
A stable and exible TCP-friendly ongestionontrol protool for layered multiasttransmissionIbtissam El Khayat and Guy LeduResearh Unit in NetworkingUniversity of Li�egeInstitut Monte�ore - B28 - Sart TilmanLi�ege 4000 - BelgiqueAbstrat. We propose an improvement of our RLS (Reeiver-drivenLayered multiast with Synhronization points) protool, alled CIFLfor \Coding-Independent Fair Layered mulatiast", along two axes. InCIFL, eah reeiver of a layered multiast transmission will try and �ndthe adequate number of layers to subsribe to, so that the assoiatedthroughput is fair towards TCP and stable in steady-state. The �rstimprovement is that CIFL is not spei� to any oding sheme. It anwork as well with an exponentially distributed set of layers (where thethroughput of eah layer i equals the sum of the throughputs of all layersbelow i), or with layers of equal throughputs, or any other sheme. Theseond improvement is the exellent stability of the protool whih avoidsuseless join attempts by learning from its unsuessful previous attemptsin the same (or better) network onditions. Moreover, the protool triesand reahes its ideal TCP-friendly as soon as possible by omputingits target throughput in a lever way when an inipient ongestion ison�rmed.1 IntrodutionContrary to the urrent ompression standards (e.g. JPEG, MPEG-x,H.26x), wavelet-based ompression tehniques (e.g. JPEG 2000) allowfor exible and highly salable (in resolution, time and quality) formats.Although inter-frame wavelet video oding is still an open researh area,it will enable very salable video transmission where the data streaman be split into several hierarhial layers whose bit ontents (and thusthroughputs) an be de�ned in a very exible manner. Therefore, webelieve that any ongestion ontrol protool dediated to video trans-mission to an heterogenous set of reeivers should be independent fromthe relative and absolute throughputs of eah layer. It should behave aswell with an exponentially distributed set of layers (where the through-put of eah layer i equals the sum of the throughputs of all layers belowi), or with layers of equal throughputs, or any other sheme.A multiast ongestion ontrol protool has to allow all reeivers to reahtheir optimal level as quikly as possible. By optimal, we mean a fair



2 Ibtissam El Khayat and Guy Ledushare of the available bandwidth. We onsider intra-session fairness (i.e.among reeivers of the same session) and inter-session fairness (i.e. to-wards other sessions of the protool or towards TCP onnetions).A reeiver-driven layered multiast (RLM) approah to solve the hetero-geneity problem was �rst proposed by Manne in [8℄. In RLM, everylayer represents an IP multiast group and subsription to a layer im-plies subsription to all the lower layers. The reeiver adds and dropslayers aording to the network state. This reeiver-driven approah isprobably the most elegant way to solve the multiast problem. It waslater used in RLC [13℄, MLDA [12℄ and PLM [4℄. The main onern ofRLM was the intra-session fairness. To ahieve it, a oordination meh-anism between reeivers has been designed. RLM was not designed tobe TCP-friendly (i.e. fair towards TCP), nor to guarantee inter-sessionfairness. RLC was designed to be fair towards TCP onnetions whoseround trip time (RTT) was lose to one seond, but not in general. RLCand MLDA support some form of inter-session fairness, in the sense thattwo ompeting RLC ( MLDA) sessions will get the same number of layersin steady-state, whih means that both sessions get the same throughputonly in ases where the two sessions have partitioned their layers so thatthey have the same throughputs in all layers. This annot be the ase ingeneral.In an earlier work, we have proposed a protool, alled RLS [3℄, thatprovides intra-session and inter-session fairness guarantees. For example,for a large range of RTTs, the ratio of throughputs between RLS andTCP remains in the interval [ 13 , 3℄, whih is exellent ompared to RLMand RLC. However, we noted that RLS, though stable, still performedtoo many unsuessful join experiments. Moreover, RLS was designed towork with exponentially distributed layers only. In this paper, we proposea better protool, alled CIFL, whih improves RLS along the followinglines:{ We make no hypothesis on the throughputs of the layers, they anhave any value.{ The reeivers reah the optimal level quikly.{ The stability is better, beause the reeivers learn from their pastfailures to join some layers under some onditions. This makes thereeived throughput very smooth, and improves fairness too.The paper is organized as follows. We �rst remind some basi oneptsin setion 2. We explain the priniples of CIFL in setion 3, and showits simulated performane results in setion 4.2 Basi onepts2.1 TCP-FriendlyTCP is the most widespread traÆ in the internet and any new onges-tion ontrolled protool has to be designed to be TCP-friendly, whihmeans that it gets an average share of the bandwidth (approximately)equal to the average share TCP would get in the same onditions. AsTCP is uniast and we are onsidering multiast protools, the de�nitionshould be re�ned as follows. A multiast protool is TCP-friendly if eahreeiver gets an average share of the bandwidth equal to the average



CIFL 3share a TCP onnetion, between that soure and that reeiver, wouldget.In Best-e�ort networks, there is no reason to favour video transmissionover TCP given the importane of the latter. In Integrated Servies net-works where reeivers an reserve some (minimum) bandwidth for thevideo stream, one ould let reeivers get more bandwidth provided thatthis extra share is fairly alloated. In Di�erentiated Servies networkswhere video stream an be aggregated with others and may, not be inthe same lass as TCP ows, inter-sessions fairness will be ahieved if allvideo ows adopt the same de�nition of fairness (and TCP-friendlinessmay be a good andidate for that). So in all ases, TCP friendlinessseems a good requirement to ful�ll.The throughput of TCP (in bps) in steady-state, when the loss ratio isbelow 16%, is roughly given by the following formula [6℄:Btp � C:sppRTT with C =r32 = 1; 22 (1)where s is the paket size (in bits), RTT is the mean round trip time (inse) and p the paket loss ratio. A more preise formula that takes TCPtimers into aount an be found in [9℄.The TCP yle is the average delay between two paket losses in steady-state. So we have one paket loss per yle, whih an be formulatedas: p = sBtp:Cyle ; (2)where s is the paket size in bits and Cyle the duration of the TCPyle as desribed above. From (1) and (2), we derive:Cyle = Btp:RTT 2C2s (3)2.2 Coordination of reeiversIt was pointed out in [8℄, that a multiast ongestion ontrol protoolannot be e�etive if the subset of reeivers behind the same router atwithout oordination. Indeed, if a reeiver reates ongestion on a linkby requesting a new layer, another reeiver (reeiving less layers) mightinterpret its resulting losses as a onsequene of its (too high) level ofsubsription and may end up dropping its highest layer unneessarily(beause this layer will ontinue to be reeived by other reeivers). Sooordination is neessary, RLM has proposed to use announement mes-sages, and RLC to use synhronization points (SPs). SPs are speialpakets in the data stream. Reeivers an only join a new layer just afterreeiving an SP. In RLC, eah layer has its own SPs, and the reeiveran only join layer i + 1, when it reeives an SP in layer i. [10℄ showsthat the presene of SPs leads to a low redundany and gives better fair-ness. That is the reason why RLS and CIFL build their oordination ofreeivers on the existene of SPs. The SPs will also ontain informationabout the number of layers and their respetive throughputs.



4 Ibtissam El Khayat and Guy Ledu3 The CIFL protoolOur goal is to reate a layered multiast ongestion ontrol protoolwhih is:1. TCP-friendly.2. Stable: as few unsuessful join experiments as possible.3. Generi: independent from the throughput of eah layer. To ahievethat CIFL will estimate the ideal throughput, and will join, or leave,one or several layers at one to reah a throughput whih is lose tothe omputed target, based on estimations of the RTT and the lossratio.4. Careful before adding layers at SPs, but quik at removing layerswhen an inipient ongestion is on�rmed. This is to be omparedwith the Additive Inrease Multipliative Derease (AIMD) shemeof TCP.3.1 Estimation of the Round Trip TimeEah reeiver has to estimate its RTT to the soure. The lassial shemeis to ping the sender from time to time, e.g. eah time the reeiver joins orleave a layer, or more frequently. However, for large sessions, the senderan be ooded by ping requests. If routers are ative, a solution based on[1℄ an be used, but we are looking for a solution that does not involverouters. If the sender knows the number r of reeivers and the numberp of ping requests it an proess between two SPs, it an provide thesenumbers in the SPs.Knowing these values, reeivers an ping the sender with probability pr .We do not require that ping requests be immediately followed by a pingresponse from the sender. To ahieve that, we implement a sheme similarto RTCP [11℄. Suppose a reeiver sends a ping request at time Rs whihis reeived by the sender at time Sr. The sender stamps the ping requestat its arrival, and when it is able to send a ping response, say at Ss, itstamps the response with that time value. If the sender is quik, Ss willbe (almost) equal to Sr, but in any ase the time spent at the sender anbe omputed as Ss � Sr. At Rr the reeiver will get the ping responseand perform the following operations:Re Send = (1� g)Re Send+ g(Sr �Rs)Send Re = (1� g)Send Re+ g(Rr � Ss)RTT = Re Send+ Send ReIf all the data pakets are timestamped, the reeiver an ontinouslyestimate the Send Re value by using all the pakets it reeives. Betweentwo pings, the Re Send an hange without being notied though, whihrequires that pings are not too distant from eah other. This is also usefulto ompensate lok drift.



CIFL 53.2 The joinSynhronization points. As said before, we use the SPs to o-ordinate the reeivers. Contrary to RLC, SPs are only present in the�rst (base) layer and not in all of them. When a SP is reeived and ifthe deision to join is not taken, the reeiver remains deaf to ongestionduring a deaf period Td. This is neessary beause this ongestion anbe indued by another reeiver that has used that SP to get more layers.In pratie the distane between SPs is at least 4 seonds. This distaneis enough to be greater than any ommon deaf period (see next setion).However, to avoid all kinds of synhronizations, the distane betweenSPs is randomized. It will vary between 4 and 16 seonds.Inrease of the throughput. The reeiver tries and estimates thebandwidth TCP would get in a similar situation. To do so, it will useformula (1) whih requires to know its loss ratio. But the latter has ameaning only when it is omputed over a duration lose to a TCP yle.Indeed, remember that formula (1) is only valid in steady-state. So, thereeiver will refrain from using an SP to get more layers if it did notstay at least one TCP yle at the urrent level. When it is the ase, thereeiver omputes the bandwidth it an get as follows:Bnext = CsRTTpPyle :with Pyle the loss ratio omputed over the last TCP yle (see formula(3)). If there were no loss, the throughput an be doubled. That is smi-lar to TCP whih would have doubled its window after a yle. Whenthe reeiver has omputed its optimal bandwidth, it joins the suitablenumber of layers to get the losest possible to the omputed through-put. To do so, it is neessary that the SPs ontain information about thethroughputs of all the layers.Stabilization. When the reeiver has no good estimation of its RTT,e.g. beause there is a large number of reeivers and the pings are doneless frequently, the estimated bandwidth an be overestimated. In thisase, the reeiver would join layers that it would leave soon after. Theseunsuessful join experiments an be avoided if the reeiver an learnsomething from past failures. To this end, the CIFL reeiver will reordthe network state1 as it was just before any unsuessful join experiment.To do this, every reeiver maintains a square matrix QD with one row(and one olumn) per layer. Eah element QDi;j of the matrix representsthe minimum queuing delay the reeiver has ever monitored before anyunsuessful join experiment from level i to level j.When a reeiver at level urrent wants to join level target, it heksits matrix to see if it has already failed to join any layer below target1 The network state is measured by the mean queuing delay omputed over an equiv-alent TCP yle



6 Ibtissam El Khayat and Guy Leduwith a queuing delay that was below the urrent queuing delay. It anbe omputed as follows:tested = urrent + 1while (tested <= target &&urrent_queuing_delay < QD(urrent,tested)){ joininr tested }When the reeiver has reahed a stable level and is subjeted to very few(or no) losses, it basially spends its time omputing estimations of theRTT, the queuing delay and the loss rate, refraining from joining at SPs.3.3 The leaveIf the deision to join layers an be done at (not so frequent) SPs andafter a yle has elapsed at the urrent level, the deision to abandonlayers when ongestion appears should be taken more quikly. So, whenthe reeiver detets a potential inipient ongestion by a paket loss, itwill start monitoring the loss ratio PTm over a short interval (denotedTm), and then the reeiver will ompute the number of layers it deidesto abandon. We will disuss the value of Tm later, but we know it hasto be short, say very few RTTs to �x ideas. The problem is that Tm isin general short ompared to a TCP yle, whih makes it impossible touse equation [6℄ to ompute a new (lower) target throughput. In orderto propose another formula to ompute that throughput, we will requirethat, when the suitable number of layers are abandoned, the reeiverwill not join any layer before a minimum amount of time (denoted T)has elapsed. Clearly, T should be larger than an equivalent TCP yle,as before any join experiment, and should end at an SP. However, thedistane between SPs being random, the future ourrenes of SPs areunknown. In the alulation however, we will onsider that all SPs areequally spaed out of 10 se, whih is the average spaing between SPs.To derive our formula, we de�ne{ Tm is the monitoring period starting at a probable inipient onges-tion deteted by a paket loss in steady-state (or indued by a joinexperiment of the reeiver).{ T ( for ompensation) is the minimal period during whih thereeiver will have to stay at its new level before joining any layer. Itis omputed as desribed above.{ Burrent is the urrent throughput, whih will remain so during Tm,{ Btarget is the unknown throughput the reeiver will request afterleaving some layers, and will keep during at least T.To ompute Btarget, we require that CIFL should get a TCP-friendlythroughput over the Tm + T interval.Figure 1 shows the parameters we use, and illustrates also that T �nishesat an SP arriving after the expiration of the yle.Let � = BurrentBtarget , the mean throughput of the reeiver is:B = TmBurrent + TBtargetTm + T = Tm�+ T�(Tm + T)Burrent
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Fig. 1. A monitoring period followed by its ompensation periodWe suppose that there is no loss during T, whih means that the lossratio p over Tm + T is:p = pakets lost during (Tm + T)pakets sent during (Tm + T) = pakets lost during Tmpakets sent during (Tm + T)Whereas: pakets sent during (Tm + T) = (Tm + T)Band: pakets lost during Tm = PTmTmBurrent = PTmTm:�(Tm+T)�Tm+T BA simple replaement gives: p = PTm �Tm�Tm+T ;TCP, whih has a loss ratio equal to p, reeives in average:Btp = sCRTTqPTm �Tm�Tm+TIf we equate both throughputs, i.e. B = Btp, we derive that:� = PTmTmT(Tm + T)2 C2s2RTT 2B2urrent � Tm2PTmReapitulation. When the reeiver detets an inipient ongestion,or just after joining a layer, it monitors the loss ratio during Tm and thenomputes �.{ If it is greater than 1 2, the reeiver leaves the suitable number oflayers to get a throughput lose to Burrent� . Then the reeiver ignoreslosses during the deaf period Td, whih is neessary to let the networkreah its new state and monitor it. Initially, the deaf period is equalto 1RTT , but it is updated eah time a layer is added or removed asfollows. Knowing timedrop, the time at whih layers were abandoned,and timelast, the reeption time of the last paket belonging to oneof the dropped layers, the reeiver makes an exponential smoothingof Td with the new value \timelast � timedrop".{ Else, it does nothing as it treats the losses as resulting from a smalltransient ongestion.Suh a sheme would not be easily adapted to TCP itself beause TCPmay not reeive enough segments during an RTT (when its window issmall) to ompute � aurately.Note also that if a reeiver is in a leave evaluation when an SP is reeived,and a deaf period is started, the leave evaluation is anelled. Otherwise,the reeiver may be falsely onfused by a transient ongestion due to ajoin experiment by another reeiver.2 The development we have made is meaningless if � is less than 1.



8 Ibtissam El Khayat and Guy LeduThe Tm value. In this setion, we briey disuss the hoie of Tm.We know that: Btp = TmBurrent + TBtargetTm + T ;So, when Tm inreases, Btarget dereases and BtargetBtp dereases too. IfBtarget � Btp the reeiver at the end of T will normally inrease itsbandwidth to reahBtp. To avoid this osillation, we needBtarget ' Btp.As T and � are �xed,Btarget ! Btp implies Tm ! 0So Tm has to be short. However, as TCP takes deisions at every RTT ,if the CIFL reeiver evaluates its loss ratio over a duration shorter thanRTT , it will get a bad estimation. For this reason, Tm has been �xed to1RTT .3.4 Start-up phaseWe have explained how the CIFL reeiver behaves in steady-state. How-ever, this behaviour is unsuitable at the very beginning, beause it tendsto mimi TCP in ongestion avoidane, instead of a TCP in the slow-start phase. Therefore, when TCP and CIFL start together, CIFL wouldnot get its fair share, or only after a muh longer period.In this setion, we desribe the start-up phase of CIFL. In this phase,the reeiver uses all the SPs to join new layers, so that it doubles itsthroughput at every SP. For a set of exponentially distributed layers,this would mean adding a layer (but only) at every SP. In other shemes,the reeiver may join several layers at one. This mimis the exponentialtakeo� of TCP, whih ontinues until the throughput of subsribed layersis greater than the peak throughput atually reeived. One this stateis reahed, the reeiver drops all layers above the maximum reeivedthroughput and exits the start-up phase.Moreover, this more aggressive phase is used to estimate the bottlenekapaity by measuring the smallest delay between two reeived pakets.Knowing this bottlenek apaity, the reeiver will not attempt to joinlayers that would lead to a throughput above this value. This will reduethe number of unsuessful joins, ompared to other protools like [13℄,[8℄, [12℄.If, later during the session, pakets happen to transit through anotherpath with more bandwidth, or if the network is simply less ongested,the reeiver will disover it, beause it will ontinue to estimate thebottlenek apaity as follows:estimate bwi = max(estimate bwi�1; pktsizet revi � t revi�1 )On the other hand, if the traÆ is routed to less provisioned or moreongested links, it is not a real problem, beause this estimated bottle-nek apaity will just beome overestimated, and thus a bit less usefulto avoid unsuessful join experiments.3.5 SalabilityWhen the number of reeivers is large, reeivers will ping the soure lessfrequently, whih means that the RTT estimation may be less aurate.
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