO(001)/LAO interface is the most representative example of non-polar/polar
oxide interface and has been first studied by Ohtomo and Hwang [78]. They synthesized
this interface by epitaxial growth of LAO on the (001) surface of STO, alternating
charged planes of LaO'* and AlO,'~. This is in line with the description of a charged
surface by Tasker, for the example given in Figure 3.8.(c). A built-in potential is thus
raised as LAO is grown on STO(001), as shown in Figure 3.9. This Figures summarizes
the polar discontinuity at the LAO/STO interface: a built-in field in the LAO overlayer
diverges as its thickness increases, and may be compensated if a charge is transferred
from the surface to the interface: in the case of the n-type interface, 1/2 electron per
unit cell area (0.5 e~ /0) is transferred to the TiOy layer at the interface; in the case
of the p-type interface, 1/2 hole per unit cell area (0.5 h™/0J) is transferred to the SrO
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FIGURE 3.8: Examples of surface classification by Tasker [74] based on the planar

formal ionic charges: (a) for the same charge between cations and anions in the same

plane, leading to a neutral plane; (b) for uneven charged planes, but with no dipole;
(c) alternating charged planes, with a net dipole moment.

layer at the interface. In the case of the n-type interface, such a transfer is favoured by
the possibility of transition metal Ti to acquire a mixed valence state: hence, the Ti*t
at the interface can become Ti*°T by hosting the 1 /2 electron in its Ti tp, conductions
states.

3.5.1 A critical thickness of LaAlOj; as a threshold for conductivity

With such considerations, it has been postulated that the 2DES appearing at the n-
type interface is related to the polar discontinuity, the strongest argument in favour of
this hypothesis being that a critical thickness d. of about ~4 monolayers of LAO is
required to observe an insulator-to-metal phase transition (MIT) at the interface: the
sheet resistivity decreases by several orders of magnitude above this thickness, even for
samples grown at high oxygen partial pressure (po, ~ 10~* mbar), where the oxygen
vacancies are expected to be reduced and not contribute to conductivity. The origin of
this transition has been attributed to the presence of a thin sheet of electrons in the STO
subsystem, confined near the interface [79]. The reader may notice that at this stage,
we still not have addressed the exact origin of the carriers. The existence of a critical
thickness however suggests that the electrostatic potential raised in the film is involved
and must reach a critical value to trigger a compensation mechanism. Consequently,
the existence of a threshold thickness is a strong argument in favour a polar catastrophe
scenario.

A few important aspects of the critical thickness must be addressed. While Hall ex-
periments suggests that no mobile carriers are present below d., there has been several
reports of signature of Ti3®* below the onset for conductivity [80-84], even as early as
2 u.c. thick LAO [85, 86], based either on hard x-ray photoelectron spectroscopy (HAX-
PES) or resonant inelastic x-ray scattering (RIXS), at odds with the Hall experiments.
A few of these results are given in Figure 3.10. Notably, a strong evolution of the signal
is witnessed with growing LAO thickness below 6 monolayers. The common hypothesis
for these results is the presence of immobile carriers at the interface, which cannot be
measured from Hall experiments. These results suggest that different critical thicknesses
(for different physical properties) may be at the origin of this discrepancy, or that the
onset for conductivity requires a large density of carriers, beyond a given threshold.
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FIGURE 3.10: Sheet carrier densities at the n-type LAO/STO interface measured via
Hall experiments [87], HAXPES experiments [85] and RIXS experiments [86]. Figure
adapted from Reference [86].

Another property of the threshold thickness for conductivity is its tunability, by replac-
ing the LAO layer with an alloy made of LAO and STO, as observed by Reinle-Schmitt
et al. [26], referred to as LASTO:z (z being the ratio between the two compounds),
as shown in Figure 3.11. The authors rationalize these observations by proposing that
alloying tunes the polarity of the overlayer without significantly changing the dielectric
properties of the film in comparison to LAO, thus only tuning the polar discontinuity at
the interface. The behaviour of the threshold thickness for the alloy-based heterostruc-
tures follows the following law with respect to the composition x:

dIC_JASTO:x — dIC_IAO/x (35)

For a composition z = 0.5, the threshold thickness becomes twice the value expected for
the bare LAO case.

Finally, it has been shown from experiments [88, 89] that the threshold thickness can
be reduced by adding a STO capping layer on top of the LAO film: a finite sheet
carrier density measured by Hall effect experiments have been observed in samples with
a LAOQO interlayer thickness of 1 or 2 u.c., much below what is observed for the uncapped
heterostructures.

The last two paragraphs highlight specific aspects of the link between the critical thick-
ness and the polar catastrophe: on one hand, this property can be tuned by tuning the
polarity of the overlayer film, which is a strong argument in favour of the polar catas-
trophe scenario. On the other hand, the addition of a simple, insulating and non-polar
STO capping layer has been shown to decrease d., at odds with the polar catastrophe.

Clarifying these experimental observations are amongst the primary objectives of this
work.

3.5.2 A two-dimensional electron gas at the n-type interface

We will now briefly describe the properties of the 2DES at the STO(001)/LAO inter-
face. This Section does not aim to cover all the specificities of this system; for the
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interested reader, a review of the most important aspects of 2DES at polar/non-polar
oxide interface can be found in Reference [90].

One of the key properties of the 2DES at the STO(001)/LAO interface is that the spa-
tial extension of the electron is quite limited in the transverse direction of the interface.
Depending on the oxygen partial pressure and the annealing process after the synthesis
of the samples, the extension of the gas vary drastically: for samples grown at low po,
(~107% mbar) and without annealing process, the gas spreads from 10 to 100 ym. In this
case, the electrons are not localized near the interface and has a 3-dimensional charac-
ter [91, 92]. It has been postulated that in such a case, the electrons may originate from
oxygen vacancies present in the STO substrate [91], and which are not a characteristic
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FIGURE 3.12: Spatial mapping of resistance near the STO(001)/LAO interface for

(a) a non-annealed sample; (b) an annealed sample, (c) zoom on the data shown in

(c); (d) resistance profile across the interface in the annealed case, highlighting the

localization of the 2DES within a few nanometers of the interface. Figure adapted from
Reference [93].

of the STO/LAO interface. The effect of annealing for samples grown at low po, reduces
the extension of the electrons to only a few nanometers from the interface [93], similarly
to samples grown at high po, (~107* mbar). In the later case, the electron system has a
2-dimensional character, and can be considered as a 2DES which appears from intrinsic
mechanisms: Figure 3.12 shows the effect of annealing on the sheet resistance profile
across the interface. The extension of the 2DES has been estimated to be between 4
and 10 nm, the majority of the carriers lying in the first unit cell of STO [85, 94, 95].

The intrinsic 2DES has been shown to be composed of two types of carriers, one confined
close to the interface (~2 nm), and one which spreads away from the interface, deeper
in the substrate (~11 nm) [96]. This relates to the nature of the first available empty
states of STO hosting the carriers. In the bulk cubic phase of STO, the first (empty)
conduction states are of Ti t9, character, which arises from the splitting of the 3d states
of Ti under the octahedral crystal field into tog (dyy, dg. and dy.) and eg (ds,2_,2 and
dy2_,2), the later being further away from the conduction band bottom and remaining
empty. When a (001) surface is created on STO, the to4 energy levels are splitted, as an
effect of the surface symmetry breaking [97]. For the STO/LAO interface, as soon as the
interface is doped, the injected carriers will partially fill the ¢, states, split between the
dyy and dg./d,. (degenerate) states, corresponding to delocalized and localized states
near the interfaces.

First-principles calculation based on DFT [98-101] have been performed for the STO/LAO
interface, showing that the occupied orbital with the lowest energy is mainly of dg,
character. The d;, population has a strong 2-dimensional character, which is related to
their high band velocity in the xy plane, parallel to the interface; on the other hand,
the d;./d,. spreads further in the substrate, with a more pronounced 3-dimensional
character and lower mobility in the zy plane [101]. The DFT calculations in Refer-
ences [99, 101] and [28] shows that the carrier density at the interface change the overall
splitting between the filled bands, in agreement with spectroscopy experiments [28],
as shown in Figure 3.13. Note that there is a strong discrepancy between the density
extracted from Hall experiments and spectroscopy experiments, which can already be
seen from Figure 3.10: the carrier densities extracted from Hall measurement is around
one order of magnitude lower than the densities extracted from HAXPES and RIXS.
Popovic et al. [101] argued that due to their 2-dimensional character, the electrons are
likely to be subject of Anderson localization [102]. In addition to this discrepancy, the
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and (d). Figure adapted from Reference [28].

experimental carrier densities of annealed samples are always lower than the limit of
0.5 e~ /0 (3.3 x 10! em™2) expected from the polar catastrophe.

The mechanism behind the localization of the carriers near the interface is not trivial.
Typically, confinement occurring at junctions in metal-oxide-semiconductor interface is
attributed to the band bending near the interface. However, it has been argued that the
band bending at the STO(001)/LAO interface is not sufficient to explain the low thick-
ness of the 2DES [103]. Chen et al. [98] proposed that the orbital coupling between the Ti
and La atoms lower the Ti ¢y, states close to the interface, which favours their occupancy
with respect to the deeper Ti sites. Stengel [104], by the mean of model Hamiltonians
based on first-principles calculations, also stresses that moving electrons away from the
interface has an energy cost which is inversely proportional to the dielectric constant of
STO 57O, and that the dielectric properties of STO are important to determine the
spread of the 2DES. The importance of the dielectric properties of the STO substrate
will be discussed in Chapter 4, specifically in regards to its impressive temperature
dependence. Finally, it has been shown from first-principles calculations [27] that the
localization process is spontaneous at low density, only populating the d,, bands below a
threshold density n. ~ 10 cm™3. Above this value, the electrons “spill” to the d., /dy-
states extending farther from the interface. The authors provide a link between the
carrier density and the binding energy (and therefore the spatial spread of the 2DES).
This aspect will also be a topic of discussion in Chapter 4.
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Along with these basic features, the 2DES at the STO(001)/LAO interface also present
a large array of interesting properties, which do not exist in the parent compounds or
present unexpected behaviour. Amongst these properties, we should mention supercon-
ductivity [105, 106], which can be tuned by an electric field effect [107]. In addition,
there has been signatures of ferromagnetism [108], with the presence of a hysteresis loop
and transport properties associated with a large magnetoresistance [109-111]. Ferro-
magnetism and superconductivity are usually exclusive properties, but for the case of
the STO(001)/LAO interface, they have been shown to either coexist [112, 113] or being
phase separated [114].

The STO(001)/LAO interface also displays some interesting structural properties. As
discussed earlier in this Chapter, there is a constraint on the in-plane LAO lattice pa-
rameter a (= 3.81 A) expected from an epitaxial strain, to fit the STO lattice parameter
(= 3.91 A), and in principle should be accompanied with a contraction of the out-of-
plane ¢ parameter according to Poisson’s law. However, experimentally, what is observed
is that the out-of-plane lattice parameter ¢ is expanded of about ~2% [115]. This ex-
pansion has been rationalized as an electrostrictive effect [29], and disappears for a LAO
thickness between 6 and 20 u.c., recovering the expected Poisson’s contraction, and a
signature of complete screening of the built-in field in LAO (shown in Figure 3.14). In
addition, x-ray diffraction experiments [116] have provided evidence of atomic displace-
ments in LaAlQOjs, in agreement with the presence of an electric field in the film, since
off-centring of the cations is measured with respect to the perovskite cubic structure.
These structural properties, evidence of a built-in field in LAO, are a strong argument
in favour of the polar catastrophe scenario.

3.6 A controversy for the origin of the carriers

The STO(001)/LAO n-type interface is characterized by a metal-insulator phase tran-
sition (MIT) depending on the thickness of the LAO overlayer as-grown on the STO
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substrate. Above a LAO thickness of 3 — 4 u.c., the interface is metallic, and this be-
haviour is attributed to the presence of a 2DES confined near the interface. The critical
thickness is a feature that is well reproduced in experiments. Moreover, the properties
discussed in the previous Sections have been observed by different groups with different
methods. This suggests a universal mechanism behind the appearance of the 2DES.
Despite the reproducibility of these experiments and a consensus on the existence of
the 2DES, there remains a controversy on its exact origin. The debate stems from the
many possibilities available to explain the origin of the carriers, and the difficulty to
discriminate amongst them based on the observed properties. Amongst the proposed
mechanisms, it is usual to differentiate those which are intrinsic or extrinsic, depending
on the exact origin of carriers. For example, the presence of dopant species may be con-
sidered as extrinsic. Similarly, defects acting as donors such as oxygen vacancies may
appear by the growth process. On the other hand, intrinsic mechanisms do not rely on
external factors. However, the distinction between intrinsic or extrinsic mechanisms may
be a source of confusion. For example, oxygen vacancies at the surface of the LAO layer
have been argued to be stabilized by the existence of an electrostatic field in the LAO
layer, as evidenced from first-principles calculations [47, 117]. In a sense, this “atomic
reconstruction” can also be called a polar catastrophe, similarly to the Zener breakdown
scenario, since the oxygen vacancies at the LAO surface prevent the divergence of the
electrostatic potential in the LAO film and provide carriers. The semantics are confus-
ing and therefore not appropriate. Instead, it has been proposed [57] that it would be
more appropriate to differentiate the mechanisms between those which are electric-field
driven and those which are not.

3.7 Electric-field driven mechanisms from first-principles

We will now provide a description of the two most popular known hypotheses at the
origin of the 2DES at STO(001)/LAO interface, the Zener breakdown and the surface
oxygen vacancies. The mechanisms can be explained in the framework of a polar catas-
trophe, where the diverging electrostatic potential in the LAO film is the driving force
behind the instability leading to the appearance of the 2DES. The main argument in
favour of these mechanisms is the existence of threshold LAO thicknesses to witness
different phenomena, such as signatures of Tit35 valence at the interface from spec-
troscopy, or the change in sheet resistance. Indeed, as will be argued in the following
discussion, the intricacies of the different mechanisms result in differences in properties.

3.7.1 Electric-field driven Zener breakdown

Oxide typically includes transition metal atoms, such as Ti, which are much more in-
clined to change their bulk valence state than non-transition metals. Hence, for the
STO(001)/LAO interface, it is possible for the electrons to rearrange themselves to
avoid a polar catastrophe, as the electrostatic potential diverges with increasing LAO
thickness. This is the so-called Zener breakdown scenario, and does not involve any
atomic reconstruction, since only the electronic population changes. In this Section, we
will focus on the Zener breakdown hypothesis and its description from first-principles
calculations based on the hybrid functional formalism.
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The Zener breakdown stems from the electrostatic behavior of the STO(001)/LAO in-
terface and can be formulated in terms of the conservation of the normal component of
the displacement field D across the interface [76]. In the (001) direction, the LAO layers
can be considered as a serie of capacitors with (LaO)!* and (AlO2)!~, corresponding to
surface charge O'(I)‘AO = 0.5 ¢/, where e is the electron charge and [J is the in-plane unit
cell area (= a?). Hence, considering the polarity of each LAO monolayer, the LAO film
has a formal polarization of P&AO = —e/20. As the STO atomic planes are neutral,
there is no formal polarization in the STO substrate. The formal polarizations of STO
and LAO are therefore:

PFT0 = 0 (3.6)

PMAO = _¢/o0 (3.7)

The transverse component of the displacement field, in each environment (STO, LAO,
vacuum) is then:

D8O = goE;TO 4+ PO (3.8)
DMAO  — g pLAO | pLAO '
D™ = 0 (3.10)

In the absence of free charges, which is the case for band insulators, the normal compo-
nent of the displacement field has to be preserved [77]. Hence, the vacuum fixes D =0
across the whole heterostructure, and an electric field appears in the LAO overlayer,
such that:

gro - 0 (3.11)
0 = o .
PLAO 1 e
EgA°0 = -0 = — 3.12
0 eo €020 (8.12)

Since LaAlOg3 is an insulator, the material will polarize under the effect of an electric
field, leading to a depolarizing field and surface induced charges UZ-I;{ZO. The polarization
induced in LAO P&AO is therefore screened by the depolarizing field Eil;lﬁo and its value
depends on the dielectric constant (X4© ~ 24, see Table 3.3). The resulting electric

field EMO and surface charge are given by:

1 :

EMO = BP0 - B = % =0.25 V/A (3.13)
0cy

o0 = ELAOL —0.02 ¢/O (3.14)

oLAO = GMAO _ GLAO — 048 ¢/O) (3.15)

Within this model, the built-in electric field is estimated to be equal to 0.25 V/A.
Consequently, the electrostatic potential increases linearly with LAO thickness, about
¢ x EMA0 2= 0.9 eV per monolayer (c being the out-of-plane lattice parameter of LAO).
This effect can also be viewed in a band diagram, where the valence states of LAO are
raised at higher energy with the electrostatic potential, as shown in Figure 3.15.(a) for
the n-type interface. For a LAO thickness d above a threshold value d., the valence
O 2p states at the surface of LAO are raised above the STO conduction band minimum,
and a charge transfer occurs from the O 2p to the Ti ty4 states of STO: a 2DES appears
at the interface, as shown in Figure 3.15.(b); as a by-product of the charge transfer, a
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FIGURE 3.15: Band diagram representation of the Zener breakdown scenario (a) for a
LAO thickness d below the critical thickness d., (b) for a LAO thickness d above the
critical thickness d..

2-dimensional hole system (2DHS) is expected to exist at the surface of LAO according
to the Zener breakdown picture.

First-principles calculations performed on STO(001)/LAO,, heterostructures® agrees
with this picture. Figure 3.16.(a) shows the evolution of the heterostructure electronic
band gap with respect to the number of LAO monolayers, and in Figure 3.16.(b) the pro-
file of the macroscopic average of the electrostatic potential across the heterostructures.
From these results, we make the following observations: i) the electrostatic potential in
the STO is flat, as expected from our earlier considerations; ii) the electrostatic potential
varies linearly with increasing LAO thickness, the slope is estimated to be —0.25 V/ A
for 1 < m < 4, and this translates in the linear decrease of the band gap with increasing
LAO thickness, with a slope of —0.9 eV /u.c., in agreement with the precedent estima-
tion for A0 = 24: iii) the field in LAO is expected to raise the valence states in the
LAO system, which is shown in the layer-resolved density of state for the different het-
erostructures (Figure 3.17); and iv) for m > 5 u.c., the system is metallic, and for the
metallic phases, the slope of the electrostatic potential decreases. The MIT is expected
to occur at m = 4.2 u.c. based on the linear projection of the evolution of the band gap
below the onset for charge transfer. This is the critical thickness of LAO at which an
electronic reconstruction, also referred to as a Zener breakdown, occurs. It is also the
onset above which the LAO O 2p valence state overlap the Ti ¢34 conduction states of
the STO substrate in the density of state:

d%B = 42u.c. (3.16)

The Zener breakdown occurs when the drop of electrostatic potential A across the LAO
film is equal to the sum of the band gap of STO EETO and the valence band offset
VBO, as shown in Figure 3.15.(a). Hence, it is possible to calculate d“® from the Zener
breakdown model, by estimating the thickness needed to reach a potential drop equal
to A if the slope of the potential is a constant field ELA0:

A A
a8 = = gelh0 (3.17)

5The system actually consists in vacuum/LAO,,/STO13.5/LAO,, /vacuum symmetric films, with two
equivalent n-type interfaces, similar to the structure shown in Figure 3.1.(c). The vacuum area is roughly
450 A thick.
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FIGURE 3.16: (a) Electronic band gap for STO(001)/LAO,, /vacuum heterostructures,
for different LAO thicknesses m (u.c.), calculated as the difference between the bottom
Ti a4 band and the top of the LAO O 2p band, the negative values corresponds to metal-
lic phases; (b) Macroscopic average of electrostatic potential in a STO(001)/LAO,,, for
varying LAO overlayer thicknesses m. The slope of electrostatic potential in the LAO
layer is estimated to be —0.25 V/A below the onset for Zener breakdown. Above this
threshold (m > 4 u.c.), the slope decreases with increasing LAO thickness, at as the
interface progressively get doped.

which predicts the same value as in Equation 3.16 by taking the following values ¢ =
3.79 A, EgSTO = 3.57 eV and €49 = 24. The critical thickness d%® depends on different
physical parameters: the electronic band gap of STO, the valence band offset, the di-
electric constant of LAO and the LAO formal charges, which are all intrinsic parameters
to the system. Our first-principles calculations predicts ng between 4 and 5 monolayers
of LAO. This is an overestimation if we compa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>