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Abstract

Increased dosage of MeCP2 results in a dramatic neurodevelopmental phenotype with onset at 

birth. We generated induced pluripotent stem cells (iPSC) from patients with the MECP2 
duplication syndrome (MECP2dup), carrying different duplication sizes, to study the impact of 

increased MeCP2 dosage in human neurons. We show that cortical neurons derived from these 

different MECP2dup iPSC lines have increase synaptogenesis and dendritic complexity. 

Additionally, using multi-electrodes arrays, we show that neuronal network synchronization was 

altered in MECP2dup-derived neurons. Given MeCP2 function at the epigenetic level, we tested if 

these alterations were reversible using a library of compounds with defined activity on epigenetic 

pathways. One histone deacetylase inhibitor, NCH-51, was validated as a potential clinical 

candidate. Interestingly, this compound has never been considered before as a therapeutic 

alternative for neurological disorders. Our model recapitulates early stages of the human MECP2 
duplication syndrome and represents a promising cellular tool to facilitate therapeutic drug 

screening for severe neurodevelopmental disorders.
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Introduction

We previously showed that increased dosage of methyl-CpG-binding protein-2 (MeCP2) 

leads to a severe neurodevelopmental disorder in males, designated as the MECP2 
duplication syndrome (MECP2dup) (MIM#300260)

1,2. The increased dosage of MeCP2 is 

the result of a copy number gain at Xq28, including the MECP2 gene, and results in severe 

to profound neurodevelopmental delay with onset at birth, limited or absent speech, 

hypotonia, epilepsy, autistic behavior and motor dysfunction
1–5

. Several studies in 

transgenic mice, overexpressing MECP2, have shown a progressive neurological phenotype, 

including tremor, gait ataxia, seizures, anxiety, abnormal learning and behavior and early 

death, recapitulating some aspects of the human disease
6–9

. The MeCP2 protein is widely 

expressed in various human tissues, but its increasing expression in the postnatal neural 

lineage suggests a key role in neurodevelopment, including the maturation, dendritic 

arborization, and axonal outgrowth of central nervous system
10,11

. Loss-of-function 

mutations in MECP2 cause Rett syndrome (RTT) (MIM#312750) as well as other 

neurobehavioral disorders, indicating that MECP2 gene dosage is critical for human 

neurodevelopment
12

.

Human induced pluripotent stem cells (iPSCs) constitute a promising tool for investigating 

the underlying pathophysiology of traditionally challenging neurodevelopmental disorders
13

. 

We have demonstrated the utility of iPSCs to investigate the functional consequences of 

MECP2 loss of function
14,15

. Neurons generated from RTT patients’ iPSCs exhibited several 
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alterations, including decreased soma size, altered dendritic spine density and reduced 

excitatory synapses. Therefore, functional studies using iPSC-derived neuronal cultures from 

patients carrying MECP2 mutations can help delineate the mechanism by which alterations 

in MeCP2 dosage lead to disease and, ultimately, serve as a screening system to test 

potential therapeutic compounds. In this study, we present the development and analysis of a 

human iPSC model for the MECP2 duplication syndrome. In addition, we screened an 

epigenetic chemical library and found one compound able to successfully reverse several 

aspects of the observed neuronal phenotype.

Materials and Methods

Patient consent

This project was approved by the Ethics Committee of the Institutes where the study was 

conducted. After a complete description of the study, written informed consent was signed 

by the parents of the patients involved.

Patient ascertainment

Fibroblasts were obtained from three independent patients diagnosed with MECP2 
duplication syndrome:

Patient 1 (male) was born after an uneventful pregnancy as the first child to healthy non-

consanguineous parents. At birth, he was very hypotonic with feeding problems. His 

development was severely delayed, with sitting at the age of 2 years and walking with 

support at the age of 3 years and half. He did not develop any active speech and shows 

repetitive behavior and hand flapping when he is excited. He suffered from recurrent 

infections occurring since the first months of life, necessitating almost continuous antibiotic 

therapy and frequent hospitalizations. At the age of 6 years, he was ventilated for 1 week 

because of a serious pneumonia. After this period, he lost ambulation and his epilepsy got 

worse. Array comparative genome hybridisation (array-CGH) at the age of 2 years showed a 

very small duplication of 300 kb at Xq28 (152.73–153.02 Mb). Within this interval, MECP2 
is the only known brain expressed gene involved in a human disorder (Figure 1a).

Patient 2 (male) was born from non-consanguineous parents with negative family history. He 

showed severe hypotonia at birth and was severely delayed. Feeding and gross motor 

movements were always with support. The patient is non-verbal with severe stereotypic 

behaviour, including hand flapping. He was frequently hospitalized because of recurrent 

lung infections and seizures. Array-CGH revealed that the patient has a large duplication of 

15.25 Mb at Xq28 (139.33–154.58 Mb) that includes MECP2 (Figure 1a).

Patient 3 (male) was born at term as the first child of healthy non-consanguineous parents. 

His family history is significant for three maternal uncles and a maternal cousin who died in 

the second or third decades of life with a similar clinical picture. The patient had 

developmental delays from birth. He had severe gastroesophageal reflux and was difficult to 

soothe as an infant. He sat up at one year, did not crawl, and did not walk until 2.5 years. He 

exhibited language delays from birth and learned some basic communication skills using a 

PECS board or basic signs. Hand and mouth stereotypies were frequent. He was formally 
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diagnosed with autism at age 7 years. Medically, he experienced constipation, drooling, 

bruxism, and recurrent respiratory infections. At age 8 years, he developed medically 

refractory epilepsy and experienced developmental regression. He lost the ability to 

ambulate and became wheelchair dependent. He lost use of his hands and the limited 

interactive skills that he had gained. Severe dysphagia developed, and a gastrostomy tube 

was placed and is his sole source of nutrition. Seizures persist despite placement of a vagus 

nerve stimulator and use of the ketogenic diet. Pneumonias became frequent despite the use 

of prophylactic antibiotics and necessitated hospitalization and ventilatory support on 

numerous occasions. Array-CGH revealed that the patient has duplication of 500 kb at Xq28 

(152.66–153.15 Mb) that includes MECP2 (Figure 1a). Patient 3 was previously described in 

Carvalho et al., 2013 (as patient BAB2623)
18

.

Cell culture

Inactivated mouse embryonic fibroblasts (iMEFs, GlobalStem) were maintained in DMEM 

HG (Life Technologies, CA, USA) containing 10% FBS (Sigma-Aldrich, St Louis, MO, 

USA). Skin fibroblasts obtained from explants of dermal biopsy of male patients with 

MECP2 duplication syndrome and BJ1 fibroblast cells were maintained in DMEM F-12 

(Life Technologies) containing 10% FBS. iPSC clones were normally expanded on iMEF 

feeders using hES medium comprising DMEM-F12, 10% KSR (both from Life 

Technologies), 200mM L-Glutamine, beta-mercaptoethanol (both from Sigma-Aldrich) and 

basic FGF (Life Technologies) and passaged by using collagenase. For feeder-free culturing, 

cells were grown on matrigel coated dishes (BD Bioscience, San Jose, CA, USA) and 

mTeSR1 from StemCell Technologies and passaged by using dispase.

Generation of iPSCs

Skin fibroblasts derived from patients with MECP2 duplication syndrome were infected with 

pMXs retroviral vectors containing coding sequences of human OCT4, SOX2, KLF4 and C-
MYC (obtained from Addgene, Cambridge, MA, USA)

19
. Four days post infection, 

fibroblasts were trypsinized to singles and plated on the iMEF feeders and cultured using 

hESC medium. After 3–4 weeks, iPSC clones were manually picked and were further 

propagated clonally on feeders. Control 1 was derived from normal, healthy male donor 

fibroblasts (kind gift of Prof. Nadif-Kasri N., Nijmegen, The Netherlands). Control 2 was 

also generated from healthy male donor fibroblasts (Muotri lab, UCSD). The Control 3 iPSC 

clone was derived from BJ1 fibroblasts (Verfaillie lab, KULeuven).

RNA extraction and RT-qPCR

Total RNA was extracted using RNeasy Micro Kit from Qiagen. cDNA was synthesized by 

taking 1μg of total RNA and superscript III first-strand kit (Life Technologies) as per 

manufacturer’s instruction. RT-qPCR was performed using gene specific primers (primer 

sequences available on request) and SYBR Green Platinum SuperMix from (Life 

Technologies). The expression of target genes and the endogenous control were measured 

with technical duplicates in each qRT-PCR reaction. To obtain statistical significance, values 

from a minimum of three independent differentiation qRT-PCR runs were considered. 

GAPDH was used as the endogenous control. The cycle threshold number (Ct) was 

calculated using RQ Manager 1.2 Software (Life Technologies). The relative expressions of 
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each target gene across differentiation days were normalized using 2(−ΔΔCt) method 

compared to differentiation day 5. Similarly, the fold expression of genes in the patient 

differentiation samples were calculated using 2(−ΔΔCt) method compared to differentiation 

day 5 of control cells.

Immunocytochemistry

Cells grown on coverslips were fixed using 4% PFA for 20 minutes at room temperature 

(RT). Cells were permeabilized and blocked using a buffer containing 5% Horse/Donkey/

Goat serum, 3% BSA and 0.3% TritonX-100 for 30 minutes at RT. Primary antibodies 

diluted in antibody diluent (1% Horse/Donkey/Goat serum + 3% BSA + 0.1% TritonX-100) 

were incubated overnight at 4°C. Secondary antibodies were incubated for 1h at RT. Cells 

were washed three times with PBS + 0.1%Tween-20. Hoechst (4 μg/mL) was used to 

visualize nuclei. Coverslips were mounted on slides using Prolong Gold mounting medium 

(Life Technologies). Images were acquired using confocal microscope Radiance 2100 

(Zeiss, Germany) equipped with an upright microscope (Eclipse E800; Nikon, Japan). The 

Supplementary Table 5 brings a detailed description of the antibodies used in this study.

Teratoma formation

Fully-grown iPSCs on feeders were dissociated by using collagenase for 3–4 minutes at 

37°C. Cells re-suspended in PBS and matrigel (1:1) were injected subcutaneously into 

dorsal flanks of immune-compromised Rag2−/− GammaC−/− mice. Five to six weeks later, 

teratomas were excised and fixed by using 4% PFA at 4°C for overnight. Fixed tumor was 

embedded in paraffin and sections of 5μm thickness were made using microtome for 

histological studies. The tissue sections were stained with haematoxylin & eosin (H&E) and 

analyzed for the presence of the different germ layer tissues.

EB formation

Feeder free cultured iPSCs were dissociated using dispase for 5 minutes at 37°C and 

centrifuged for 3 minutes at 1200 rpm. Cell pellet was re-suspended in EB medium [IMDM 

medium, 15% FBS, 2 mM L-glutamine, 1% non-essential amino acids, 1 mM Sodium 

pyruvate, 100 U penicillin/streptomycin, 200 μg/ml Iron-saturated-transferrin, 10 μM β-

mercaptoethanol, 50 μg/mL ascorbic acid (Sigma-Aldrich)] supplemented with ROCK 

inhibitor and plated on ‘low attachment plate’. Medium was changed every alternate day by 

centrifuging at 700 rpm for 1 minute and re-suspending gently using fresh medium. After 8 

days, EBs were re-plated on a plate pre-coated with gelatin for 30 minutes at RT. The 

attached cells were maintained for 8 more days in EB medium and were taken for gene 

expression analysis.

Protein isolation and Immunoblotting

Cells were harvested and lysed in a buffer containing 50mM Tris-HCl at pH 7.4, 300 mM 

NaCl, 1 mM DTT, 0.5% TritonX-100, protease inhibitors and sonicated briefly. Total cell 

lysates were centrifuged at 6000 rpm for 10 minutes at 4°C. Protein concentration was 

measured using Bradford’s reagent. Subsequently, 30 μg of proteins were loaded on 

NuPAGE, 10% Bis-Tris Gel using MOPS buffer at 200 V for 1 h and then transferred to 
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PVDF membrane using Life Technologies iBlot system. Further, membrane blocking was 

performed using TBS with 5% milk powder and 0.1% Tween-20 for 45 minutes at RT. The 

membrane was incubated with primary antibody, mouse anti-MeCP2 (1:1000; Sigma-

Aldrich) diluted in blocking buffer for overnight at 4°C. HRP-conjugated anti-mouse 

antibody was used as secondary and incubated for 1h at RT. Rabbit anti-GAPDH was used 

as a loading control. Proteins were detected using Western Blot Chemiluminescence reagent 

Plus kit (Perkin-Elmer, Waltham, MA, USA) as per manufacturer’s instruction.

Chromatin Immunoprecipitation assay

ChIP assay was performed using the ChIP-IT Express Enzymatic kit (Active Motif, 

Carlsbad, CA, USA). Briefly, starting with 10 cm plates, cross-link was induced in cells with 

1% formaldehyde for 10 min at RT. After washout with ice-cold PBS, the reaction was 

stopped with Glycine Stop-Fix Solution for 5 min and plates were washed again with PBS. 

Cells were then suspended in Cell Scraping Solution and pelleted by centrifugation (720 × g 

for 10 min at 4°C). The cell pellet was re-suspended in 1 mL of ice-cold Lysis Buffer, 

Dounce homogenized with 15 strokes and centrifuged for 10 min at 2400 × g and 4°C. The 

nuclei pellet was re-suspended in 350 μL of Digestion Buffer. After 5 min incubation at 

37°C, the solution was supplemented with 17 μL of Enzymatic Shearing Cocktail (200 

U/mL) and incubated for more 15 min at 37°C. The ChIP reaction was setup with 25 μg of 

sheared chromatin, 2 μg of anti-MeCP2 antibody (Diagenode, Denville, NJ, USA) and 

Protein G Magnetic Beads. The reaction was incubated on an end-to-end rotator for 16 h at 

4°C. A magnetic stand was used collect the magnetic beads at the end of incubation and 

subsequent washes (once with ChIP Buffer 1 and twice with ChIP Buffer 2). Washed beads 

were re-suspended in 50 μL of Elution Buffer AM2 and incubate at room temperature under 

agitation for 15 min. Cross-link was reverted with 50 μL of Reverse Cross-linking Buffer, 

removal of supernatant after pelleting the beads with the magnetic stand and incubation of 

the solution at 95°C for 15 min. Finally, the supernatant was incubated at 37°C for 1 h with 

Proteinase K followed by addition of 2 μL of Proteinase K Stop Solution. The DNA was 

immediately used on endpoint PCR and quantitative PCR reactions (primer sequences 

available on request). The antibody conditions for the ChIP assay were validated with brain-

derived neurotrophic factor (BDNF) promoter in exon IV and another region (negative) of 

the promoter as previously described
20

.

Copy number variation (CNV) analysis by array Comparative Genome Hybridization (CGH)

Genomic DNA isolated from patient and control iPSCs using PureLink Genomic DNA Mini 

Kit (Life Technologies) was subjected to CNV analysis on 180k Cytosure ISCA v2 arrays. 

Arrays were designed to be used in two-color experiments i.e., one sample was labeled with 

fluorescent dye (Cy3) and another sample was labeled with fluorescent dye (Cy5). Array 

CGH was performed according to the manufacturer’s recommendations. Dye swap design 

was used for DNA labeling and post hybridization and washing, the slide was scanned with 

an Agilent G2565CA Microarray Scanner. Raw data were generated using the accompanied 

Feature Extraction software (Agilent Technologies, Santa Clara, CA, USA). Data were 

analyzed by means of the CytoSure Interpret software v.10 (OGT).
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Differentiation of human iPSCs into neurons with a cortical fate

Differentiation was done as previously described
21

. Induced pluripotent stem cells were 

dissociated into single cells by using accutase (Sigma-Aldrich) and were plated on matrigel 

(hES qualified matrigel; BD) coated plates/coverslips using mTeSR medium supplemented 

with 10μM ROCK inhibitor (Calbiochem, Spring Valley, CA, USA). This day was 

designated as ‘day −2’. Post 48 hours, i.e., on ‘day 0’, medium was changed to chemically 

defined default medium (DDM) supplemented with B-27 (Life Technologies; 10 mL per 500 

mL of medium) and the differentiation was induced by adding 100ng/mL of Noggin (R&D 

Systems, USA) for 16 days with alternate days of medium change. After the 16th day, cells 

were cultured by using DDM supplemented with B-27 but without Noggin until day 24. 

Neural progenitor cells (NPCs) were mechanically dissociated and plated (using DDM with 

B-27 medium) at a density of 50,000 cells per well of a 12-well plate having coverslips (18 

mm) with poly-lysine and Laminin (both from BD biosciences). ROCK inhibitor (10μM) 

was added to aid survival. Approximately a week later, half of the medium was replaced 

with Neurobasal medium (Life Technologies) supplemented with B-27 (10 mL B-27 over 

500 mL medium) along with L-Glutamine (2 mM). This procedure was repeated every 5–7 

days.

Sholl Analysis

Cells differentiated on coverslips were fixed at day 40 of differentiation using 4% PFA and 

immunostained with antibody against anti-MAP2. NIH ImageJ software with built-in ‘Sholl 

analysis’ option was used to quantify neuritic complexity. Analysis was done by specifying a 

centre point at the middle of each soma and by placing a grid with concentric rings of radii 

increasing in increments of 10 μm and the number of intersections was used to estimate the 

total dendritic branch.

Neuronal connectivity

Wheat germ agglutinin (WGA) was used as a trans-synaptic tracer to verify neuronal 

connectivity
22,23

. Three weeks old neurons were transfected with 1 μg of MSCV-AcGFP-

P2A-WGA construct
1
 using Lipofectamin 3000 reagent (Life Technologies) according to the 

manufacturer’s instructions. Seven days after transfection, neurons were fixed with 4% PFA 

and performed immunocytochemistry. The primary antibodies were mouse anti- GFP 

(1:1000; Millipore, Billerica, MA, USA) and rabbit anti-WGA (1:5000; Sigma-Aldrich) 

antibodies.

Synaptic puncta quantification

Quantification of co-localized pre- and post-synaptic puncta was performed after 

immunostaining with Vglut-1 and PSD95 as previously described. The primary antibodies 

(PSD95, 1:1000, NeuroMab, CA; Vglut-1, 1:1000, Synaptic Systems, Germany; and 

MAP-2, 1:2000, Sigma-Aldrich) were incubated for 2 h. After post treatment with secondary 

antibodies and incubation for 1 h, coverslips were mounted and slides were analyzed under a 

fluorescence microscope (Z1 Axio Observer Apotome, Zeiss). Only Vglut1 and PSD95 

puncta along MAP-2 positive processes were counted. Lentivirus overexpression and 

knockdown of MECP2 were performed as described previously
14

.
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Spine density and morphology

pHIV7/Syn-EGFP lentivirus was prepared by transfecting HEK cells using the transfection 

agent polyethylenimine (PEI) (Polysciences, Inc), pSyn-EGFP and packaging plasmids 

pMDL, Rev RSV and VSVG. During cortical neuron differentiation, on day 40, control and 

MECP2dup neurons were transduced with pHIV7/syn-EGFP. Post transduction, neurons 

were further differentiated until day 70 and were fixed with 4% paraformaldehyde and 

further processed for imaging. Confocal images were obtained using a confocal laser-

scanning microscope (Nikon), 60x oil objective, with a sequential acquisition setting at 

4096×4096 pixels resolution. Each image is a Z- series projection of approximately 7 to 15 

images, averaged two times and taken at 0.5 μm depth intervals. GFP labeled differentiated 

neurons were chosen randomly for quantification. Quantitative analysis was performed 

blind. Dendrites on primary branches were selected randomly and for each neuron 2–3 

segments of 10 μm were analyzed. Morphometric measurements were performed manually 

using the Image J software (1.44p version). Each spine on the dendrites was manually 

traced. The length and head width of each spine was automatically measured and used to 

categorize the spines
24

. Specifically, spines where defined as thin and filopodia (immature) 

or mushroom and stubby (mature) according to the criteria defined previously
24

. Twenty-

two (51 segments of 10 μm) and 18 (42 segments of 10 μm) neurons were analyzed for the 

control and MECP2dup neurons, respectively; two clones for each condition.

Multi-electrode array assays (MEA)

To generate functional neural networks, growing NPCs were dissociated with Accutase and 

placed on 6 well dishes (106 cell per well) under shaker agitation (95 rpm) at 37°C. The 

media used was DMEM-F12 supplemented with 0.5X B-27, 0.5X N2 and 20 ng/mL of 

bFGF (all from Life Technologies). The next day (day 0) neural fate was induced by 

removing bFGF and adding 10 μM Rock inhibitor Y-27632 (Tocris, USA). Two days later 

(day 2) media was changed to fresh media without Rock inhibitor. The differentiation took 

place for 2 weeks in suspension, with media change every 4 days. On day 15 of 

differentiation, these 3D neurospheres cultures were plated on MEA probes containing dual 

chambers (MED-P5D15A, from Panasonic, Japan) with DMEM-F12 media supplemented 

with 0.5X B-27, 0.5X N2 and 1%FBS. Media was changed every 3–4 days. After 2 weeks, 

media was replaced with Neurobasal supplemented with 1X B-27 and 1:400 Glutamax. 

Recording of spontaneous spike activity was done using the MED64 System (Panasonic). 

For Tetrodotoxin (TTX) assays, functional cultures were submitted to TTX treatment (1 μM) 

and spontaneous activity was recorded before, during and 1 h after washout of TTX. For 

epigenetic compounds treatment, neurons were treated every other day for 1 week with 10 

μM of Scriptaid or NCH-51, Activity was measured in the following week. Only MEA 

channels with similar number and density of cells plated, and with more than 10 spikes in 5 

min interval were used in the analysis. Glutamatergic agonists (AP5 and NBQX) were used 

to check neuronal activity. After measurement, neurons were immunostained to check 

morphology and density. Recorded spike was analyzed with the software Neuroexplorer 

(Nex Technologies, Madison, AL, USA).
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InCell Western and epigenetic compound screening

Total protein level content was analyzed using the InCell Western technology (LiCor). NPCs 

were seeded in 96 well plates for imaging (1.4×104 cells per well) with DMEM-F12 media 

supplemented with 0.5X B-27, 0.5X N2 and 20 ng/mL of bFGF (all from Life 

Technologies). The next day (day 0) neural differentiation was induced by removing bFGF 

and adding 10 μM Rock inhibitor Y-27632 (Tocris). Two days later (day 2) media was 

changed to fresh media without Rock inhibitor. Media was changed every 3–4 days. After 3 

weeks of differentiation, cells were treated in replicates (at least 4 wells per condition) with 

compounds of the Screen-Well Epigenetics library BML-2836 (Enzo Life Sciences, USA). It 

comprises 43 compounds carrying activity against lysine modifying enzymes. A single dose 

of 10 μM was used in this screening for 1 week with complete media change every 2 days. 

On the final day of screening (day 28 of differentiation), cells were fixed with 100% 

methanol for 10 min, washed 3 times with PBS and blocked with blocking buffer for 

fluorescent Western Blotting (Rockland, Pottstown, PA, USA). After 4h of blocking, PSD95 

(NeuroMab) primary antibody was added at 1:250 dilution in blocking buffer. Cells were 

incubated 16h at 4°C under light agitation. After wash (5 times) with PBS-Tween 0.1%, 

cells were incubated with 800 IRDye conjugated secondary antibodies (LiCor) at 1:800 

dilution in blocking buffer with Tween-20 0.2% for 1 h at room temperature and moderate 

agitation. For normalization, DRAQ5 and Sapphire700 (LiCor) were added concomitantly 

with secondary antibody. After incubation, cells were washed (5 times) with PBS-Tween-20 

0.1% under moderate agitation. Plates were read on Odyssey CLx infrared imaging system 

(LiCor). PSD95 signal was normalized to cell content (DRAQ5 and Sapphire700) and 

results were plotted using the software GraphPad Prism.

Statistical Analysis

At appropriate places, results were expressed as means ± s.e.m.. Statistical analysis was 

performed by unpaired Student’s t test or one-way analysis of variance (ANOVA), where P < 

0.05 was considered significant and P<0.01 was considered as highly significant.

Results

Genetic characterization of the MECP2 duplication locus

Duplication of the Xq28 chromosomal region, including MECP2, is a well-known 

chromosomal rearrangement that is characteristically non-recurrent in nature. Duplication 

sizes and gene content are highly variable among patients, but genotype-phenotype studies 

in humans and mice confirmed the increased dosage of MeCP2 as the underlying cause of 

the severe neurodevelopmental phenotypes
1, 2, 16–18

. In this study we included 3 male 

patients with different Xq28 duplication sizes, ranging from 300 Kb up to 15 Mb in size, all 

involving the MECP2 gene (Figure 1a). Patient 1 duplication is restricted to the MECP2 
gene. Clinical history of the respective patients is described in the Methods section.

Increased MECP2 expression does not affect iPSC derivation

MECP2dup and control male iPSC clones (see Supplementary Table 1) were derived from 

fibroblasts using retroviral reprogramming vectors (Sox2, Oct4, c-Myc and Klf4) as 
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previously described
19

. The different iPSC lines were validated by analyzing the 

endogenous expression of pluripotent genes at the transcript level, and secondly by 

analyzing their potency to generate the three germ layers by embryoid body (EB) in vitro 
differentiation and in vivo teratoma assays (Supplementary Figure 1a–e). We confirmed by 

array comparative genomic hybridization (array CGH) that the Xq28 copy number variation 

(CNV), initially present in the patients’ cell lines, remained stable during reprogramming 

(Supplementary Figure 1f). IPSC lines that accumulated additional CNVs during 

reprogramming were excluded from the study. Western blot analysis confirmed a two-fold 

overexpression of MeCP2 in all reprogrammed patients’ cell lines, reflecting the double 

dosage of MECP2 (Supplementary Figure 1g). Overall, our data demonstrate that increased 

MeCP2 dosage does not interfere with the reprogramming process.

Patient and control iPSCs can be differentiated into neuronal cells of cortical identity

Since cortical dysfunction is observed in patients with MECP2 duplication syndrome, we 

chose to study the pathophysiology mechanism in iPSC-derived neurons with cortical 

identity. We used a differentiation protocol that involves an intrinsic mechanism for efficient 

generation of forebrain progenitors and pyramidal neurons from human iPSCs
21

 (a 

schematic summary can be seen in the Supplementary Figure 1h). Immunostaining 

confirmed the neuroectoderm progenitor identity of the cells obtained after 20–30 days of 

differentiation (Figure 1b). Analysis of transcripts during the early course of differentiation 

(day 20–30) showed a difference in the expression of BLBP, a marker for neural progenitors, 

and FOXG1, a marker for telencephalic identity, with patient-derived neural progenitor cells 

(NPCs) expressing more than the control NPCs (Figure 1c and Supplementary Figure 1i for 

individual clones). SOX1, marker for neural progenitors, also presented a trend of being 

more expressed in MECP2dup samples (Figure 1b and Supplementary Figure 1i for 

individual clones). Differentiation of these NPCs resulted in a neuronal population with 

cortical-like identity that demonstrated higher expression levels of CTIP2 (layer V cortex 

marker) and TBR1 (subplate, Layer I and VI marker) compared to controls (Figure 2a and 

Supplementary Figure 2a for individual clones). Expression of RELN (Cajal Retzius neurons 

layer I cortex), however, was significantly reduced in patient neurons compared to control 

neurons (Figure 2a and Supplementary Figure 2a for individual clones). This result is 

consistent with previous mouse data, suggesting that MeCP2 negatively regulates the 

expression of Reelin
25

. Importantly, we observed a high consistency between very different 

duplication size samples (such as patients 1 and 2), confirming the dominant role of MeCP2 

in these phenotypes (Supplementary Figure 2a). RT-qPCR and Western blot analysis 

confirmed the overall overexpression of MeCP2 during the whole process of differentiation 

(Figure 2b,c and Supplementary Figure 2b for individual clones). Finally, immunostaining of 

mature neurons confirmed the expression of cortical identity markers TBR1 and CTIP2 in 

neurons derived from affected and controls (Figure 2d).

To determine whether the derived iPSCs are able to generate functional neurons, we used the 

Multi-Electrode Array (MEA) electrophysiology technique. MEA electrophysiology is a 

non-invasive way to explore the network activity and connectivity status of neurons
26

. Using 

an in-house developed protocol to generate three-dimensional neurospheres (detailed in 

Methods and illustrated in Supplementary Figure 2c–f), we successfully record and 
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manipulate actions potentials from our neuronal networks (Figure 2e). Finally, we used a 

bicistronic lentiviral vector system co-expressing green fluorescent protein (GFP) and wheat 

germ agglutinin (WGA) for network tracing
22,23

. Although WGA is a non-replicating tracer 

that undergoes dilution at each synaptic transfer, limiting its quantitative potential, this 

technique is useful in revealing the presence of physical contacts between iPSC-derived 

neurons (Figure 2f). No significant difference in the number of WGA positive neurons was 

found between MECP2dup and controls (Supplementary Figure 2g,h).

Increased glutamatergic synapse number and altered dendritic morphology in MECP2dup 
neurons

Previous studies in mice showed that MECP2 dosage has a major impact on the formation of 

excitatory synapses. Decreased MeCP2 levels result in a lower number of glutamatergic 

synapses, while increased MeCP2 dosage leads to increased synaptic numbers
27

. However, 

more in-depth studies showed that the increased spine density due to increased MeCP2 

protein dosage is mainly present in early neurogenesis and decreased with age
11

. Human 

iPSCs-derived neurons from RTT have a decreased number of glutamatergic synapses
14

, 

indicating a pivotal role of MeCP2 in the homeostasis of excitatory synapses. Gene 

expression profile of neurons derived from patients with MECP2 duplication syndrome 

revealed a trend towards a higher level of expression of the synaptic genes VGLUT1 and 

PSD95 (Figure 2a and Supplementary Figure 2a for individual clones). Moreover, puncta 

quantification of co-localized pre- and post-synaptic markers confirmed an increased 

number of glutamatergic synapses in patient derived neurons compared to controls (Figure 

3a and Supplementary Figure 3a for individual clones). To confirm the major influence of 

MeCP2 dosage in the observed phenotypes, we extended the puncta analysis in control and 

MECP2dup neurons in which the levels of MECP2 expression were modulated, either by 

overexpression (in control neurons) or by repression using shRNA (in MECP2dup neurons)

(Supplementary Figure 3b,d). Additionally, Western blot analysis confirmed the presence of 

higher Synapsin-1 and PSD95 protein levels in patient-derived neurons (Figure 3b and 

Supplementary Figure 3c,d).

To study the effect of increased MeCP2 dosage on neuronal morphology, we investigated the 

dendritic arborization using Sholl analysis. Studies in mice models reported contrasting 

results, depending on the experimental design
11, 28,29

. Our data indicate that human 

MECP2dup neurons have significantly increased dendritic arborization compared to control 

neurons (Figure 3c). To study spine morphology and density, neurons were transduced with 

pHIV7/syn-EGFP and further differentiated until day 70, to enable correct morphological 

analysis. GFP-labeled dendrites were randomly selected and spines were analyzed manually 

for their morphology, as previously described
24

. As shown in figure 3d, the total spine 

density per primary dendritic unit did not differ significantly between control and patient 

neurons. However, given the significant increased dendritic complexity, the absolute number 

of spines will be higher in the disease neurons. Interestingly, we observed more immature 

and less mature spines per dendritic length in the MECP2dup neurons. Alterations of 

dendritic spines or spine dysgenesis represent a common hallmark of intellectual disability 

and related synaptopathies
30

.
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A recent paper demonstrated the importance of Cux1 in regulating dendritic branching and 

spine density in upper layer neurons
31

. Western blotting confirmed an up-regulation of Cux1 

protein levels in our MECP2 duplication samples compared to controls, indicating that 

MeCP2 may in fact be regulating the levels of Cux1 in our cultures (Figure 3e and 

Supplementary Figure 3e for individual clones). Chromatin immunoprecipitation (ChIP) 

analysis demonstrated the occupancy of the MeCP2 protein on the CUX1 promoter region, 

suggesting a potential downstream target for regulation (Figure 3f and Supplementary Figure 

3f).

Altered network phenotype of MECP2dup neurons

Although most studies of the nervous system using iPSC rely on the premise that a synaptic 

phenotype in vitro could ultimately drive a network phenotype, few explored the real 

implications of these findings. To better explore this venue, we investigated if the imbalance 

in glutamatergic synapses could drive a functional neuronal phenotype using MEA. Aligned 

roster plots of independent channels show that both MECP2dup and control neuronal 

cultures displayed neuronal synchronized activity, measured by overlapping spike burst from 

different channels (Figure 3g,h and Supplementary Figure 3g,h). Synchronized activity 

spreading through multiple electrodes indicates information flow in the neuronal network 

via synapse signalling. Interestingly, overlapping the spike activity histogram from different 

channels reveals a distinct frequency of synchronized activity for MECP2dup neuronal 

networks, with significantly more synchronized burst events compared to controls (Figure 3g 

and Supplementary Figure 3h). Again, we could confirm the central role of MeCP2 dosage 

on the functional phenotype, by repeating the MEA assays in control and MECP2dup 

neurons in which the levels of MECP2 expression were modulated, as described above 

(Figure 3i).

Epigenetic modifiers screening in MECP2dup neurons

Given the multiple roles of MeCP2 at the epigenetic level, we decided to explore the 

possibility of rescuing the neuronal phenotypes using an epigenetic modifier library of 

compounds (Screen-Well Epigenetics library from Enzo, see methods for a description and 

Supplementary Table 2). Using the InCell Western screening technology (ICW), we 

measured levels of PSD95 as a read out for our screening (Figure 4a) and confirmed that this 

new tool is able to replicate the results from Western blotting (Figure 3b). This method of 

screening proves to be reliable and fast, avoiding the demanding human input required in the 

current state-of-the-art techniques. PSD95 was selected given its core importance in the 

formation of mature synapses. Additionally, given its physical interactions with several other 

synaptic proteins, found mutated in many neurodevelopmental syndromes like autism 

(Supplementary Figure 4a), a screening platform based on this phenotype can be useful to 

screen therapeutic compounds in these neurodevelopmental disorders as well.

Using a library of 43 compounds (schematic protocol in Supplementary Figure 4b), we 

found 5 inhibitors that matched two criteria: 1) having a very significant p-value score 

(p<0.001), and 2) reducing PSD95 protein levels close to control levels after 1 week of 

treatment (Figure 4b and Supplementary Table 2 and 3). Their mechanisms of action are 

scattered over distinct categories, for example, histone deacetylase (HDAC) inhibitors 
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(Scriptaid, NCH-51 and NSC-3852), DNA methyltransferase inhibitor (Zebularine) and 

Histone methyltransferase inhibitor (BIX-01294). The HDAC inhibitors Scriptaid and 

NCH-51 were chosen to further access their potential in rescuing the other observed 

MECP2dup neuronal phenotypes.

First, we measured the impact of these two compounds in rescuing neuronal morphology 

(Figure 4c–d and Supplementary Table 4 for statistics). Given that both inhibitors rescued 

the branching phenotype to control levels, we then quantified co-localized puncta number 

after treatment with the epigenetic modifiers (Figure 4e). Once more, both compounds were 

able to rescue the glutamatergic imbalance present in the MECP2dup neurons. In addition, 

although these compounds seem to regulate glutamatergic synapse number in MECP2dup 

samples, they did not affect the control neurons (Supplementary Figure 4c–d), suggesting a 

specific target pathway. Finally, MEA electrophysiology was used to assess whether we 

could also rescue the altered network phenotype (Figure 4f). MECP2dup neurons presented 

a higher number of action potentials than the control cultures, which correlates with the 

higher level of synchronized burst activity (Figure 3g,h and Supplementary Figure 3i). After 

treatment, MECP2dup neurons treated with NCH-51 showed reduced levels of activity, 

almost to the same level as seen in the controls (Figure 4f). Interestingly, patient neurons 

treated with Scriptaid had their activity completely abolished.

Discussion

To study human neurons with altered MECP2 gene dosage, we derived iPSC from 

fibroblasts isolated from three independent patients with MECP2 duplication syndrome. 

Although one of the patients carries a large duplication of 15Mb, involving many other X-

linked genes, the data obtained from different patients seems to be in coherence in most of 

the assays, including the MEA electrophysiology. Moreover, the central role of MeCP2 in 

neuronal connectivity and electrophysiology was further confirmed when its expression was 

modulated in control or disease neurons, respectively. These experimental data confirm the 

many clinical observations, indicating the dominant role of the increased MeCP2 dosage in 

the described phenotypes.

The increased MeCP2 expression did not interfere with the reprogramming and neuronal 

differentiation processes in our study. Cortical neurons derived from human MECP2dup 

iPSC lines showed an increased number of glutamatergic synapses when compared to non-

affected controls and RTT derived neurons
14

. We also found increased dendritic arborization 

and complexity in these neurons, again in sharp contrast to what we observed in RTT 

derived neurons
14

. This is also in agreement with transgenic mouse data, confirming that 

MECP2 overexpression promotes early postnatal dendritic and synaptic growth
7,11

. In 

addition, we observed altered spine morphology, a hallmark of many neurodevelopmental 

disorders, and it will be of interest to further investigate this observation in post-mortem 

brain samples
30

.

MeCP2 was reported to modulate multiple pathways affecting dendritic plasticity
12

. From 

the myriad of genes that may be affected by MeCP2, we observed increased levels of CUX1, 

a gene previously identified as a dendritic branching modulator
31

. CUX1 controls the 
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development of dendritic branching and promotes dendritic spine development and 

stabilization during early neuronal differentiation. In a Drosophila model, increasing levels 

of Cut, the fly homologue, resulted in increased branching and elevated dendritic spike 

numbers
32

. We speculate that CUX1 expression can be upregulated by direct binding of 

MeCP2, which might constitute a potential mechanism for some of the observed MECP2 
syndrome pathophysiology in our human in vitro model.

Electrophysiological analysis using MEA showed that MECP2dup neurons have a 

significant increased frequency of activity and synchronized bursts compared to controls. In 

combination with the increased glutamatergic synaptic puncta number observed, it suggests 

the presence of more active synapses on these neurons, which allows this fast pace flow of 

information through the network. A similar observation was seen in two different transgenic 

mouse models, where overexpression resulted in enhanced synaptic plasticity, at least in 

young animals
7,8. Our study in human neurons illustrates the importance of correct MECP2 

dosage for synaptic plasticity and homeostasis during brain development and function. 

Failure of homeostasis, either by haploinsufficiency or overexpression will result in 

neurodevelopmental phenotypes
12

. To our knowledge, this is the first time that synchronized 

burst events from iPSCs-derived human neuronal networks are recorded on MEA, without 

using co-culture with astrocytes
33–35

. Our analysis show a clear correlation between synapse 

number and functional synchronized activity in human iPSC-derived neurons, revealing the 

potential of MEA to the study of neurodevelopmental disorders that involve synaptic 

deficits.

In an attempt to identify compounds that could rescue the effects of increased MeCP2 

dosage, we adapted the technology of InCell Western (ICW) to measure the levels of PSD95 

protein in our cultures. This synaptic protein was chosen given its core function in synaptic 

formation and the synaptic imbalance found in MECP2dup cultures. Using an epigenetic 

chemical library, we encountered two HDAC inhibitors that were able to reduce PSD95 

protein to control levels, but did not affect control neurons. Treatment of MECP2dup 

neurons with these two HDAC inhibitors (Scriptaid or NCH-51) for a week was sufficient to 

rescue several aspects of neuronal morphology. It is known that MeCP2 exerts its gene 

silencing ability through chromatin modification mediated by its interaction with Sin3A/

HDACI or Ski/NcoR/HDACII repression complexes
36

, pointing this pathway as a potential 

therapeutic avenue for this syndrome. However, our data also suggest caution on the quest 

for therapeutic compounds. While both HDAC inhibitors seem to rescue the aberrant 

morphology, only NCH-51 is able to correctly ameliorate the functional phenotype. 

Ultimately, this demonstrates the power and necessity of accessing several cellular and 

functional rescues before in vivo tests. This strategy could reduce downstream failures and 

expenses in the quest of therapeutic compounds.

Our data indicate that human iPSCs not only can recapitulate some aspects of a genetic 

neurodevelopmental disorder caused by a genomic duplication, but can also be used in 

assays to screen potential drugs for the ability to rescue neuronal phenotypes. This cellular 

model and the novel techniques developed here may help investigators to better design and 

anticipate results from translational medicine studies, with the potential to lead to the 

discovery of new compounds to treat neurodevelopmental disorders.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Altered expression of neural progenitor genes in NPCs derived from MECP2dup iPSCs
a) Schematic representation of the duplication sizes for each patient (black line). The 

location of the MECP2 gene as well as other genes known to be involved in X-linked 

intellectual disability are shown (based on NCBI36/hg18).

b) Immunofluorescence images of control and MECP2dup NPCs showing the expression of 

neural progenitor genes co-stained with either Nestin (day 20) or MAP-2 (day 30). Scale bar 

represents 20 μm.

c) Transcript analysis of neural progenitor genes on control and MECP2dup NPCs by qRT-

PCR during the course of differentiation (day 5 to day 30). Graphs show the average of three 

different biological replicates and are represented as fold difference compared to ‘day 5’ of 

control. Data is representative of mean ± s.e.m., n>3 independent differentiation experiments 

(t test, ***p < 0.001, *p < 0.05).
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Figure 2. MECP2dup derived neurons exhibit modulation in cortical gene expression
a) Control and MECP2dup neurons were analyzed for the expression of cortical and synaptic 

genes over the course of differentiation by qRT-PCR. Data is represented as fold difference 

compared to ‘day 20’ of control cells. Data is representative of mean ± s.e.m., n>3 

independent differentiation experiments (t test, ***p < 0.001, **p < 0.01, *p < 0.05).

b) Expression by qRT-PCR of MECP2 in control and MECP2dup cells over the course of 

differentiation towards neurons. Data is representative of mean ± s.e.m., n>3 independent 

differentiation experiments (t test, ***p < 0.001, **p < 0.01, *p < 0.05).

c) Western blotting analysis of MeCP2 protein in iPSCs, NPCs and neurons from control 

and MECP2dup samples. Protein extracts were prepared at days 0 (iPSCs), 20 (NPCs) and 

60 (Neurons). GAPDH is shown as a protein loading control.

d) Representative immunostaining images are shown of control and MECP2dup neurons at 

day 40 of differentiation showing the increased expression of cortical proteins. Cells are co-

stained with either MAP2 or TUJ1. Scale bar represents 20 μm.

e) Spontaneous neuronal activity and its inhibition by TTX treatment of cells plated on 

multi-electrode arrays (MEA), demonstrating the biological nature of the signal detected. 

The figure shows one representative channel of a control sample, before, during and after 

washout of TTX treatment.
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f) WGA experiment showing the proximity of neuronal connections in our neuronal 

network. White arrows point the cells to which WGA spread. Cells transduced with the 

WGA vector are shown in green (GFP reporter). Scale bar represents 40 μm.
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Figure 3. MECP2dup cortical neurons exhibit increased synaptic gene expression and dendritic 
arborization
a) Puncta quantification of post- and pre-synaptic markers. The synaptic proteins VGlut1 

(pre-synaptic) and PSD95 (post-synaptic) were used as markers and only co-localized 

puncta were quantified and graphed. Data is representative of mean ± s.e.m., n=3 

independent differentiation experiments, * p = 0.0324, two-tailed t-test. Scale bar represents 

10 μm.

b) Western blotting analysis of synaptic proteins, synapsin and PSD95 as well as MeCP2 in 

total cell lysates of day 50 cortical neurons. MAP2 is used as a protein loading control.

c) Sholl analysis of control and MECP2dup cortical neurons. Data is representative of mean 

± s.e.m., n>3 independent differentiation experiments. For statistical significance, 125 

control neurons and 80 MECP2dup neurons were considered for analysis (t test, ***p < 

0.001, **p < 0.01, *p < 0.05).

d) Left panel: representative high magnification confocal images of GFP-labeled neurons at 

day 70 in vitro from control and MECP2dup neurons. Scale bar represents 5 μm; Right 

panel: quantification of the total spine density and density of the mature and immature 

spines per dendritic section. Histograms represent the mean values ± s.e.m., * p = 0.02, *** 

p = 0.0003, Mann Whitney test.
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e) Western blotting analysis of Cux1 protein levels in MECP2dup NPCs compared to 

controls. Protein levels were quantified by Odyssey using 2 control cells lines and 3 

MECP2dup cell lines. Data is representative of mean ± s.e.m., n=3 biological replicates for 

each cell line. Unpaired t test was used for statistics (****p < 0.0001).

f) Association of MeCP2 with CUX1 promoter, BDNF exon 4 (positive control) or BDNF 
negative control was determined by ChIP assays with anti-MeCP2 antibody. Chromatin was 

isolated from 4 weeks MECP2dup neurons. Fold enrichment was quantified by qPCR. 

Histograms represent the mean ± s.e.m. Three biological with three or four technical repeats 

each.

g) Quantification of the total number of synchronized bursts per 5 min interval present in at 

least 4 different channels. Data is representative of mean ± s.e.m. n=3 independent 

differentiation experiments. Unpaired t-test, ****p < 0.0001.

h) Aligned raster plots of 5 representative channels for control and MECP2dup neurons on 

MEA. Spontaneous activity is shown for a total period of 200 s.

i) Functional phenotype after overexpression and knockdown of MECP2 in control and 

MECP2dup neurons, respectively. Total spikes counts are shown, 1 week after virus 

transduction. GFP: overexpression control virus; MECP2: MECP2 overexpression virus; 

scramble: shRNA scramble virus; shMECP2: shRNA for MECP2 transcript. Unpaired t test 

used (*p = 0.012, **p = 0.0028). Bars represent mean ± s.e.m. Three independent 

differentiation experiments.
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Figure 4. Electrophysiology network properties and morphological rescue of MeCP2dup neurons
a) InCell Western (ICW) in 50 days differentiated neurons for PSD95 reveals an up-

regulation in patient cells. Protein levels are shown relative to controls. Data is representative 

of mean ± s.e.m., n=3 independent differentiation experiments. Unpaired t-test, *p = 0.0146.

b) Compound library screening in 50 days differentiated neurons. Screen-Well Epigenetics 

library (Enzo) was used. The neurons were treated for one week before ICW. Green, control 

neurons PSD95 levels; Red, MECP2dup neurons PSD95 levels; Blue, treated neurons that 

had a p value <0.0001 when compared to untreated duplicated neurons. Control neurons had 

a p value <0.0001 when compared to untreated MECP2dup neurons. One-way ANOVA test 

used and bars represent ± s.e.m. Arrows indicate the compounds Scriptaid (compound 8) and 

NCH-51 (compound 38), selected to further investigation.

c) Sholl analysis of control and patient neurons that were treated for 1 week with the 

indicated compounds. Data is representative of mean ± s.e.m., 3 independent differentiations 

experiments, 24 neurons counted on each condition (* p<0.05).

d) Sholl analysis diagrams of representative neurons. Concentric circles have a distance of 

10 μm between them.

e) Puncta quantification of post- and pre-synaptic markers after treatment with epigenetic 

modifiers. The synaptic proteins Vglut1 (pre-synaptic) and PSD95 (post-synaptic) were used 

as markers and only co-localized puncta were quantified and graphed. Scale bar represents 
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10 μm. One-way ANOVA test used to represent data after treatment using Dunnett’s 

multiple comparison test and comparing to MECP2dup (*p < 0.05). p values per 

comparison: MECP2dup vs control = p < 0.05; MECP2dup vs MECP2dup + NCH-51 = p < 

0.01; MECP2dup vs MECP2dup+Scriptaid = p < 0.0001. Bars represent mean ± s.e.m. 

Three independent differentiation experiments.

f) Functional rescue after treatment with epigenetic modifiers; MEA was used to measure 

activity. Total spikes counts are shown before and after treatment with compounds. Unpaired 

t test used to compare control and MECP2dup data before treatment (*p = 0.0110). One-way 

ANOVA test used to represent data after treatment using Dunnett’s multiple comparison test 

comparing to MECP2dup+Vehicle (**p < 0.01, ****p < 0.0001). Bars represent mean ± 

s.e.m. Three independent differentiation experiments.
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