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• Goal:

– Develop a predictive numerical framework to capture the whole ductile failure process

Introduction
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• Divided in two parts:

Physical process
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• Divided in two parts:

– A diffuse damage stage with voids/damage nucleation and growth
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• Divided in two parts:

– A diffuse damage stage with voids/damage nucleation and growth

followed by

– A localised stage with damage coalescence and crack initiation / propagation
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• Divided in two parts:
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• State-of-the-art 

– 2 approaches modeling material failure:

• Continuous Damage Models (CDM) 

• Discontinuous: Fracture mechanics

State of art: Modeling approaches
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• Material properties degradation modelled through internal variables evolution

(= damage)

– Lemaitre-Chaboche model,

– Gurson model  [Gurson1977]

– …

• Continuum Damage Model (CDM) implementation:

– Local form

• Mesh-dependency

– Non-local form needed

• Implicit non-local model [Peerlings et al. 1998]

State of art: two main approaches – 1. Continuous approaches
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Continuous:

Continuous Damage

Model (CDM)

Discontinuous:

+ Capture the diffuse damage stage

+ Capture stress triaxiality and Lode

variable effects

- Numerical problems with highly 

damaged elements

- Cannot represent cracks

without remeshing / element deletion at 

𝐷 → 1 (loss of accuracy, mesh 

modification ...)

- Crack initiation observed for lower damage 

values

State of art: Comparison (1)
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• Similar to fracture mechanics

• One of the most used methods:

– Cohesive Zone Model (CZM) modelling 

the crack tip behaviour inserted by:

• Interface elements between 2 volume elements
[Mergheim2004]

• Element enrichment (EFEM) [Armero et al. 2009]

• Mesh enrichment (XFEM) [Moes et al. 2002]

• …

• Consistent and efficient hybrid framework for 

brittle fragmentation: [Radovitzky et al. 2011]

– Extrinsic cohesive interface elements

+

– Discontinuous Galerkin (DG) framework (enables 

inter-elements discontinuities)

State of art: two main approaches – 2. Discontinuous approaches
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Continuous:

Continuous Damage

Model (CDM)

Discontinuous:

Extrinsic Cohesive 

Zone Model (CZM)

+ Capture the diffuse damage stage

+ Capture stress triaxiality and Lode

variable effects

+ Multiple crack initiation and propagation

naturally managed

- Numerical problems with highly 

damaged elements

- Cannot represent cracks

without remeshing / element deletion at 

𝐷 → 1 (loss of accuracy, mesh 

modification ...)

- Crack initiation observed for lower damage 

values

- Cannot capture diffuse damage

- No triaxiality effect

- Currently valid for brittle / small scale

yielding materials

State of art: Comparison (2)
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• Main idea = combination of 2 complementary methods :

Numerical model
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• Main idea = combination of 2 complementary methods :

– Continuous (non-local damage model)

+ transition to

– Discontinuous (cohesive model)

Numerical model
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• Implementation of the damage to crack transition:

– within a Discontinuous Galerkin (DG) framework

Numerical implementation
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• How are included triaxiality effects during crack propagation ?

Numerical implementation
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• Discontinuous model here = Cohesive Band Model (CBM):

– Hypothesis

• In the last stage of failure, all damaging process occurs in an uniform thin band

– Principles

• Replacing the traction-separation law of a cohesive zone by the behaviour of a uniform band 

of given thickness ℎb [Remmers et al. 2013]

– Methodology [Leclerc et al. 2018]

1. Compute a band strain tensor

2. Compute then a band stress tensor 𝛔b
3. Recover traction forces 𝒕( 𝒖 , 𝐅) = 𝛔b. 𝒏

Cohesive zone with triaxiality – Principles
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• Discontinuous model here = Cohesive Band Model (CBM):

– Hypothesis

• In the last stage of failure, all damaging process occurs in an uniform thin band

– Principles

• Replacing the traction-separation law of a cohesive zone by the behaviour of a uniform band 

of given thickness ℎb [Remmers et al. 2013]

– Methodology [Leclerc et al. 2018]

1. Compute a band strain tensor

2. Compute then a band stress tensor 𝛔b
3. Recover traction forces 𝒕( 𝒖 , 𝐅) = 𝛔b. 𝒏

– At crack insertion, framework only dependent on ℎb (band thickness) 

• ℎb controls the failure energy dissipation

Cohesive zone with triaxiality – Principles
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• Influence of ℎb on response in a 1D elastic case

[Leclerc et al. 2018]:

– Total dissipated energy Φ:

• Has to be chosen to conserve energy dissipation (physically based)

Damage to crack transition for elasticity – Proof of concept
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• 2D elastic plate [Leclerc et al. 2018]:

– With a defect

– In plane strain

Damage to crack transition for elasticity – Proof of concept
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• 2D elastic plate [Leclerc et al. 2018]:

Damage to crack transition for elasticity – Proof of concept
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- Force evolution - Dissipated energy evolution

Error on total 

diss. Energy

- CZM: ~29%
- CBM: ~3%
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• Porous plasticity (or Gurson) approach

– Assuming a J2-plastic matrix

Damage to crack transition in porous elasto-plasticity
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• Porous plasticity (or Gurson) approach

– Assuming a J2-plastic matrix

– Including effects of void/defect or porosity on plastic behavior

• Apparent macroscopic yield surface 𝑓(𝜏eq, 𝑝) ≤ 0 due to microstructural state:

Damage to crack transition in porous elasto-plasticity
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• Porous plasticity (or Gurson) approach

– Assuming a J2-plastic matrix

– Including effects of void/defect or porosity on plastic behavior

• Apparent macroscopic yield surface 𝑓(𝜏eq, 𝑝) ≤ 0 due to microstructural state:

» Diffuse plastic flow spreads in the matrix 

» Gurson model

Damage to crack transition in porous elasto-plasticity
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• Porous plasticity (or Gurson) approach

– Assuming a J2-plastic matrix

– Including effects of void/defect or porosity on plastic behavior

• Apparent macroscopic yield surface 𝑓(𝜏eq, 𝑝) ≤ 0 due to microstructural state:

– Competition between two deformation modes:

» Diffuse plastic flow spreads in the matrix 

» Gurson model

» Before failure: coalescence or localized plastic flow between voids 

» GTN or Thomason models

Damage to crack transition in porous elasto-plasticity
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• Porous plasticity (or Gurson) approach

– Assuming a J2-plastic matrix

– Including effects of void/defect or porosity on plastic behavior

• Apparent macroscopic yield surface 𝑓(𝜏eq, 𝑝) ≤ 0 due to microstructural state:

– Competition between two deformation modes:

» Diffuse plastic flow spreads in the matrix 

» Gurson model

» Before failure: coalescence or localized plastic flow between voids 

» GTN or Thomason models

– Including evolution of microstructure during failure process

• Nucleation / appearance of new voids

• Void growth by diffuse plastic flow

• Apparent growth by shearing

Damage to crack transition in porous elasto-plasticity
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• Porous plasticity (or Gurson) approach

– Non-local form: with

– Normal plastic flow

– Hyperelastic formulation

– Microstructure (= spherical voids [Besson2009])

• 𝜏eq is the von Mises equivalent Kirchhoff stress and 𝑝 the pressure

• 𝜏Y = 𝜏Y Ƹ𝑝, ሶƸ𝑝 is the viscoplastic yield stress

• 𝑓V is the porosity and ሚ𝑓V, its non-local counterpart

• 𝜒 is the cell ligament ratio

• 𝒁 is the vector of internal variables

• 𝑙c is the non-local length

Damage to crack transition in porous elasto-plasticity
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• Porous plasticity (or Gurson) approach

– Competition between 2 plastic modes:

Damage to crack transition in porous elasto-plasticity

vs

Growth mode: 

Gurson model

Coalescence mode:

Thomason model

ሚ𝑓V → 1 𝜒( ሚ𝑓𝑉) → 1
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• Comparison with literature [Huespe2012,Besson2003]

– Slanted crack in plane strain specimen

– Crack insertion at ellipticity loss:

+ No mesh dependency

+ Energy dissipated by CBM small but mandatory

- Unphysical bifurcation due to numerical crack insertion criterion

Damage to crack transition in porous elasto-plasticity

Force vs. striction

Ƹ𝑝 > 1.50.750
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• Comparison with literature [Huespe2012,Besson2003]

– Slanted crack in plane strain specimen 

– Comparison with developed framework :

Damage to crack transition in porous elasto-plasticity
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Loss of ellipticityCoalescence onset

Ƹ𝑝 > 1.50.750
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• Comparison with literature [Huespe2012,Besson2003]

– Slanted crack in plane strain specimen

– Comparison with developed framework:

+ No more unphysical crack bifurcation

– Crack insertion beyond loss of ellipticity

– Non-local model mandatory

Damage to crack transition in porous elasto-plasticity
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• Comparison with literature 
[Huespe2012,Besson2003]

– Cup-cone fracture in 

smooth and notched 

round bars

Damage to crack transition in porous elasto-plasticity
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• Objective:

– Simulation of material degradation and crack initiation / propagation

• Methodology

– Combination of  

• a non-local Continuum Damage Model (CDM)

• And a Cohesive Band Model (CBM)

– Integrated in a Discontinuous Galerkin framework

• Proof of concept

– On elastic damage material model

• Ductile materials

– Implementation of hyperelastic non-local porous-plastic model 

• Coupled Gurson-Thomason model

– Proof on concept by comparison with literature 

– Upcoming tasks:

• Enrichment of nucleation model and coalescence model 

• Calibration of the band thickness

• Validation/Calibration with literature/experimental tests

Conclusions
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• Based on fracture mechanics concepts

• Characterized by 

• Strength sc &

• Critical energy release rate GC

• One of the most used methods:

– Cohesive Zone Model (CZM) modelling 

the crack tip behavior 

– Integrate a Traction Separation Law (TSL):

• At interface elements between two elements

• Using element enrichment (EFEM)  [Armero et al. 2009]

• Using mesh enrichment (xFEM) [Moes et al. 2002]

• …

State of art: Discontinuous approaches
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• Cohesive elements

– Inserted between volume elements

• Zero-thickness no triaxiality accounted for

• Intrinsic Cohesive Law (ICL)

• Cohesive elements inserted from the beginning

• Efficient if a priori knowledge of the crack path

• Mesh dependency [Xu & Needelman, 1994]

• Initial slope modifies the effective elastic modulus

• This slope should tend to infinity [Klein et al. 2001]:

• Alteration of a wave propagation

• Critical time step is reduced

• Extrinsic Cohesive Law (ECL)

• Cohesive elements inserted on the fly when the failure

criterion is verified [Ortiz & Pandolfi 1999]

• Complex implementation in 3D (parallelization)

State of art: Discontinuous approaches
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• Hybrid framework [Radovitzky et al. 2011]

– Discontinuous Galerkin (DG) framework 

• Test and shape functions discontinuous

• Consistency, convergence rate, uniqueness

recovered though interface terms

• Interface terms integrated on interface elements

– Combination with extrinsic cohesive laws

• Interface elements already there

• Switch to traction separation law

• Efficient for fragmentation simulations

State of art: Discontinuous approaches
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• Elastic damage material model

– Constitutive equations

• Helmholtz energy:  𝜌𝜓 𝜺, 𝐷 =
1

2
1 − 𝐷 𝜺:𝐻: 𝜺

• Non-local maximum principal strain:  ǁ𝑒 − 𝑙𝑐
2Δ ǁ𝑒 = 𝑒

• Damage evolution ሶ𝐷 𝜅 = 1 − 𝐷
𝛽

𝜅
+

𝛼

𝜅𝑐−𝜅
ሶ𝜅 with 𝜅 = max

𝑡′
ǁ𝑒 𝑡′

– 1D non-local test

Damage to crack transition for elastic damage – Proof of concept
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• Influence of ℎb (for a given 𝑙c) on response in a 1D elastic case [Leclerc et al. 2018]

– Comparison with the pure non-local case

– Has effect on the totally dissipated energy Φ

– Could be chosen to conserve energy dissipation (physically based)

– For elastic damage: ℎb ≃ 5.4 𝑙𝑐

Damage to crack transition for elastic damage – Proof of concept
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• 2D elastic plate with a defect

– Biaxial loading

• Ratio ത𝐹𝑥/ ത𝐹𝑦 constant during a test

– In plane strain

– Comparison between:

• Pure non-local

• Non-local + cohesive zone (CZM)

• Non-local + cohesive band (CBM)

Damage to crack transition for elasticity – Proof of concept
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• Study of triaxiality effect on a slit-plate

– Reference dissipated energy Φref for non-local with ത𝐹𝑥/ ത𝐹𝑦 =0 

Damage to crack transition for elastic damage – Proof of concept
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Non-Local only

Non-Local - CZM

Non-Local - CBM

Error on total 

diss. energy

- CZM: ~30%
- CBM: ~3%
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• Comparison with phase field 

– Single edge notched specimen [Miehe et al. 2010]

• Calibration of damage and CBM parameters with 1D case [Leclerc et al. 2018]

Damage to crack transition for elastic damage – Proof of concept
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• Validation with Compact Tension Specimen [Geers 1997]

– Better agreement with the cohesive band model than the cohesive zone model or the 

non-local model alone [Leclerc et al. 2018]

Damage to crack transition for elastic damage – Proof of concept
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• Evolution of local porosity 

– Voids nucleation ሶ𝑓nucl modifies porosity growth rate

• Linear strain-controlled growth

• Gaussian strain-controlled growth

• where 𝐴N, 𝑓N, 𝜖N, 𝑠N are material parameters

Porous plasticity – Voids nucleation
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ሶ𝑓𝑉 = 1 − 𝑓𝑉 tr(𝐃p) + ሶ𝑓nucl + ሶ𝑓shear

ሶ𝑓nucl = 𝐴N ሶƸ𝑝 with
𝐴N ≠ 0 if 𝑓𝑉 > 𝑓N
𝐴N = 0 if 𝑓𝑉 ≤ 𝑓N

ሶ𝑓nucl =
𝑓N

√ 2𝜋𝑠N
2

exp −
Ƹ𝑝 − 𝜖N

2

2𝑠N
2

ሶƸ𝑝



• Evolution of local porosity 

– Shearing affect voids nucleation: ሶ𝑓shear

• Includes Lode variable effect 𝜁 𝛕 = −
27 det 𝝉dev

2 𝜏eq
3

• where 𝑘w is a material parameter

Porous plasticity – Voids nucleation
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ሶ𝑓𝑉 = 1 − 𝑓𝑉 tr(𝐃p) + ሶ𝑓nucl + ሶ𝑓shear

ሶ𝑓shear = 𝑓𝑉𝑘w 1 − 𝜁2 𝝉
𝝉dev: 𝐃p

𝜏eq



• Hyperelastic-based formulation

– Multiplicative decomposition

– Stress tensor definition

• Elastic potential 𝜓 𝐂e

• First Piola-Kirchhoff stress tensor

• Kirchhoff stress tensors

– In current configuration

𝜿 = 𝐏 ⋅ 𝐅𝑇 = 2𝐅e ⋅
𝜕𝜓 𝐂e

𝜕𝐂e
⋅ 𝐅e

𝑇

– In co-rotational space

𝝉 = 𝐂e ⋅ 𝐅e
−1⋅𝜿 ⋅ 𝐅e

−𝑇
= 2𝐂e ⋅

𝜕𝜓 𝐂e

𝜕𝐂e

• Logarithmic deformation

– Elastic potential 𝜓:

– Stress tensor in co-rotational space

Non-local porous plasticity model
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𝐅 = 𝐅e ⋅ 𝐅p, 𝐂e = 𝐅e
𝑇
⋅ 𝐅e, 𝐽𝒆 = det 𝐅e

𝐏 = 2𝐅e ⋅
𝜕𝜓 𝐂e

𝜕𝐂e
⋅ 𝐅p

−𝑇

𝜓 𝐂e =
𝐾

2
ln2 𝐽𝑒 +

𝐺

4
ln 𝐂e dev: ln 𝐂e dev

𝝉 = 𝐾ln 𝐽𝑒

𝑝

𝐈 + 𝐺 ln 𝐂e dev

x

Ω

𝐛 = 𝐅 ⋅ 𝐅𝑇

𝝈 = 𝜿 𝐽−1

X

Ω0

𝐂 = 𝐅𝑇 ⋅ 𝐅
𝐒 = 𝐅−1 ⋅ 𝐏

𝝃
Ω𝜉

𝝃𝒄

Ω𝑐

𝐂e = 𝐅e
𝑇
⋅ 𝐅e

𝝉 = 𝑭e
𝑇
⋅ 𝜿 ⋅ 𝐅e

−𝑇

𝐅

𝐅p

𝐅e 𝐑e

𝐔e



• Predictor-corrector procedure

– Elastic predictor

– Plastic corrector (radial return-like algorithm)

• 3 equations

– Consistency equation:

– Plastic flow rule:

– Matrix plastic strain evolution:

• 3 Unknowns Δ መ𝑑, Δො𝑞, Δ Ƹ𝑝

• 3 linearized equations

– Consistency equation:

– Plastic flow rule:

– Matrix plastic strain evolution:

Integration algorithm
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𝑓 𝜏eq Δ መ𝑑 , 𝑝 Δො𝑞 ; 𝜏Y Δ Ƹ𝑝 , 𝒁 Δ መ𝑑, Δො𝑞, Δ Ƹ𝑝 , ሚ𝑓𝑉 = 0

𝐅e
𝐩𝐫
= 𝐅 ⋅ 𝐅𝒏

p−1

ሶƸ𝑝 =
𝛕:𝐃p

1−𝑓𝑉0 𝜏Y

𝐃p = ሶ𝐅p ⋅ 𝐅p
−𝟏

= ሶ𝛾
𝜕𝑓

𝜕𝝉
= ሶመ𝑑

𝜕𝜏eq

𝜕𝝉
+ ሶො𝑞

𝜕𝑝

𝜕𝝉

𝑓 𝜏eq, 𝑝; 𝜏Y, 𝒁 𝑡′ , ሚ𝑓𝑉 𝑡′ = 0

1 − 𝑓𝑉0 𝜏YΔ Ƹ𝑝 = 𝜏eqΔ መ𝑑 + 𝑝Δො𝑞

Δ መ𝑑
𝜕𝑓

𝜕𝑝
− Δො𝑞

𝜕𝑓

𝜕𝜏eq
= 0



• Porous plasticity (or Gurson) approach

– Non-local form: with

• 𝜏eq is the von Mises equivalent Kirchhoff stress and 𝑝 the pressure

• 𝜏Y = 𝜏Y Ƹ𝑝, ሶƸ𝑝 is the viscoplastic yield stress

• 𝑓V is the porosity and ሚ𝑓V, its non-local counterpart

• 𝜒 is the ligament ratio

• 𝒁 is the vector of internal variables

• 𝑙c is the non-local length

– Normal plastic flow

– Hyperelastic formulation

– Microstructure evolution (for spherical voids):

• Eq. plastic strain of the matrix:

• Porosity:

• Ligament ratio:

Damage to crack transition in porous elasto-plasticity
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• Plane strain specimen [Besson et al. 2003]

– Only half specimen is modelled

– Three ≠ mesh sizes

Non-local porous plasticity – Comparison with literature results
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Medium mesh

(~8100 elements, 𝑙m ≅ 0.75 𝑙c )

Coarse mesh 

(~4600 elements, 𝑙m ≅ 1.12 𝑙c )

Fine mesh 

(~15500 elements, 𝑙m ≅ 0.5 𝑙c )

𝑒0 = 5𝑚𝑚

𝑒0

𝐹 𝐹
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• Gurson model [Reush et al. 2003]

– Particularized yield surface

• Verification of non-local model

Non-local porous plasticity – void growth

53

𝑓V → 1

> 0.1𝑓V0
𝑓V

0.01
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𝑓G =
𝜏eq
2

𝜏Y
2 + 2𝑞1 ሚ𝑓𝑉 cosh

𝑞2𝑝

2𝜏Y
− 1 − 𝑞3

2 ሚ𝑓𝑉
2 ≤ 0



• Gurson model [Reush et al. 2003]

– Phenomenological coalescence model:

• Replace ሚ𝑓V by an effective value ሚ𝑓V
∗:

• 𝑓𝐶 from concentration factor 𝐶T
𝑓
𝜒 [Benzerga2014]

Non-local porous plasticity – void growth and coalescence
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> 0.1𝑓V0
𝑓V

0.01

COMPLAS 2019, Barcelona, Spain

ሚ𝑓𝑉
∗ =

ሚ𝑓𝑉 if ሚ𝑓𝑉 ≤ 𝑓𝐶
𝑓𝐶 + 𝑅 ሚ𝑓𝑉 − 𝑓𝐶 if ሚ𝑓𝑉 > 𝑓𝐶

𝜆𝐿

𝜒𝐿

𝐿
𝑓V

ሶ𝜒 = ሶ𝜒 𝜒, ሚ𝑓𝑉 , 𝜅, 𝜆, 𝒁

𝑢

max eig 𝝉 − 𝐶T
𝑓
𝜒 𝜏Y = 0



• Thomason model [Benzerga 2014, Besson 2009]

– Particularized yield surface

– Higher porosity to trigger coalescence

– No lateral contraction due to plasticity

• Verification of non-local model

– For 𝜅 = 0.5; 𝜆 = 0.5; 𝑙𝑐 = 50 𝜇m

Non-local porous plasticity – void coalescence
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𝜒 → 1
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𝑓T =
2

3
𝜏eq + 𝑝 − 𝐶T

𝑓
𝜒 𝜏Y ≤ 0

1𝜒0
𝜒



• Coupled non-local Gurson-Thomason 

– Competition between 𝑓G and 𝑓T

• For 𝜅 = 0.5; 𝜆 = 0.5; 𝑙𝑐 = 50 𝜇m

Non-local porous plasticity – void growth and coalescence
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𝑓G =
𝜏eq
2

𝜏Y
2 + 2𝑞1 ሚ𝑓𝑉 cosh

𝑞2𝑝

2𝜏Y
− 1 − 𝑞3

2 ሚ𝑓𝑉
2 ≤ 0

𝑓T =
2

3
𝜏eq + 𝑝 − 𝐶T

𝑓
𝜒 𝜏Y ≤ 0

𝑢

> 0.1𝑓V0
𝑓V

0.01



• Non-local Gurson model – CBM (arbitrary crack paths)

– Gurson material model

– Crack insertion at Thomasson criterion

– At crack insertion: Cohesive Band Model

– Comparison of two coalescence models

• Phenomenological approach:

• Thomason model:

Damage to crack transition for porous plasticity
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𝑵 ⋅ 𝝉 ⋅ 𝑵 − 𝐶T
𝑓
𝜒 𝜏Y = 0

ሚ𝑓𝑉
∗ =

ሚ𝑓𝑉 if ሚ𝑓𝑉 ≤ 𝑓𝐶
𝑓𝐶 + 𝑅 ሚ𝑓𝑉 − 𝑓𝐶 if ሚ𝑓𝑉 > 𝑓𝐶

𝑓G =
𝜏eq
2

𝜏Y
2 + 2𝑞1 ሚ𝑓𝑉 cosh

𝑞2𝑝

2𝜏Y
− 1 − 𝑞3

2 ሚ𝑓𝑉
2 ≤ 0

𝑓T =
2

3
𝜏eq + 𝑝 − 𝐶T

𝑓
𝜒 𝜏Y ≤ 0

𝒖

N

N

𝐅, 𝛔

𝑵, 𝒏

Bulk

𝒖 𝒉b

𝐅b, 𝛔b
𝑵,𝒏

Band

Bulk

𝐅, 𝛔



• Non-local Gurson model – CBM 

– CBM insertion at Thomason criterion

– CBM with coalescence model

• Comparison of 2 coalescence models

• For 𝜅 = 0.5; 𝜆 = 0.5; 𝑙𝑐 = 50 𝜇m

Damage to crack transition for porous plasticity
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Thomason coalescence

𝑓V0

𝑓V

> 0.1

0.01

Phenomenological coalescence

CDM-CBM
CDM only


