DRYING BEHAVIOUR AND WATER TRANSPORT MECHANISMS DURING EVAPORATION OF AN AGRICULTURAL SOIL

D. K. Tran, N. Ralaizafisoloarivony, A. Degré, A. Léonard, B. Mercatoris, D. Toye, R. Charlier

Torino, 10 July 2019

EuroDrying'2019
Collaboration between 3 groups

- Gembloux Agro Bio Tech: Soil science/hydraulics
- Engineering faculty: geomechanics
- Engineering faculty: chemical engineering

Same types of phenomena but
- Different points of view
- Different applications
- Different terminology
Application comes from soil science

- Climate change and global warming
 - Intensive evaporation of moisture from agricultural land during dry seasons
 - Effects on soil hydro-mechanical behavior e.g., shrinkage, cracking, conductivity hydraulic, etc.

Bordia, Gembloux (April 2018)
Goals

- Characterizing the evaporation process of an agricultural soil under high temperature conditions
- Investigating the moisture transport mechanisms between the soil surface and the atmosphere
 - Experimentally
 - Numerically
Characteristics of the studied soil

- **Soil type**: Cutanic Luvisol
- **Soil texture**: silt loam (70-80 %), clay (18-22 %), sand (5 -10 %), organic matter (C, N)
- **Soil sample preparation**:
 - Disturbed soils were taken from the Bordia field, between 0-10 cm depth
 - Dried at 40 °C for 1 week
 - Crushed and sieved at 2 mm size
 - Compacted in core rings of 8 cm diameter, 5 cm height
 - Soil sample is saturated after 2 nights
Evaporation tests in a Hyprop device

- Camera
- Temperature sensor
- Tensio Top
- Tensio Bottom
- Pressure sensors
- Soil sample
- Sampling ring
- Thermistor
- Sensor unit
- Balance
Experimental results

- A long experiment …
Experimental results
Experimental results

- Soil temperature evolution with time (e.g., from Test 3)
Coupled thermo-hygro-mechanical model

- LAGAMINE finite element code (developed at Liège)
- Mechanical model
 - Bishop’s effective stress :
 \[\sigma'_{ij} = \sigma_{ij} - p_g \delta_{ij} + S_e (p_g - p_w) \delta_{ij} \]
 Where \(p_g, p_w \) are resp. gas and water pressure
 - Nonlinear elastic model :
 \[\sigma'_{ij} = D_{ijkl}^e \varepsilon_{ij} \]
 Where \(D_{ijkl}^e \) is a function of suction
Coupled thermo-hygro-mechanical model

- Hydraulic model
 - **Water retention curve** (Dual porosity model, Durner, 1994)

\[
S_e(h) = w_1 [1 + (\alpha_1|h|)^{-n_1}]^{m_1} + w_2 [1 + (\alpha_2|h|)^{-n_2}]^{m_2}
\]

Where

- \(h \): water tension
- \(w_1, w_2 \): weighing factors
- \(\alpha_1, \alpha_2 \): inverse of the air entry pressure
- \(m_1, n_1, m_2, n_2 \): model’s parameters

- **Hydraulic conductivity** (Mualem, 1976 adapted)
Coupled thermo-hygro-mechanical model

- Hydraulic model
- **Water retention curve** (Dual porosity model, Durner, 1994)

\[S_e(h) = w_1 [1 + (\alpha_1|h|)^{-n_1}]^{m_1} + w_2 [1 + (\alpha_2|h|)^{-n_2}]^{m_2} \]

Where

- \(h \): water tension
- \(w_1, w_2 \): weighing factors
- \(\alpha_1, \alpha_2 \): inverse of the air entry pressure
- \(m_1, n_1, m_2, n_2 \): model’s parameters

- **Hydraulic conductivity** (Mualem, 1976 adapted)
Coupled thermo-hygro-mechanical model

- Mixed convective/radiative boundary conditions
Coupled thermo-hygro-mechanical model

- Axisymmetric geometric configuration

\[
\begin{align*}
p_{w0} &= 0.1 \text{ MPa} \\
p_{g0} &= 0.1 \text{ MPa} \\
T_0 &= 28 \degree C
\end{align*}
\]
Coupled thermo-hygro-mechanical model

- Mesh: 20 x 50
- Convective transfer coefficients
 - \(\alpha = 0.0048 \,[m/s] \)
 - \(\beta = 84.8 \,[W/m^2/K] \)
- Simulation time: 120 h
- Boundary conditions
 - Environment \(RH = 27.1 \% \)
 - Water pressure \(P_c = -185 \, MPa \)
 - Air temperature \(T_a \)
Numerical results

- Good agreement between experiments and modeling, including for shrinkage

![Evaporation rate with time](chart1.png)

![Soil surface temperature](chart2.png)
Numerical results

- Moisture is always mainly removed through Darcian advective flow during evaporation process.
- The evaporation front moves towards the bottom of the sample.

Flux of water and vapour flow at soil surface.

![Graph showing flux of water and vapour flow over time](image)
Conclusions

- Under the experimental conditions, four periods of evaporation were identified;
- Good numerical results using the THM model;
- Moisture transport mainly governed by Darcian advective flow;
- And now?
 - Impact of agricultural practices on water transport, cracks;
 - Impact of type of soil;
 - Impact of dessication cracking or wetting/drying cycles;
 - Identify an appropriate tillage method and management practices to improve the soil structure and the water retention capacity of the soil.
Thank you