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Abstract. We describe an active application in the field of multicast
congestion control for real-time traffic. Our Active Layered Multicast
Adaptation Protocol is a layered multicast congestion control scheme
built on top of an Active Network infrastructure. It benefits from router
support in order to obtain information about resources available and to
perform the adaptation tasks at the places where shortage of resources
occur. It supports heterogeneous receivers through the combination of
layered multicast transmission with selective filtering and pruning of lay-
ers within the active nodes. Market-based resource management ideas are
applied to achieve a resource utilisation level that represents an equilib-
rium between the user goals and the node operator goals. Our simulation
results show that the protocol is feasible and provides adequate reactions
to short term and persistent congestion, while keeping the amount of
state and processing in the active nodes limited.

1 Introduction

We are interested in the use of active networks (ANs) [22,4] in the context of
adaptive multicast protocols. Since no single solution for multicast seems able
to satisfy all applications, it seems more natural to adopt an approach in which
multicast protocols can be dynamically loaded according to the needs of the
applications and users. Active networks are especially suited for this task.

An adaptive protocol must be able to make optimal use of the available re-
sources, and to accommodate fluctuations in resource availability. Here again,
active networking can play an important role, since it becomes possible to in-
ject customised computations at optimal points in the network, to facilitate the
adaptation process.

In this paper we describe an active application (AA) in the field of multicast
congestion control. We consider a soft real-time, distributed multicast applica-
tion composed of sources and receivers that exchange capsules containing mobile
code which is executed in the active nodes along the path. Our Active Layered
Multicast Adaptation (ALMA) protocol supports heterogeneous receivers, i.e.



receivers that have different terminal characteristics or experience different net-
work conditions, by making use of layered multicast [17]. In a layered multicast
scheme, the source divides its data into a number of layers in a hierarchical way,
such that the most important information is carried by the lowest layer (base
layer), and the higher layers successively enhance this information.

The rest of the paper is organised as follows: Section 2 provides some back-
ground on research related to this work, Sect. 3 describes the ALMA AA, Sect.
4 shows some results obtained so far, and Sect. 5 concludes the paper.

2 Background

2.1 Resource management

One of the main fears towards active networks is the time dedicated to mo-
bile code processing: this seems incompatible with the increasing bandwidth
availability in the network backbone, which requires faster and therefore less in-
telligent routers. However, the access networks do not follow the growing speed
of the backbones. There, heterogeneity is becoming even more prominent, in-
cluding fixed and mobile dial-up access, ISDN, xDSL, cable networks, etc. A
price measure seems to be a fairly good reference to reflect these differences
in availability and cost of resources. Applying simplified economic principles of
offer and demand, it is possible to make the price indicate the availability of a
given resource. Note that the price is only an arbitrary reference that enables
comparisons and trading between different types of resources, thus does not nec-
essarily translate to real-world prices. For example, an application could trade
CPU time for bandwidth consumed while crossing a high-bandwidth backbone
(where CPU processing is expensive and bandwidth is cheap), while it could
favour CPU consumption where bandwidth is scarce (thus expensive) and CPU
time cheap.

This gives rise to a market-based model for resource allocation. In such a
model, two opposite forces act to seek the global system equilibrium by opti-
mising their own benefits: on one side we have the network elements, whose
interest is to maximise resource usage (since that brings them revenues) while
maintaining a good performance level (in order to keep the clients satisfied). On
the other side, we have the users (active applications), who seek to obtain a bet-
ter quality/price relation for the resources consumed, and to efficiently manage
their own budgets avoiding waste.

Several algorithms inspired on operational research and economy theories
have been proposed to control resource usage in networks [7]. These algorithms
are able to converge towards a globally optimal resource allocation in a decen-
tralised way. In [9, 14, 15] such theories are applied to the problem of end-to-end
congestion control, i.e. where bandwidth is the main scarce resource. In [9] an
optimisation framework is used to derive a class of optimal algorithms inside
which TCP, after some modification, can be seen as a special case. In [14] a
thorough stability and fairness analysis of some optimisation-based rate control



algorithms is presented, and it is shown that these algorithms implement propor-
tionally fair pricing. In [15] a similar algorithm is proposed, and in a more recent
work [1] it is adapted to the Internet environment, using a packet tagging scheme
to communicate link price information to the end hosts. The results shown are
promising since they are generic enough to be adapted to a wide variety of appli-
cations. However, their direct application to discrete layering multicast schemes
such as the one we present in this paper, is not straightforward due to fairness
issues, as pointed out in [20].

Closer to the AN perspective, in [23] an open resource allocation scheme
based on market models is applied to the case of memory allocation for mobile
code. In [11] an adaptive QoS scheme for MPEG client-server video applications
is described. It is based on intelligent agents that reserve network bandwidth
and local CPU cycles, and adjust the video stream appropriately. In [26] a mar-
ket model to allocate QoS is applied to a conferencing tool targeted at casual
meetings where sudden variations in bandwidth availability require an adaptive
QoS control strategy.

A cost model for active networks is proposed in [18], which expresses the
trade-off between different types of resources in a quantitative way. However,
due to the recursive approach adopted, the model seems more appropriate for
applications that make use of resource reservation, instead of highly adaptive
ones. Furthermore, the use of such model with multicast needs to be clarified.

2.2 Multicast Congestion Control

Congestion control can be regarded as a special case of resource management
which considers mainly bandwidth as a scarce resource. It has been mentioned
several times as a potential area of application that can benefit from active
networks. End-to-end congestion control is an extremely difficult problem, par-
ticularly on the Internet where it is aggravated by the absence of information
about the network. In an active network, capsules can collect information about
network conditions [5] and active filters can be installed to adapt between por-
tions of the network subject to different conditions [13]. But to which extent
such an additional information is helpful, or the extra burden it might bring, are
still open questions.

Multicast sessions can be either single rate, if a single flow is generated for
all the receivers, or multirate, when several flows are generated and the receivers
get a subset of flows according to their preferences and constraints. If these flows
are alternatives to each other, we have a simulcast scheme. If they complement
each other in a hierarchical way, we have a layered scheme. Layered multicast is
typically proposed for video, but it has a potential for any kind of application
that can divide a single flow into subflows of different priorities, e.g. an animation
stream, bulk data transfers, etc.

Multicast congestion control schemes can be divided into two classes: pure
end-to-end schemes, and router-assisted schemes. In a pure end-to-end layered
multicast scheme [17,24], the source transmits a hierarchically encoded stream,
and the receivers subscribe/unsubscribe to a number of layers according to the



observed network conditions (loss rate, etc.). The RLM protocol [17] is one of
the pioneers and most well-known protocols in this category. It is based on the so
called join experiments to probe for available bandwidth, and on the observed
loss rate to abandon layers in case of congestion. RLC [24] is a more recent
protocol that also addresses friendliness towards TCP flows on the Internet.

The existing end-to-end layered schemes achieve very good results consider-
ing the limitations of pure best-effort networks which make most of the Internet
today. However, they have many drawbacks such as: slow and/or coarse-grain
adaptation; unstable behaviour characterised by subscribe/unsubscribe oscilla-
tions; the need to allocate and manage several multicast groups; random packet
drops that lead to poor quality due to hierarchical dependence among pack-
ets from different layers; probing for additional bandwidth has a potential to
intensify congestion; difficulty to synchronise among receivers leading to under-
utilisation of bandwidth.

Recently, more attention has been devoted to router-assisted schemes [3], that
can count on router support in order to solve the abovementioned problems. In
[10] an extension of RLM is proposed, which makes use of two priority levels:
the upper layer, which is less important than the others, is always assigned a low
priority. This creates a “bumper layer” that absorbs most of the packet losses.
Unnecessary join experiments are eliminated in this way, leading to a very stable
behaviour even when the layers have a variable bit rate profile.

In [16] a router-assisted congestion control scheme for reliable multicast is
sketched. The authors propose a very interesting filtering scheme based on a nor-
malised inverse sequence number which is mathematically the smoothest scheme
possible. They assume that the router computes the fair shares for all the ses-
sions. Their signalling scheme is similar to ours, but an explicit rate is used
instead of layers.

For a router-assisted scheme to be useful, it needs to be widely accepted and
deployed, or at least deployed in critical points in the network, which anyway re-
quires a long standardisation process and deployment time. Since most multicast
sessions are naturally heterogeneous, it is difficult to agree on a single solution
or set of solutions. That is where active networks can play a role, since we can
design customised solutions and let them evolve through usage experience.

In [6] a unicast scheme for AN-based congestion control is presented, tar-
geted to improve TCP performance over links presenting high bandwidth delay
product. In [12] a single rate reliable multicast scheme with congestion control is
presented in the form of an active service. Within this scheme, the source adapts
its sending rate to the rate that can be supported by the “nominee”, which is
the weakest receiver in the session. In [2], a layered video multicast protocol is
implemented over two AN platforms: ANTS and MO0. Although the goal of that
work was to compare the performance of the two AN platforms, it is interesting
to notice that their signalling scheme is identical to ours.

A lot of AN example applications are related to information filtering or
transcoding in the active nodes [13,21]. The common idea to these examples
is to show how more intelligent functionality such as selective packet discard-



ing and transcoding in the routers can help improving the reception quality of
a multimedia stream. In all these examples, the source of congestion does not
react in order to prevent overflow and discarding. Filtering in the intermediate
active nodes alleviates downstream congestion, and is important for heteroge-
neous multicast, since it enables the adaptation of one original stream for several
different groups of receivers. However, filtering alone is obviously not a solution
to the congestion control problem, since it does not tackle the source of the
congestion.

3 ALMA Protocol

Active Layered Multicast Adaptation (ALMA) is a multicast congestion control
protocol implemented as an AA. It supports heterogeneous receivers through
the combination of layered multicast transmission with the selective filtering
and pruning of layers within the active nodes. In previous work [28] a case study
was conducted, which led to an initial version of ALMA. In this paper we refine
the protocol and present additional results.

3.1 Requirements and assumptions

We would like to create a model for adaptive applications, that can benefit from
the facility of retrieving the necessary information about network conditions
using the router support that can be provided by an active network. It is well
known that feedback information for congestion control must be used with care,
in order to avoid generating extra packets that might worsen congestion. It is
also known that state and processing in the active nodes might be expensive,
and therefore should be reduced to the minimum necessary. We set these two
principles as requirements for our protocol.

Since our target is a delay-sensitive application, and for efficiency reasons,
we also impose the requirement of not delaying packets inside the active routers.
Additionally, the protocol should not rely on specialised schedulers that decide
how to handle flows in a centralised way. The decision must be built into the ses-
sions themselves, taking into account their preferences and resource availability
information. No assumptions are made regarding the exact traffic specifications
for each session.

We assume a pure AN environment in which all packets are active. It is
possible to optimise it in several ways, but for the moment we would like to con-
centrate on the protocol functionality from a conceptual point of view. Therefore
we try to be as generic as possible without imposing the constraints of a real
implementation. Furthermore, we assume that all nodes are active. Although
this assumption seems unrealistic, the use of an equivalent link abstraction [21]
enables us to easily migrate to a mixed scenario of active and non-active nodes,
while at the same time keeping a pure AN abstraction so that we do not need
to worry about implementation and interoperability constraints in the design
phase.



3.2 Protocol basics

We consider a layered multicast application composed of a single source and
several different receivers. The source generates delay-sensitive traffic encoded
in a hierarchical way such that lower layers are more important than higher
layers, and the higher layers are useless without the lower layers. The generated
data is carried by capsules which also contain the instructions to process it inside
the active nodes along the path to the receivers. The data capsules are organised
in layers according to the hierarchical position of the data they carry. This is
similar to conventional layered transmission [17,24] except that in this case, since
customisable capsules are used, it is feasible to use a potentially large amount of
layers. Besides that, the semantics of the relationships among the layers is built
into the scheme itself, facilitating its customisation to the specific characteristics
of a given application.

The multicast routing mechanism employed is a simple form of source-based
sparse-mode scheme similar to the well-known AN multicast example from ANTS
[25]. For simplification purposes, no group address is used. Receivers subscribe
directly to the address of the source they wish to receive data from. While sub-
scribing, a receiver specifies the subscription level it wishes to obtain, which
indicates how many layers it wishes to receive, like in [2]. This requires only one
type of capsule: a subscribe capsule, which takes two parameters: the source ad-
dress and the desired subscription level. To abandon all layers, a receiver spawns
a subscribe capsule carrying zero as the subscription level. The main advantage
of this subscription model is that a group of streams can have its semantics
understood inside the network nodes as layers belonging to the same session.
Besides that, such a simple subscription model allows an arbitrary number of
layers to be used, since the amount of multicast forwarding state left in the nodes
does not increase with the number of layers, as opposed to what would happen
in conventional layering schemes using IP multicast. The disadvantage is that
the processing of a subscription request in a node is more complex, since it must
compute the upstream subscription level for a session, which is the maximum
of the subscription levels at each outgoing interface that has members of the
session.

Complete end-to-end congestion control is achieved by a combination of sev-
eral efforts: (i) link outgoing interfaces export a price that is calculated as a
function of the link characteristics and current load. (%) data capsules filter
themselves by comparing the current link price with their own budget; (i) data
capsules prune multicast tree branches affected by persistent congestion; (iv)
receivers spawn subscribe capsules to probe for additional bandwidth.

3.3 Filtering mechanism

Link outgoing interfaces export an instantaneous price for the usage of the link.
The price is calculated as a function of the link characteristics and current total
link load (of all traffic traversing the link). The price in this case is no more than
an indication of the level of congestion at a given interface.



The budget assigned to a data capsule is directly proportional to the marginal
utility of adding its layer, which in our case expresses the relative importance of
its layer with respect to the other layers. Since the marginal utility for adding
an individual layer decreases as we go towards higher layers, the budget of each
capsule decreases too. Therefore, a higher layer capsule is more likely to dis-
card itself due to a rise in link prices than a lower layer capsule. The resulting
behaviour is similar to a priority dropping mechanism, or a weighted RED [8].
Such a simple filtering mechanism does not require specialised schedulers, it only
requires the link to export a price function that varies as a function of the load
on the link.

Figure 1 shows an example of budget function, used to calculate the budget
to be assigned to each layer, and an example of price function for a point-to-point
link, inspired from [23]. These are the ones we used in the simulations described
in Sect. 4.
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Fig. 1. The budget function to be applied to each layer (left), and the price function
maintained by the node interfaces (right).

The reason to export a price and not the link load directly is that an abstract
price function gives more freedom for the network managers to adjust its shape
to offer different incentives to the users. This can work in a transparent way
with different kinds of links. For example, in a shared Ethernet link the local
interface load is not a good indication of the actual link utilisation, therefore
another parameter should be used, such as the number of collisions.

Such filtering is performed at the time granularity of a capsule, therefore it
must be based either on instantaneous or short term average values (i.e. of the
order of a few capsules).

In the simulations presented in this paper we use instantaneous values be-
cause it is simple and completely eliminates packet drops at the outgoing links.
Indeed we confirmed that during the simulations there were no packet drops due
to queue overflow at the router output queues. All the drops were due to the
selective discarding mechanism built into the data capsules. The problem with
this approach is that large bursts are penalised. Indeed we observed that a steep



transition from a very fast link to a very slow one sometimes prevents sessions
from achieving full link utilisation.

3.4 Subscription mechanism

Subscribe capsules are used by the session receivers to indicate the desired sub-
scription level (probing), and by the active routers to control congestion (prun-

ing).

Pruning. When long-term congestion is detected at an outgoing interface of
a node, the application itself (through its data capsules running in the router)
decreases its subscription level for that interface by injecting a subscribe capsule
with a lower subscription level into the local Execution Environment (EE). The
subscribe capsule is processed as if it had come from the congested outgoing in-
terface. It might cause the traffic to be pruned only for the concerned interface,
but if no other interfaces are requesting the pruned levels, the subscription cap-
sule travels upstream, pruning the tree at the level of the maximum subscription
level required locally.

One of the difficulties here is to determine exactly when to prune. Several
criteria are possible, but we would like to find one that does not require additional
state to be kept in the active nodes. We cannot prune too fast, in order to allow
some bursts to go through. And we cannot delay the pruning decision too long,
in order to minimise resource waste. Ideally we should be able to prune in less
than a round-trip time to the nearest receiver, but this information is difficult
to obtain, and would need additional per-session state. Instead, we rely on the
average prices, calculated using a weighted moving average. The average price
can be calculated and exported by the outgoing link interfaces, in the same way
as link statistics are kept for network management purposes.

Note that the state of the multicast tree downstream from the pruned branch
is not immediately updated following the prune, since the subscribe capsule is-
sued (if any) travels only upstream. In order to ensure that any stale subscription
state is appropriately refreshed, each receiver periodically spawns subscribe cap-
sules containing the minimum subscription level experienced along the path (this
information is reported by the arriving data capsules). In the interval between
a prune and a refresh, subscribe capsules containing the pruned level might be
ignored. This might have the positive side effect of temporarily blocking requests
for a layer that has just been eliminated, but the negative effect of delaying the
probe process (leading to a slower adaptation).

Probing. Since a capsule executing inside an active node has no means of
knowing whether there are downstream nodes still interested in a layer which
was pruned long ago due to congestion, the decision to probe for bandwidth
is always taken by the receivers. To be able to probe, each receiver needs to
monitor the number of layers it effectively receives, which might be different
from its desired subscription level (since layers might have been pruned by the



upstream routers due to congestion). After a period in which the quality achieved
is considered good with respect to the effective number of layers received, such
that this number is inferior to the desired one, a receiver decides to probe for
bandwidth which might eventually be available. To do that it sends a subscribe
capsule increasing its subscription level by n layers. Currently n is set to one
for simplicity, although it is also possible (and better) to calculated it using the
available price and budget information at the receivers.

The decision of when to probe is a very difficult one. An ideal probe criterion
should virtually eliminate useless probes, while at the same time allow a rela-
tively fast reaction to grab available resources. These two goals are conflicting
and therefore a compromise must be found. In the simulations we show in this
paper, the probe criterion used is a combination of conditions: (i) A minimum
interval between consecutive probes must be kept. (ii) The budget for the new
subscription level desired must be greater than the average price observed. (iii)
Prices must be stable enough, i.e. the receiver should observe a price variation
under a certain threshold during an observation period, before probing. (iv) The
maximum subscription level received must stay unchanged during the observa-
tion period. (v) There should be no packet losses during the observation period.
In fact this last condition is redundant when all nodes are active, because when
the prices are stable enough there are no losses either.

When a subscribe capsule arrives at a node, it first checks the router interface
from where it came: if this interface shows persistent congestion (according to the
same criterion used to prune congested branches), the subscribe capsule simply
decides to terminate its execution. This results in a loose form of “self-admission
control” which filters out potentially harmful probe requests. In order to avoid
denial of service for new flows, this check is only performed when multicast
routing state is already present for the source on the concerned interface. This
naive filtering does not take into account the actual new bandwidth introduced
into the system when a probe is accepted, therefore does not guarantee that an
accepted probe will not cause congestion. This mechanism could be improved,
for example by using explicit traffic information in probes (e.g. peak, average
bandwidth). For the moment, however, we try to keep it simple and open for
different types of traffic envelopes.

3.5 Summary

To summarise, in ALMA the decision to prune is always taken inside interme-
diate active nodes (by data or subscribe capsules), while the decision to graft
(probe) is always taken by the receivers. This is a way of distributing the deci-
sion load among AN nodes, such that the right operation is performed where the
data is available. As a result, in the active nodes the reaction to congestion is
fast enough, using the combination of data filtering (for short term congestion)
and tree pruning (for persistent congestion).

Probing for available bandwidth is a task assigned exclusively to the receivers,
therefore some delay can be expected from the moment when some bandwidth is
released to the moment when new flows start to use it. The duration of this delay
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is a trade-off between how fast a reaction is desired and the amount of resources
(bandwidth and active processing) we are ready to spend in the probing process.
In the active routers, we try to minimise the impact of probes on the downstream
congestion level by ignoring probe requests during congestion periods.

The feedback information is carefully used such that no extra packets are
generated in a situation of congestion. The amount of state kept in each active
node is of the order of the state necessary to maintain one IP multicast group.
The scheme is therefore as scalable as any other multicast-based traditional
scheme.

4 Simulations

We simulated ALMA in order to study its feasibility from the point of view of
the adaptation to the available bandwidth and the competition among different
sessions.

First of all, we designed and implemented a simplified EE and a NodeOS
module over the NS simulator [19] in order to be able to simulate the execution
of active packets in the NS network nodes. The simulated EE is based on the
execution of capsules written in TCL language.

The percentage of queue occupancy is used to indicate the load on the link.
The link prices are calculated from the instantaneous and average queue lengths
at each outgoing interface. For the average queue length, a modified RED [§]
queue is used. The RED queue is inactive (i.e. the maximum and minimum
thresholds are set to the end of the queue) so that it behaves like a FIFO queue
with a drop tail policy, and it is only used to compute the average queue length.
This average is computed as an exponential weighted moving average (EWMA)
[8], with its weight factor adjusted to achieve the desired convergence time. The
RED module was also modified to compute the average when the packet leaves
the queue, instead of when the packet enters the queue. This is because we want
the rhythm of updates to be regular and proportional to the link speed instead

of the input rate.
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Fig. 2. Topology used in the simulations.
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The topology for the simulations is depicted in Fig. 2. All nodes are active.
Links Ly, Lo and L3 are bottlenecks with capacity 1.6 Mbps, 1.0 Mbps and 0.8
Mbps, respectively. The other links have a capacity of 4.0 Mbps each. Links L4
and Ly have propagation delays of 100ms and 500ms respectively, while all the
other links have 10ms. Every link has an inactive RED queue of 20 packets each.
Each of the sources s; and s, generates a stream with an average rate of 2 Mbps
divided into 5 layers of equal average rate. The packet size is 500 bytes for both
sessions. Receivers r1 ; (j = 1..5) subscribe to the 5 layers of s; at around ¢ = 1s,
while receivers ro 1, (kK = 1..3) subscribe to s, after about one third of the total
simulation time (i.e. around ¢t = 20/3 = 6.6s), and leave the session the same
amount of time later (¢t &~ 13.3s). The receivers are not synchronised, therefore
they join the session at slightly different times.
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Fig. 3. Evolution of the rates in time for the members of sessions 1 and 2.

Figure 3 shows the evolution of the rates in time for the first and second
sessions. We observe that after about one second the receivers get only the
amount of bandwidth that fits into the bottleneck links, and the sources stop
sending the exceeding amount of traffic after about one second. When the second
session starts, the system accommodates it, and after about a second the two
sessions are using virtually the same amount of bandwidth. We also see that
when the second session terminates, the receivers of the first session are able to
reuse the released bandwidth after a couple of seconds. Note that receivers ry 4
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and ri 5 have a behaviour which is similar to r 3, indicating that the additional
delay they experience has little impact on them. It is also worth noting that link
L» has a capacity for a non-integer number of layers, but the receivers connected
to it behave similarly to the ones connected to Ls.

We now take a closer look at the filtering behaviour, taking two of the re-
ceivers as examples. Figure 4 shows the received rate per layer at receivers rq ;
and r; 5. Each of the curves Layer; represents the rate of Layer; plus the cu-
mulative rate of the lower layers.
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Fig. 4. Throughput per layer (cumulative), for receivers r1,1 (left) and ri1,2 (right).
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Fig. 5. Subscription levels observed at receivers r1,1 to 71,5

In Fig. 4, the highest layers disappear after about a second. When the sec-
ond session starts, the receivers lose some more layers, but are able to get them
back a couple of seconds after the second session terminates. Note the asymme-
try between prunes and probes. While several layers might be pruned at once,
only one layer is added at a time, during the probe period. This asymmetric be-
haviour can also be observed in Fig. 5 (left), which shows the subscription levels
observed by the same pair of receivers. We see that dropping layers is fast while
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adding them takes a longer time. Figure 5 (left) also shows that 71 o performs
an unsuccessful probe at ¢t & 15s. In Fig. 5 (right) we can see that the effect of
the delay on the subscription levels observed at receivers ri 3, 71,4, and r1 5 is
relatively small, confirming what Fig. 3 also shows us.
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Fig. 6. Percentage of data capsules discarded for r1,1 (left) and 71,2 (right).

Figure 6 shows the filtering behaviour for each layer, again taking r1,; and
r1,2 as samples. In this figure, the percentage of data capsules lost, as calculated
by each of the receivers over an interval of one second, is plotted. Since queue
overflow does not occur, and link errors are not simulated, all the losses plotted
correspond to filtered packets. If we compare with Figure 5, we can see that the
peaks of loss that a given layer suffers correspond to instants immediately before
the layer is pruned. Note that the losses observed at ¢t ~ 15.5s are due to the
unsuccessful probe previously sent by r1,2 (observed in Fig. 5 (left)).

5 Conclusions and Future Work

We presented an active multicast adaptation protocol that addresses receiver
heterogeneity not only by performing selective filtering on data packets but also
by pruning unused multicast tree branches and probing for available bandwidth.
The protocol uses source-based reverse path routing, does not need multicast
groups, and is based on hierarchical layers that are built into its capsule types.
It is independent on scheduling algorithms - a simple FIFO queueing is enough
- but counts on the ability of the active nodes to export link parameters that
can be used in the adaptation process.

The protocol has shown to be a feasible AA, and it motivates us to pursue
further research in this direction. The next immediate steps are the simulation
and implementation of the mechanisms described over more complex and realistic
AN environments consisting of multiple node and link types, as well as in a fully
heterogenous network in which some of the routers are active while others are
not. Other topics for future research include: improve the reactiveness of ALMA
in scenarios presenting multiple short duration sessions; cover routing issues such
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as the scalability to a large number of sessions with few receivers; trade several
types of resources; address budget assignment and management issues within a
session; dynamically deploy price functions.

The task of performing adaptation did not turn out to be trivial even when
using all the AN support we could imagine. Basically the same trade-offs of
classical control algorithms remain, such as stability versus reaction time, feed-
back availability versus bandwidth consumption, etc. On the other hand, we can
easily choose where to place a given functionality (e.g. pruning of unused tree
branches), and therefore try to place it as close as possible to the data it needs
(in this article, congestion information). The resulting protocol is able to share
the decision load among all active nodes involved in the session, with most of
the complexity still at the receivers, due to the task of demultiplexing and de-
coding. The amount of state and processing in the active nodes is kept as small
as possible, and does not increase with the number of layers used.

As a side effect, a slightly different model of active node pops up: a model in
which the intelligence is distributed among the active applications representing
the user interests, and the active resource managers representing the network
provider interests. These different types of agents cooperate to seek configura-
tions which are both locally and globally optimal with respect to the resources
used, user satisfaction and provider revenues. In [27] we have developed this
model further, and we are now redesigning ALMA based on those results.
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