Study of the predictive power of two laboratory exercise tests for short trail running performance

S. Hody, C. Rodriguez de la Cruz, B. D'Inverno, T. Bury

University of Liège, Belgium; shody@uliege.be

Introduction

Trail running (TR), a new endurance discipline that requires distinct physiological demands has gained popularity in the recent years.
The classical endurance model does not allow meaningful prediction of short TR performance ${ }^{1}$. Therefore, finding exercise testing strategies to predict performance in such discipline is challenging.

Objectives

The aims of this study were

- to compare the physiological variables measured during a level and uphill graded running tests;
- to examine the predictive power of the physiological variables obtained from these laboratory running tests for short TR performance (using Spearman's correlation analysis and Fisher z transformation).

Materials \& Methods

Eight competitive male trail runners ($24 \pm 6 y$; $75 \pm 7 \mathrm{~kg}$) completed
(A) a level treadmill test
(B) an uphill treadmill test
(C) a 31 km trail race $\left(900 \mathrm{mD}^{+}\right)$(Fig.1)

Gas exchanges, heart rate (HR) and capillary blood lactate were measured for determination of maximal oxygen uptake (VO_{2} max), maximal aerobic speed (MAS) and lactate thresholds (LT).

Results \& Discussion

Table 1: Comparison of the physiological • VO_{2} max and MAS showed a stronger correlation ($r=0.93$) when determined in variables measured during laboratory tests

	Level Test	Uphill Test
$\mathrm{VO}_{2} \max \left(\mathrm{ml} . \mathrm{min}^{-1} \cdot \mathrm{~kg}^{-1}\right)$	48.5 ± 5.1	$51.5 \pm 4.6^{\star}$
HRmax (bpm)	180.5 ± 10.8	180.1 ± 10.2
HR at LT (bpm)	164.1 ± 10.2	160.7 ± 8.2
\%HR at LT	88.5 ± 7.67	79.97 ± 4.73
MAS $\left(\mathrm{km} \cdot \mathrm{h}^{-1}\right)$	15.8 ± 1.1	$10.3 \pm 0.8^{\star}$
S at LT $\left(\mathrm{km} \cdot \mathrm{h}^{-1}\right)$	13.3 ± 1.1	$8.6 \pm 0.8^{\star * *}$

Lactate threshold (LT) based on capillary blood lactate, Heart Rate (HR); Maximal aerobic speed (MAS); Paired Test*p<0.05; $p<0.001$)

(B)

Figure 1: Level (A) and uphill (B) laboratory tests (A,B) were performed in a randomized order with a $7-12 \mathrm{~d}$ interval period. They consisted of a 5 min warmup stage ($0 \%, 8 \mathrm{~km} . \mathrm{h}^{-1}$) followed by 3 min graded steps until exhaustion.

Our study suggests that the uphill running test tends to be better in predicting trail races than the level test. Further investigations with larger population and including more variables that may impact on trail performance (such as muscle function) should be conducted

