
AISB Journal 1(1), c 2001
http://www.aisb.org.uk

Autonomous Reflectors
over Active Networks:

Towards Seamless Group Communication
Lidia Yamamoto and Guy Leduc

Research Unit in Networking, University of Liège
Institut Montefiore, B28, B-4000 Liège, Belgium

yamamoto@run.montefiore.ulg.ac.be ; leduc@run.montefiore.ulg.ac.be

Abstract
We present a reflector service that seeks to maintain application-level connectiv-

ity in the presence of network-level multicast failures. The service is based on the
dynamic deployment of autonomous reflectors modelled as mobile agents on top of
an active network infrastructure. It is able to repair multicast tree failures by building
a self-organising tree of reflectors, which will be connected to each other via unicast.
The scheme is decentralised and takes into account node and link resources to find
agent locations that lead to low cost tree configurations. We focus on the basic deci-
sion mechanisms related to code mobility during the tree construction and destruction
phases, namely: cloning, migration, merging and termination. We show some prelim-
inary simulation results that confirm the viability of the approach and settle directions
for further research.

1 Introduction
The demand for multimedia group communication is growing, and multicast is widely
recognised as an important service to enable efficient group communication. However,
multicast protocols still face deployment obstacles, and the quality experienced by many
users is still unsatisfactory.

One of the fallback solutions used is to establish multicast reflectors to serve users
that have no multicast access. A reflector is a user-level gateway application that acts
as a proxy between a multicast-enabled network and a set of unicast users. It forwards
packets from the multicast group to all unicast clients, and from every unicast client to
the multicast group and to all other unicast clients. This guarantees that connectivity is
maintained within the session, in spite of the fact that some participants have no access to
IP multicast, or in the presence of failures in the multicast tree.

Existing reflector software must typically be installed manually, which is an extra
burden for the session organisers and users. Besides that, even the session organisers
seldom have enough knowledge about the current network conditions in order to be able
to choose an optimum location for a reflector. What happens then is that reflectors are
typically placed close to the main session source, and all multicast disabled participants
must connect to it as clients. This generates an amount of redundant traffic which is
proportional to the number of reflector clients, and therefore obviously does not scale to
large sessions where potentially large portions of the network might need the reflector
service.

Autonomous Reflectors over Active Networks

It would be interesting to be able to dynamically install reflectors when there are
connectivity failures or administrative restrictions to multicast traffic. The location of re-
flectors should be automatically determined according to the network conditions observed
during the session.

We have designed an autonomous reflector based on mobile code that runs on top
of an active network execution environment. The candidate locations for such reflector
agents are active network (AN) (Tennenhouse et al., 1997) or active server (AS) nodes
(Amir, 1998; Fry and Ghosh, 1999). These nodes run an execution environment (EE)
capable of downloading and executing the reflector’s code, and of discarding it when no
longer used.

Our reflectors are autonomous and decide when to migrate to other nodes, clone in
order to cope with increasing demand, merge with other reflectors, or disappear when
no longer needed. The decisions are based solely on local knowledge available at the
terminals or active nodes where they run. This guarantees that reflector code is deployed
only where needed and when needed, and that after the session finishes all the reflectors
will be automatically eliminated. The idea is that reflectors progressively move from
the affected session members towards a well-known main centre of interest, until failure
points are successfully bypassed, such that data coming from the main centre of interest
can reach such members.

Additionally, reflectors that do not receive sufficient demand die out, and those which
are overloaded spawn others to less loaded nodes. Using such a scheme, a tree of reflec-
tors emerges as a result of failure detection, and disappears by itself when the failure is
repaired. It should be noticed that the reflectors are not able to diagnose nor repair failures
by themselves. Their objective is only to maintain application-level connectivity in the
presence of network-level multicast failures. Network management mechanisms to detect
and repair such failures are orthogonal and outside the scope of this work.

The paper is structured as follows: Section 2 gives a brief overview of the relevant
concepts in our context as well as related work in the area. Section 3 describes the au-
tonomous reflector scheme to build reflector trees. Section 4 explains the decision model
that each agent adopts while building the tree. Section 5 shows some simulation results.
Section 6 describes the current state of our Java implementation. Section 7 concludes the
paper.

This article is an extended version of an earlier work (Yamamoto and Leduc, 2001a).
Sections 2 and 3 have been reorganised and enhanced to clarify some ambiguities detected
in the initial article. The merge procedure has been revised and is briefly described in
Section 4.5.

2 Background

2.1 Multicast over the Internet
Multicast communication models for the Internet have received considerable attention
since early 1990s. However, multicast protocols are still not widely available on the
global Internet, and the experimental Multicast Backbone is slow to take off. Wide-area
MBone sessions still fail due to multicast problems in some sections of the network. It
is very difficult for the session participants to diagnose a failure and eliminate it during
the lifetime of the session. The network conditions are unstable, it is difficult to monitor
traffic and to detect points of failure, etc. The result is poor quality for the users.

There are several reasons for such a situation. One of them is the design of the pro-

http://www.aisb.org.uk

Yamamoto and Leduc

tocols that usually requires modifications in the network routers and little support for
incremental deployment. For a new protocol to be deployed over the Internet, it needs
to be agreed upon, standardised, and manufacturers must implement compatible versions.
Incremental deployment is difficult in this context, due to different paces of development
and upgrade in different parts of the global network.

In the case of multicast, security concerns are also an obstacle to deployment, since
multicast reinforces the risk that attackers easily flood the network with unwanted data.
Therefore many providers are reluctant to allow IP Multicast in their networks, and fire-
walls can block multicast traffic. Some instabilities come from the fact that multicast is
still considered as an experimental service in many places, and therefore it is given low
priority over the operational tasks.

New network-layer solutions such as REUNITE (Stoica et al., 2000) and HBH (Costa
et al., 2001) propose the use of the standard unicast addressing model to build multicast
distribution trees, such that unicast-only regions can be supported in a transparent way,
and therefore facilitate incremental deployment. However, such solutions still require
compatible peers, and would need to be agreed upon and standardised as other protocols,
before being deployed. While these new protocols are being discussed, application-layer
solutions such as Narada (Chu et al., 2000) offer the users an alternative to waiting for a
larger scale availability of network-layer solutions. However, due to the lack of network
support, application-layer solutions are difficult to implement and often lead to inefficient
overlay topologies.

2.2 Active Networks and Active Servers
Many of the deployment difficulties described for multicast are also shared by other In-
ternet protocols such as IPv6, Mobile IP, etc. Research on Active Networking (AN) (Ten-
nenhouse et al., 1997) came as a response to such deployment difficulties, among other
motivations. Active networking enables the dynamic deployment of protocols and ser-
vices over a set of programmable routers. The nodes of an active network are capable
not only of forwarding packets as usual but also of loading and executing mobile code.
The code can come in the form of active extensions or capsules. Active extensions are
complete modules that implement a given service, while capsules contain small pieces of
code (or a reference to the code) that are executed in every AN node they visit.

Since AN raises security issues which are still being studied and debated upon, some
researchers have proposed the Active Server (AS) approach (Amir, 1998; Fry and Ghosh,
1999) as a shorter term alternative to AN. AS nodes are end systems that allow the secure
downloading of mobile code such that new services can be deployed on-demand.

2.3 Existing Reflector Systems
Several commercial and non-commercial reflector systems are available, e.g. (Highfield,
1998; Live Networks, Inc., 2000; Kirstein and Bennett, 2000) (more references on p.27 of
(Kon et al., 2000)). These systems are typically software packages that must be manually
installed at the sites that will provide the reflector service. Therefore the location of re-
flector sites must be decided beforehand, and cannot be easily changed during the lifetime
of the multimedia session. Changes in reflector location or configuration generally lead
to temporary service disruption.

In (Baldi et al., 1998) mobile reflectors that can clone or migrate appear as part of a
videoconference architecture for active networks. The authors focus on software design
issues, and the actual algorithms and criteria for placing such reflectors are not covered.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

A multicast reflector has been mentioned as an example application over the AS envi-
ronment ALAN (Fry and Ghosh, 1999). It has been used to transmit MBone sessions via
unicast to sites not connected to the MBone, and has the potential to move across ALAN
nodes. However, dynamic reflector placement algorithms seem not to have been proposed
in this context yet.

In (Kon et al., 2000) a distributed framework to manage a network of reflectors is
proposed, based on dynamic code distribution and (re)configuration. Reflectors are used
to support network and terminal heterogeneity. Within this framework, it is possible to
manage networks containing a large number of reflectors. Each reflector has a limited
degree of autonomy, such as reconfiguring the neighbour nodes to bypass a reflector that
failed. For most other operations, however, the reflector elements need to be managed by
a privileged user, the reflector administrator, who decides where to install new reflectors
or to remove reflectors from the network. To take such decisions, the administrator needs
to have a global view of the network topology and characteristics, which is not trivial
to obtain from the wide-area Internet or the MBone. Another difficulty is to cope with
participants dynamically joining and leaving the session, and the corresponding reflector
tree reconfiguration in order to maintain a tree which always tracks the optimum. (Kon
et al., 2000) report that in one experiment they were forced to deny approximately one
million connection requests due to lack of bandwidth on the reflector sites. This could
have been avoided if reflectors were able to automatically clone themselves to other sites
in order to cope with the additional demand.

2.4 Market-based resource control
A considerable amount of research results in the area of market-based control are avail-
able mainly in the agents field (Clearwater, 1996). It provides algorithms inspired by
optimisation and economy theories for distributed control of resource usage, with many
applications to computer and telecommunication networks. In (Gibney et al., 1999) a
market-based mechanism to set up circuit switching paths with resource reservation is
described. Closer to the AN perspective, in (Tschudin, 1997) an open resource allocation
scheme based on market models is applied to the case of memory allocation for mobile
code.

In (Najafi, 2001) a cost model for active networks is proposed, that takes into account
the cost of processing a flow in the active nodes as well as the transmission costs. The
author includes an algorithm that converges to the minimum cost for a flow that may be
transformed in several active nodes before reaching its destination. He has also proposed
a single agent positioning algorithm in which an agent can decide to reposition itself in
the network in order to reduce the session cost.

2.5 Placing functionality and routing in active networks
The problem of choosing active nodes to place a given programmable functionality has
been identified as a routing problem (Najafi, 2001; Choi et al., 2001). The potential
of active routing is broadly discussed in (Maxemchuck and Low, 2001). The extensive
simulation results in (Kiwior and Zabele, 2001) show that the performance of a reliable
multicast protocol that makes use of active network nodes heavily depends on the location
of the active nodes.

Several proposals in this area such as (Akamine et al., 2000; Duysburgh et al., 2000;
Safaei et al., 2001; Choi et al., 2001; Partridge et al., 2001) require knowledge of the
whole network graph in order to compute the active paths. Solutions of this kind are

http://www.aisb.org.uk

Yamamoto and Leduc

feasible to place generic services to be used by wide range of active applications within
a domain. But they generally do not scale beyond a single domain, and are not feasible
when the applications themselves need to find optimum locations for their active elements,
depending on their own specific characteristics and constraints.

In (Wen et al., 2001) a framework is proposed for composing customised multicast
protocols for active networks out of elementary building blocks. Our approach could
benefit from such a framework to build the reflector service using similar blocks.

2.6 Self-deploying services
In the context of agents and active networking, a number of proposals for self-deploying
services have been made. In (Shehory et al., 1998) a framework is proposed in which
agents deal with overload by cloning, passing tasks to others, merging, or dying. Agents
decide when to clone according to the loads of the different resources they use, such as
memory, processing and communication resources. The possible decisions that the agent
can take are described by a decision tree, and the optimum decision is calculated via dy-
namic programming. In (Tschudin, 1999a) an election service based on active packets is
developed, that deploys itself to every reachable node. In a later work (Tschudin, 1999b)
the same author addresses the security issues involved with a necessary self-destruction
mechanism for such kind of services.

In (Roadknight and Marshall, 2000) the issue of quality of service differentiation is
addressed by using a distributed genetic algorithm inspired by the behaviour of bacteria.
The authors show that the amount of servers and their location in the network evolve ac-
cording to the user demand for a given type of service and a requested trade-off between
latency and packet loss. The potential of genetic techniques such as the ones proposed
by (Roadknight and Marshall, 2000) is the increased variability to find new solutions and
adapt to new situations not envisaged at the beginning. However, in an environmentwhere
nodes and links are heterogeneous, propagating successful rules (“genes”) to neighbour-
ing nodes might not necessarily be a good idea, since a rule that is successful in one node
might fail completely in another node due to different resource constraints. In the context
of self-organising systems, biologically-inspired and market-based techniques seem com-
plementary, and an interesting research challenge would be to combine the best of both
worlds to obtain new adaptation mechanisms.

3 Autonomous Reflectors
In this section we describe our autonomous reflector scheme. We start with some defini-
tions and assumptions, and then describe the basic mechanisms for building and destroy-
ing trees of reflectors.

3.1 Definitions and terminology
Reflector, or reflector agent: Software package that implements the reflector func-
tionality and can be loaded on the active nodes on-demand. Each reflector is
uniquely identified within the session. Each active node may hold only one in-
stance of a reflector for a given session (although several reflector instances for
different sessions running on the same node may share the same code).

Client reflector: Reflector A is said to be a client of reflector B when A is a child of
B on the tree.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

Server reflector: Reflector B is said to be a server for reflector A when B is A’s
parent on the tree.

Connection: A logical client-server connection between two reflectors A and B.
Packets are exchanged over this logical connection using direct unicast addressing.

Terminal reflector: A reflector that is a leaf of the tree.

Intermediate reflector: A non-leaf reflector.

Root reflector: The root of a reflector tree. It is a reflector agent that is either located
at the RP or receiving data from the RP via native multicast.

RP or rendez-vous point: Predefined target node towards which the reflector trees
will be built.

Downstream: The flow direction from the RP towards the root reflector, or from the
root reflector towards the leaves of the reflector tree.

Upstream: The direction from the tree leaves towards the root reflector or from the
root reflector towards the RP.

Clone: To send a copy of a reflector to another node; the clone will initially have
its original reflector as a client.

Migrate: To move to a given destination node, by sending a clone there, transferring
the agent state to the clone (mainly its client list) and terminating.

Merge: To combine two reflectors into a single one, by merging their client lists
and terminating one of the reflectors. A merge operation is often used only as an
abstraction, as two reflectors that intend to merge may negotiate a different config-
uration before the merging actually takes place (see Section 4.5).

Terminate: To terminate the execution of a reflector at a given node (its code may
remain cached for a certain amount of time until it is garbage collected).

3.2 Assumptions and Limitations
We assume that some basic default unicast routing service interconnecting all active nodes
is available, such that at any moment it is possible for an active application to obtain the
next hop to a given destination. This service can be either provided by the Execution
Environment itself, or installed as active extension code with a well-defined interface
exported to the active applications that need it. By default it can simply map directly to IP
routing, but more sophisticated techniques such as application-layer routing (Ghosh et al.,
2000) could also be available to provide optimised paths according to specific criteria. We
assume that unicast routing is robust: rerouting around failed unicast links is out of the
scope of this work.

The current failure detection mechanism is very simple: a reflector simply attempts
to join the multicast group, listen for a while, and if no multicast packets arrive then it
assumes that there is a failure. It also assumes a failure when there is an error while at-
tempting to join the group at a given network interface, meaning that no multicast support
is available for this interface.

Another assumption is that there is only one main centre of interest that generates
content for the session (e.g. the lecturer’s site). This centre of interest or main source

http://www.aisb.org.uk

Yamamoto and Leduc

will also be called the rendez-vous point (RP). All other session participants are also
allowed to generate content to the session, as it is generally the case with RTP sessions
(Schulzrinne et al., 1996), that nowadays are widespread on the MBone. So the system
is not constrained to Single Source Multicast. However, these other sources of data will
be considered as secondary from the point of view of the mobile reflectors, which means
that when there is a multicast failure affecting only the reception of secondary sources,
the system of reflectors will not attempt to repair it.

It is assumed that all session members learn the RP address in advance, together with
other group information, that is generally advertised by standard session announcement
mechanisms such as SIP or SAP (Handley et al., 1999; Handley et al., 2000), which are
outside the scope of the paper.

One might argue that assuming a single centre of interest is not a realistic approach,
but in practice it is often the case that a single centre of interest exists or can be defined
close to where most of the “action” occurs in the session. Besides that, if multicast is
down for a particular member, it is likely to be down for other members too, but detecting
it for each member individually would be too costly for large sessions. Therefore the
repair tree of reflectors is bidirectional, so that all participants affected by a failure share
a single tree to distribute and receive content to/from the rest of the session.

The reflectors we propose are only able to repair multicast trees using unicast: mul-
ticast tree failures will cause a tree of reflectors to be formed, which will be connected
to each other via unicast. Since multicast routing and active network unicast routing
are independent, the unicast tree of reflectors might not coincide with the corresponding
multicast subtree for a given set of session members. One can imagine that it would be
interesting to use unicast only to bypass “broken” segments of a tree, using multicast
everywhere else. This would result in a significantly smaller amount of reflectors being
deployed. While this is an interesting possibility, it raises many new difficulties related
to the self-organisation of disjoint subgroups within a session, with corresponding alloca-
tion of multicast group addresses, underlying topology discovery to make sure subgroups
don’t overlap, etc. Therefore we leave this possibility open for future study.

3.3 Tree Construction
The reflectors start at leaf nodes co-located or close to the session members, and then
progressively move, clone and merge with other reflectors along their respective unicast
paths towards a rendez-vous point (RP). As discussed in the previous paragraph, the RP
role is typically assigned to the main source of content in the session. This leaf-initiated
approach is similar to filter placement schemes based on RSVP, such as the AMNet pro-
totype described by (Wittmann et al., 1998).

We distinguish two types of reflectors: terminal and intermediate. Terminal reflectors
are located as close as possible to the end systems and do not move, while intermediate
reflectors are dynamically placed on other active nodes in the network, and might move
from one node to another according to the network conditions.

A terminal reflector ideally serves one local client, which is the user application that
generates and/or treats session content (e.g. MBone tools such as vic or rat). A termi-
nal reflector must be installed at each end system that wishes to make use of autonomous
reflectors, or as close as possible to the end system (or set of end systems) to be served.
The terminal reflector works as a proxy between the actual multicast group and the user
application, so that the direct use of multicast or the use of reflectors is hidden from the
application. This allows the use of reflectors based on mobile code without requiring any
change to existing applications. Terminal reflectors are intermediate reflectors that have

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

their migration rules disabled. They must be fixed because the existing tools are not able
to detect moving peers.

The tree of reflectors organises itself in a client-server hierarchy. Each intermediate
reflector serves a number of clients that are located downstream from it and directly con-
nected to it via unicast. All intermediate reflectors are both servers for a number of clients
and clients of an upstream reflector, except the root of the tree which only acts as a server.

a ctive node reflectornon− a ctive node

bidirectiona l unica st flow upstrea m opera tion

RP

clone

cloneclone

merge

P1 P2 P3

(a)

R P

P 1 P 2 P 3

T1

(d)

R P

P 1 P 2 P 3

T2

T1

(b)

R P

P 1 P 2 P 3

T1

clone

(e)

R P

P 1 P 2 P 3

T1
m igra te

m erge

(c)

R P

P 1 P 2 P 3

(f)

Figure 1: Tree construction example.

Figure 1 shows a tree construction example for a session consisting of an RP and
three session members P1, P2, and P3. When a participant detects the absence of native
multicast connectivity to the RP (by trying to listen to the multicast group as described in
Section 3.2), its terminal reflector sends another reflector to the next AN hop towards the
RP. This operation is called upstream cloning (Fig. 1(a)). The clone reflector spawned in
this way is not an exact copy of the original reflector, since it is an intermediate reflector,
but it serves the same session and has the same goals. In our case, the goal is to maintain
application connectivity when native multicast fails or is absent, such that at least the data
coming from the main session source reaches all session members.

When two reflectors belonging to the same session meet at the same active node, they
merge into a single reflector (Fig. 1(a)(c)). Two reflector trees, T1 and T2 (Fig. 1(b)),
result from the operations shown in Fig. 1(a). If native multicast traffic from the RP is
detected by an intermediate reflector, it becomes a root reflector and stays in the node.

http://www.aisb.org.uk

Yamamoto and Leduc

Otherwise, it either clones or migrates to the next active hop towards the RP. Figure 1(c)
shows an upstream migration. A hierarchy of reflectors results from this process (Fig.
1(d)(e)(f)).

Since each agent reflects every packet received, the result is a bidirectional shared tree
such as CBT (Ballardie, 1997). For example, on Figure 1(d) if T1 is receiving multicast
from RP, then the flow coming from RP will be sent in unicast to P1, P2, and P3; and the
flow coming from P1 will be copied to P2, P3, and to the multicast group.

While network-layer protocols typically deal with outgoing interfaces, the reflectors
deal with unicast client connections directly: a copy of each packet is sent to each client,
even when several clients share the same outgoing interface. A packet is never looped
back to a client, even in the presence of route and interface asymmetry such that the
incoming and outgoing interfaces to a given client are different. This strict hierarchy
must be observed at all times in order to ensure that loops in the bidirectional tree do not
occur.

Each reflector includes a local selector that selects data from either multicast or unicast
channels, to ensure that no duplicate packets are forwarded downstream, and that packets
coming from downstream are forwarded only to the selected channel (either multicast or
parent reflector).

Applying this bottom-up tree construction algorithm, a reflector that succeeds bypass-
ing the failure point becomes the root of its reflector tree. This method that not only one
tree but several ones might arise in response to an absence of native multicast, in case
multiple reflectors cross a failure point at different nodes. This can happen, for example,
if the failure “point” is not a single link but a whole network with multicast capabilities
disabled for some reason.

The repair trees will be located as close as possible to the concerned participants, and
will not interfere with the rest of the session running in native multicast. The drawback is
that the tree is built following the reverse path to the RP, which might lead to suboptimal
downstream paths when routes are asymmetric.

3.4 Termination

A reflector that runs out of clients automatically terminates itself. If native multicast
connectivity is somehow restored, reflectors start receiving data from the main source
via the multicast channel, and disconnect from their upstream reflectors. The latter will
eventually die out due to lack of clients. Each reflector contains a local selector module
that is responsible for discarding duplicate packets, and for ensuring that packets going
upstream are forwarded to the selected channel (either native multicast or parent reflector).

If a reflector terminates abnormally, its children will detect the absence of traffic com-
ing from their parent and will restart the tree construction process to rebuild the affected
portion of the tree.

3.5 Communication among reflectors

AN Capsules are used to implement a signalling mechanism among neighbouring reflec-
tors so that a given intermediate reflector can inform its downstream clients of its current
location, and to keep the reflector tree alive. Capsules are also used to prospect the state of
an upstream node before making a decision to clone or migrate, and to enable two agents
to take merge decisions jointly, as will be explained in Sections 4.4 and 4.5.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

4 Reflector decisions
Reflectors can use resource control based on market mechanisms (Clearwater, 1996) to
make decisions to either clone, merge, migrate or terminate themselves. Such mecha-
nisms can also be used to dynamically decide on the maximum number of clients to ac-
cept at a given machine, in order not to cause link or CPU overload. Another usage is to
make downstream cloning decisions: for example, in the case of an overloaded reflector,
a number of clones can be sent downstream to handle part of the clients.

In this paper we concentrate on the basic decision mechanisms related to code mo-
bility during tree construction and destruction, that is, cloning, migrating, merging and
terminating. We are currently working on the additional mechanisms related to tree re-
shaping and load control.

Each reflector has costs associated with its consumption of node and network re-
sources. The tree of reflectors is organised in a client-server hierarchy, such that server
reflectors sell session data to their clients, and buy data from their server reflector. A re-
flector uses the revenues that come from its clients to pay for resource usage in the active
nodes and for the services of the upstream reflector.

4.1 Resource usage costs

Each reflector has associated fixed costs and variable costs for the use of node resources.
The fixed costs do not vary with the number of clients that a reflector has, and correspond
to the costs of using the mobile code platform. They represent the minimum processing
plus storage cost that the mobile agent incurs, even when no clients are connected. Note
however that the fixed costs are not constant in general, as they may vary as a function of
the load level of the resource in question (CPU, memory).

The variable costs increase with the number of clients, and correspond to the link
transmission costs to all clients, plus the processing costs for all packets. These costs
may also vary according to the total load of the corresponding resource (link bandwidth
or processing).

From the cost point of view, having many clients is good for a reflector because the
fixed costs are shared among all the clients, but if the number of clients becomes too
large, the demand for one or more resources might exceed the supply (congestion situa-
tion), leading to an increase in processing and link prices, with possible packet losses and
consequent degradation in quality for the end user.

Every time a new reflector is added to the tree, there is an increase in costs corre-
sponding to the resources that the new reflector needs. However, this increase might be
compensated by a decrease in costs for other reflectors, e.g. because their load is allevi-
ated.

The cost of processing at an active node is also related to the delay penalty imposed
to the end user due to the use of a tree of reflectors. The delay penalty is the ratio between
the actual delay experienced by an end user and the delay that would be experienced if
the user could connect directly to the multicast session without the help of reflectors. If
the processing power were infinite, the extra delay imposed by a reflector would be null.
On the other hand, a very low processing power would incur a high additional delay. The
same is valid for a machine with high processing power but which is overloaded, such
that the processing time available to a reflector is very low. Therefore if a reflector tries
to choose nodes that have low processing costs, it is likely to be moving towards a lower
delay penalty for its users.

http://www.aisb.org.uk

Yamamoto and Leduc

4.2 Definitions
We begin by providing some definitions of terms that will be used later in this section:

: a reflector that runs at a given node
: number of clients of reflector
: reflector , the -th client of reflector , for
: data sending rate of reflector to (upstream direction)

: data sending rate of the main source
: number of terminal reflectors in session

: total rate of the session (session bandwidth)

(1)

for all terminal reflectors with sending rate .

: fixed costs at node (do not vary with).
: variable costs at node (vary with).
: processing costs at ; depend on the amount of data treated per second.
: total link costs at : represent the costs associated with the total amount of

bandwidth emitted by reflector to each link that leads to clients of , and to the parent
reflector if any.

: total cost at node when clients are present: the sum of fixed and variable
costs, as follows:

(2)

4.3 Estimating costs
In order to make a decision to either clone or to migrate, a reflector first needs to estimate
the costs that would result from choosing either option. A simple decision strategy would
then be just to choose the configuration with the lowest cost. However, there are a number
of difficulties in obtaining such estimation. Actually this is a typical problem of making
decisions in the presence of risks, and decision analysis could be applied here as in (She-
hory et al., 1998). In this section we present a first simplified approach to the problem.
Further research is necessary in order to extend it to a more general case.

One of the main difficulties is that, at the beginning, when the reflector still hasn’t
reached the main source (directly via multicast or via another server reflector), it is not
able to measure the actual resource consumption that will result when it reaches it. When
that happens, it goes into full operation mode, but at this moment, it is too late to revise
its previous decisions concerning cloning or migrating. Especially, if the reflectors un-
derestimate the aggregate sending rates of all the session members beyond the multicast
failure point while building the tree, several points of congestion might appear as soon as
the tree becomes fully operational.

A solution to this problem would be to rely on an estimation of the total rate of the
session (session bandwidth), that must be available somehow before the session starts.
In practice it is possible to obtain such information by looking at the media types in the

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

SDR session announcements. Additionally, if RTCP is used (Schulzrinne et al., 1996),
and assuming that only a limited number of session members send significant amounts of
data to the group, the session bandwidth grows very little with the total session size.

Using such an upper bound, resources could be reserved at the active nodes along the
path in order to guarantee that enough resources are available when the reflectors reach
the main source. However, resource reservation might not be available at all nodes, and
most of the nodes might not even be active. Besides that, if the session bandwidth is
overestimated, too many costs might incur with little extra benefit for the end user. We
adopt a simple solution that relies on an upper bound on the session bandwidth to simplify
the cost calculations, but does not reserve resources on the nodes.

Now we quantify each cost component in our context. We begin with the processing
costs.

4.3.1 Processing costs

Network packets constitute the bulk of the data treated by a reflector. Therefore the pro-
cessing costs during a given interval increase with the number and size of the packets
treated. Every packet received is reflected to everyone else. Thus every packet from the
upstream channel (reflector or multicast) is copied to every client, and every packet from
a client is copied to the upstream channel plus all the other clients except itself. For a
reflector that has already reached the main source (directly via multicast or via another
server reflector), the total number of bits per second treated at is:

(3)

where:
is the data rate sent from the parent to all child reflectors of
is the data rate sent from all child reflectors of to all others and to the parent.

(4)

(5)

Substituting equations 4 and 5 in 3, we have:

(6)

Assuming constant prices, and processing costs that increase linearly with the data
rate treated, we have:

(7)

where:
is the (constant) processing price per bit per second at node .

http://www.aisb.org.uk

Yamamoto and Leduc

4.3.2 Link costs

The link usage costs include the costs for bandwidth and queueing. Here we consider
only the bandwidth costs for simplification. There are only costs associated with the
transmission of packets, not with the reception of packets. Thus the link costs are the sum
of the costs to reflect a packet from the parent reflector to all child reflectors, and from
each child to every other child plus the parent.

Assuming constant link prices, the total link cost for can be written as:

(8)

where:
is the price per unit of bandwidth on the link in that leads to the client .
is the price per unit of bandwidth on the link in that leads to the parent reflector of

(or the candidate parent in case a decision to clone or to migrate is about to be made).
If the link price is the same for all clients and equal to , or when all clients of

share the same link , we can rewrite the link cost as:

(9)

4.3.3 Cost of the cloning configuration

If we are going to send a clone from the origin node to an upstream destination node
, the cost of the resulting clone configuration can be calculated as:

(10)

Here represents the total cost of running the agent at the current node when the
agent is fully operational, while is the cost of a new agent running at the upstream
node with a single node () as a client.

4.3.4 Cost of the migration configuration

When migrating to an upstream destination , a reflector carries its client list along
with it. Assuming symmetric unicast routing paths, the traffic will continue to go through
node , therefore consuming the same amount of bandwidth resources at the links leading
to each client reflector. Since the reflector itself will disappear from node , there are no
fixed nor processing costs associated with it anymore at this node. Therefore the cost of
resulting configuration after migration can be calculated as:

(11)

4.4 Making a decision
We would like to make a decision to either clone or migrate based on the total costs of
resources for each configuration.

A simple decision strategy is to choose the configuration with the lowest cost:

if then clone else migrate. (12)

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

In order to simplify the calculations, we rewrite the above rule as:

if then clone else migrate. (13)
The costs of each configuration are given by equations 11 and 10, therefore we have:

(14)

Note that the fixed costs at , as well as the link costs at have disappeared since
they are the same in both configurations. With symmetric unicast paths and no multipath,
all the traffic from to will go through a single link. Thus, assuming linear costs
for link resources, we can use equation 9 to calculate the terms and .
Assuming linear costs also for processing resources, equation 7 can be used to calculate

, , and . After these operations we obtain:

(15)

Which can also be written as:

(16)

The first line of the right side of the equation 16 represents the increase in costs as-
sociated with the migration configuration, while the last line corresponds to the increase
associated with the cloning configuration. When is high, the migration configuration
tends to become more expensive than the cloning configuration. Therefore the cloning
configuration will generally be preferred for high , unless the fixed or processing costs
at are prohibitive.

With this result we obtain an easy way to make a decision, by using equation 15
to choose the cheapest configuration. As discussed earlier, an estimation on the upper
bound of is considered available before the session starts. The number of clients, ,
is known at , as well as the local cost and price . Consequently, before making a
decision, the agent needs to obtain the following information from its neighbour :

: processing price per unit
: link price per unit for the outgoing interface from to .
The information above is collected by a Prospecting capsule that is sent to the des-

tination node before the cloning or migration action actually takes place. The costs for
the intermediate links on the direct and reverse paths between nodes and have to be
taken into account as well. The Prospecting capsule partially does this by accumulating
into the sum of the link costs for the active nodes on the path from node to node .
When not all the nodes are active, an approach similar to the equivalent link abstraction
(Sivakumar et al., 2000) could be used to estimate the transmission costs of a non-active
network cloud.

This is the strategy adopted to obtain the simulation results shown in this paper. Al-
though it seems a bit too simplistic, this strategy already takes into account an important
criterion which is the delay penalty for the user which is imposed by the use of the re-
flectors instead of native IP multicast. As discussed earlier, this delay penalty is implied
within the processing costs.

In classical multicast algorithms such decision dilemma usually doesn’t apply, be-
cause only link resources are typically taken into account. In this case we can make

, and our calculations reduce to:

(17)

http://www.aisb.org.uk

Yamamoto and Leduc

In the above we have:
For and we choose to clone.
For and we choose to migrate.

These observations confirm that when bandwidth is the only scarce resource, cloning
is the default choice except in the trivial case (), since migration always implies
duplicating packets on the link from to when , and therefore causes the total
costs to increase.

4.5 Merging

When two reflectors belonging to the same session meet at the same active node, they
merge into a single reflector. This operation involves the union of both client lists and any
other necessary information. Since this might result in resource overload, a preliminary
negotiation between both agents is desirable to achieve favourable configurations. For
instance, when sending the Prospecting capsule to an upstream neighbour to find out
about costs, the capsule could also be programmed to look for the presence of another
reflector for the same session, and check its current resource consumption. An outcome
of the negotiation could be that server delegates some of its own clients to the prospecting
reflector, in order to balance the load and reduce costs.

It is possible to show that assuming linear costs and symmetric paths, the same rule
(Rule 13) with equation 15 can still be applied to take a joint merge decision involving
two reflectors. Due to lack of space the analysis is not shown here but can be found
in a separate report (Yamamoto and Leduc, 2001b). The resulting merge procedure is
to consider as if all clients of the reflector at node that share the outgoing interface
towards () were attached to node so that we can make in
Equation 15; and then apply Rule 13. If the rule says “migrate” then the reflector at node
migrates to . Otherwise (“clone”) attaches itself to as a client, and transfers

its clients to .
To implement this mechanism, a Prospecting capsule is first sent from node to .

The capsule goes back to with the values of and and (which is zero when
no reflector for the group is running at). The reflector at then uses these values in
Rule 13 to take a local decision to clone or to migrate. If the rule advises a clone decision
and , then the reflector at will take action to transfer its clients to ,
after the cloning operation has been successfully completed. Otherwise everything occurs
as described in Section 4.4.

4.6 Terminating

Since reflectors must “pay” for resource usage in the active nodes, and their clients are
their sole source of income, they will be automatically eliminated by the active platform
when there are no further clients. However, there is a risk that sudden changes in load
make prices increase in unpredictable ways, causing fully operational reflectors to die out
prematurely.

In our current implementation this problem is still not solved, and in our view it can
only be solved with the help of load control operating at shorter time scales than the ones
in which the reflectors operate. This requires adaptive (elastic) flows or transcoding, and
here we are assuming that the reflectors merely repair connectivity failures, and don’t
interfere with the session data contents.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

5 Simulation results
We have performed some simulation experiments using ns-2, in order to visualise the tree
construction and destruction mechanisms. The topology for the simulations is illustrated
in Figure 2 (Left). All links have a fixed capacity of 10Mbit/s and a propagation delay
of 10ms. The main session source is located at node S. The leaves of the tree contain
terminal reflectors that join the session at random times from t=0s to t=10s. All nodes are
active and have the same prices for resources: , , and where
is the size of the mobile code in bytes, and is currently set to 50000, which is the current
approximate size of the bytecode in our Java prototype.

S
A

B

L1

L2

N1

N2
N3

N4

N5

N6
N7

N8
N9 N10

N1

N2

N3

N4

N7

N8
N9

N6

N10

N5

Figure 2: Left: Topology used in the simulations. Right: Two sample reflector trees over
the topology on the left. Top Right: tree that results from the failure of L1, rooted at N1.
Bottom Right: tree that results from the failure of L2, rooted at N5.

The multicast communication via links L1 and L2 is interrupted at t=20s. As a result
two reflector trees appear. Both trees starts at around t=24s, but the tree on the upper side
of the topology is ready at t=29s, while the second one is only ready at t=37s. After this
construction phase all terminal reflectors affected by failures are served by an intermediate
reflector. The resulting trees are shown in Figure 2 (Right).

At t=70s the multicast communication via L1 and L2 is restored. Most reflectors
detect this a couple of seconds later, and disconnect from their parent reflectors, which
die out between t=77s and t=80s.

Figures 3(A), (B), and (C) show the aggregate session data rate received by three
sample session participants: A, B, and C, respectively, whose location on the tree can be
observed in Figure 2 (Left). The main source rate is 500kbps while all the other session
members send around 10kbps each.

Participant A happened to join the group at around t=10s, while B joined right at the
beginning t=0s. During the failure period, although the multicast feed to node A is up and
running, it receives less aggregate traffic until the reflector tree is fully operational, since
during this period it doesn’t receive the multicast packets coming from the participants

http://www.aisb.org.uk

Yamamoto and Leduc

that have stayed on the other side of the failure point. Participants B and C suffer from
the failures until about t=30s and t=38s, respectively. After that, their respective level of
reception becomes about the same as the one of A, as if they were also unaffected by the
failure. When the multicast feed is restored, sudden peaks of traffic arrive at B and C,
due to duplicate packets sent once via multicast and again via the reflector. These packets
are eliminated by the terminal reflectors before being sent to the applications. We can
verify this by looking at the sequence numbers received by the decoder connected to C,
on Figure 3.

0

500000

1e+06

1.5e+06

2e+06

0 10 20 30 40 50 60 70 80 90 100

R
at

e
(b

ps
)

Time (s)

(A)
receiver A

0

500000

1e+06

1.5e+06

2e+06

0 10 20 30 40 50 60 70 80 90 100

R
at

e
(b

ps
)

Time (s)

(B)
receiver B

0

500000

1e+06

1.5e+06

2e+06

0 10 20 30 40 50 60 70 80 90 100

R
at

e
(b

ps
)

Time (s)

(C)
receiver C

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70 80 90 100

S
eq

ue
nc

e
nu

m
be

r

Time (s)

decoder of receiver C

Figure 3: (A), (B), and (C): Data rate of three sample participants. (A): unaffected bymul-
ticast failure. (B) and (C): affected by failures of L1 and L2 respectively. (D): Sequence
numbers received by the decoder of participant C.

In order to visualise the dynamics of the mobile code operations of migrating, mov-
ing, merging and terminating, we describe them in Figure 4 for the upper reflector tree on
the topology. For compactness, we number events in time with integer numbers starting
from 1, followed by the code of the operation performed. From t=24s to t=26s all terminal
reflectors spawn upstream clones. Since the order in which each terminal reflector sends
a clone won’t have any influence on the subsequent operations, we assign event number 1
to all. This is indicated as “1C” in the figure. The next event is event 2, and it’s a cloning
operation from node N4 towards its upstream neighbour. This is indicated as “2C”. By
following the sequence of events in this way, it is possible to track the main actions that
lead to the tree configuration shown in Figure 2 (Top Right), and to its subsequent de-
struction (“T” operation). Although the merging operations are not indicated, they can be
deduced as well, since they occur whenever a reflector arrives at a node where another
one is already present.

The results above are intended to illustrate the basic behaviour of our autonomous
reflectors in ideal conditions. They are not intended to show a realistic picture of a real
network. The topology is regular, the network is unloaded, all nodes are active, the delays
are short and the paths for unicast and multicast traffic coincide.

In our simulations we have noticed little impact of increased network latencies or
moderate load on the results, even when the propagation delay on each link is increased
to the order hundreds of milliseconds. However, we have often observed much larger
latencies for joining live MBone sessions, as well as variable loss patterns. Thus we can

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

1C

1C 1C

1C

1C

1C 1C

1C

1C

1C
3M

5M

9C

7C

4M

8M

10T

11T

1C

12T

13T

2C

6M

N1

N2

N3

N4

Figure 4: Dynamics of mobile code operations. The event numbers are shown beside the
arrows or the node names, followed by the code of the operation: C (clone), M (migrate),
T (terminate).

expect higher reaction times for our reflectors in such a situation.
Further results including the revised merge configuration, the impact of varying node

and link prices, and of the amount of non-active nodes can be found in (Yamamoto and
Leduc, 2001b). We are currently working on random topologies with concurrent sessions
to assess the loading sharing capabilities and the distance to the global optimum.

6 Implementation
We are currently implementing a prototype of the mobile reflectors in Java using an archi-
tecture that allows the code to be easily ported to any EE that supports active extensions
with minor modifications. The architecture is organised in three planes: data plane, moni-
toring plane, and control plane. This structure roughly follows the one suggested by (Blair
et al., 1999).

The data plane is responsible for the blind forwarding of multicast and unicast data.
Its core is inspired by the Mug reflector (Highfield, 1998): in Mug, a node that sends a
RTP/UDP packet to the reflector is added to its client list; a client that stays idle (i.e. sends
no more packets) for some time is removed from the client list. A selector is attached
to the Mug-like core in order to switch between the multicast and the unicast upstream
channels. The selector is controlled by the control plane. The data plane treats packets
seamlessly whether they come from another reflector or from a multicast application such
as the MBone media tools vic or rat.

The monitoring plane keeps track of the current resource usage and performance pa-
rameters of the data plane. To monitor CPU usage, we are currently integrating the CPU
accounting facilities provided by J-Seal2 portable resource control framework (Binder
et al., 2001). This requires some adaptations to the calculations in Section 4 to take into
account measured resource consumption values besides estimated ones.

The control plane uses the data available in the monitoring plane to make decisions.
Its core is a state machine with transitions triggered by events generated at the monitoring

http://www.aisb.org.uk

Yamamoto and Leduc

plane.
This architecture allows new strategies to be easily added to the control plane without

affecting the other planes. It also maps naturally to the Bond platform (Bölöni and Mari-
nescu, 1999), which opens up future possibilities for dynamic updates to the state machine
through “agent surgery” (Bölöni and Marinescu, 1999). The communication mechanism
among neighbouring reflectors takes the form of capsules such as in ANTS (Wetherall
et al., 1998). Alternatively, the communication could be made via an existing agent mes-
sage passing mechanism (e.g. Bond, see (Bölöni and Marinescu, 1999)). Both offer extra
flexibility for enhancements and preclude the need to specify application-specificmessage
formats and develop the corresponding parsers.

7 Conclusions and Future Work
We have described a decentralised scheme based on mobile code, to build a loosely con-
nected network of autonomous reflectors that seeks to maintain session connectivity in
the presence of multicast failures. The self-organising nature of the scheme ensures its
robustness, scalability and autonomy properties, which make it suitable for sessions of
any size, while minimising the necessary amount of human intervention.

For the moment each reflector treats only one media stream (e.g. either audio, or
video, or whiteboard). In order to deal with several media, we plan to group multiple
physical reflectors (each treating one media type) into a single logical reflector for cloning
and migration purposes. In a near future, experiments over the MBone can be envisaged
in the framework of the European COST Action 264, and with the help of existing active
network overlays such as the ABone.

We plan to integrate the work presented in this paper with previous work on conges-
tion control (Yamamoto and Leduc, 2000b; Yamamoto and Leduc, 2000a) such that reflec-
tors also perform application-oriented filtering and/or transcoding of data in the presence
of congestion, in a network which is likely to be only sparsely populated by active nodes.
Other possible extensions include: exploring alternative paths, supporting strong route
asymmetries and non-linear costs, multiple or changing centres of interest, QoS guaran-
tees. It would also be interesting to generalise the technique for other group applications
that require self-organisation.

Acknowledgements
This work has been carried out within the TINTIN project funded by the Walloon region
in the framework of the programme “Du numérique au multimédia”. Part of this work
was performed while the main author was a visiting researcher at Lancaster University.
We would like to thank David Hutchison, Steven Simpson,Mark Banfield, LaurentMathy,
Stefan Schmid, and Katia Saikoski for their helpful support. We would also like to thank
Allex Villazón (University of Geneva), Sandrine Calomme (University of Liège), and the
anonymous reviewers for their insightful comments.

References
Akamine, H. et al. (2000). An Approach for Heterogeneous VideoMulticast Using Active

Networking. In Proceedings of IWAN 2000, Springer LNCS 1942, pages 157–170,
Tokyo, Japan.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

Amir, E. (1998). An Agent-based Approach to Real-time Multimedia Transmission over
Heterogeneous Environments. Ph.D. dissertation, University of California at Berke-
ley.

Baldi, M., Picco, G. P., and Risso, F. (1998). Designing a Videoconference System for
Active Networks. InMobile Agents’98.

Ballardie, A. (1997). Core Based Trees (CBT) Multicast Routing Architecture. Internet
rfc 2201 (experimental), IETF.

Binder, W., Hulaas, J. G., Villazón, A., and Vidal, R. (2001). Portable Resource Control
in Java: The J-SEAL2 Approach. In ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA-2001), Tampa Bay, Florida,
USA.

Blair, G. S., Andersen, A., Blair, L., and Coulson, G. (1999). The Role of Reflection
in Supporting Dynamic QoS Management Functions. In IEEE/IFIP International
Workshop on Quality of Service (IWQoS), London, UK.

Bölöni, L. and Marinescu, D. C. (1999). A Multi-Plane State Machine Agent Model.
Technical Report CSD-TR 99-027, Purdue University. Also a poster at the Fourth
International Conference on AUTONOMOUS AGENTS (Agents 2000) Barcelona,
Spain, June 2000.

Choi, S. Y., Turner, J., and Wolf, T. (2001). Configuring Sessions in Programmable
Networks. In Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska.

Chu, Y., Rao, S. G., and Zhang, H. (2000). A Case for End System Multicast. In Pro-
ceedings of ACM Sigmetrics, pages 1–12, Santa Clara, CA, USA.

Clearwater, S. H., editor (1996). Market-based Control: A Paradigm for Distributed
Resource Allocation. World Scientific Publishing.

Costa, L. H. M. K., Fdida, S., and Duarte, O. C. M. B. (2001). Hop by Hop Multicast
Routing Protocol. In Proceedings of ACM SIGCOMM 2001, San Diego, CA, USA.

Duysburgh, B. et al. (2000). Data Transcoding in Multicast Sessions in Active Networks.
In Proceedings of IWAN 2000, Springer LNCS 1942, pages 130–144, Tokyo, Japan.

Fry, M. and Ghosh, A. (1999). Application level active networking. Computer Networks,
31(7):655–667.

Ghosh, A., Fry, M., and Crowcroft, J. (2000). An Architecture for Application Layer
Routing. In Proceedings of IWAN 2000, Springer LNCS 1942, pages 71–86, Tokyo,
Japan.

Gibney, M., Jennings, N., Vriend, N., and Griffiths, J. (1999). Market-based call routing
in telecommunications networks using adaptive pricing and real bidding. In Pro-
ceedings of the IATA’99 Workshop, Springer LNAI 1699, Stockholm, Sweden.

Handley, M., Perkins, C., and Whelan, E. (2000). Session Announcement Protocol. In-
ternet rfc 2974 (experimental), IETF.

Handley, M., Schulzrinne, H., Schooler, E., and Rosenberg, J. (1999). SIP: Session Initi-
ation Protocol. Internet rfc 2543 (standards track), IETF.

http://www.aisb.org.uk

Yamamoto and Leduc

Highfield, J. (1998). Mug multicast packet reflector. URL
http://www.stile.lboro.ac.uk/ cojch/mug/mug.html.

Kirstein, P. T. and Bennett, R. (2000). RE 4007 MECCANO Project Final Report. URL
http://www-mice.cs.ucl.ac.uk/multimedia/projects/meccano/ deliverables/.

Kiwior, D. and Zabele, S. (2001). Active Resource Allocation in Active Networks. IEEE
JSAC, 19(3):452–459.

Kon, F., Campbell, R., and Nahrsted, K. (2000). Using Dynamic Configuration to Manage
A Scalable Multimedia Distribution System. Computer Communication Journal.
Elsevier Science, Fall 2000.

Live Networks, Inc. (2000). URL http://www.live.com/.

Maxemchuck, N. F. and Low, S. H. (2001). Active Routing. IEEE JSAC, 19(3):552–565.

Najafi, K. (2001). Modelling, Routing and Architecture in Active Networks. Ph.D. disser-
tation, University of Toronto, Canada.

Partridge, C., Snoeren, A. C., Strayer, W. T., et al. (2001). FIRE: Flexible Intra-AS
Routing Environment. IEEE JSAC, 19(3):410–425.

Roadknight, C. and Marshall, I. W. (2000). Differentiated Quality of Service in Applica-
tion Layer Active Networks. In Proceedings of IWAN 2000, Springer LNCS 1942,
pages 358–370, Tokyo, Japan.

Safaei, F., Ouveysi, I., Zukerman, M., and Pattie, R. (2001). Carrier-Scale Pro-
grammable Networks: Wholesaler Platform and Resource Optimization. IEEE
JSAC, 19(3):566–573.

Schulzrinne, H., Casner, S. L., Frederick, R., and Jacobson, V. (1996). RTP: A Transport
Protocol for Real-Time Applications. Internet RFC 1889 (update in progress).

Shehory, O., Sycara, K., Chalasani, P., and Jha, S. (1998). Agent Cloning: An Approach
to AgentMobility and Resource Allocation. IEEECommunicationsMagazine, pages
58–67.

Sivakumar, R., Han, S., and Bharghavan, V. (2000). A Scalable Architecture for Active
Networks. In Proceedings of IEEE OPENARCH 2000, Tel-Aviv, Israel.

Stoica, I., Ng, T. S. E., and Zhang, H. (2000). REUNITE: A Recursive Unicast Approach
to Multicast. In Proceedings of IEEE INFOCOM 2000, Tel-Aviv, Israel.

Tennenhouse, D. L. et al. (1997). A Survey of Active Network Research. IEEE Commu-
nications Magazine, 35(1):80–86.

Tschudin, C. (1997). Open resource allocation for mobile code. In Proceedings of the
Mobile Agent’97 Workshop, Berlin, Germany.

Tschudin, C. F. (1999a). A Self-Deploying Election Service for Active Networks. In
Proc. 3rd International Conference on Coordination Models and Languages (CO-
ORDINATION’99), Springer LNCS 1594, pages 183–195, Amsterdam, The Nether-
lands.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

Tschudin, C. F. (1999b). Apoptosis - The Programmed Death of Distributed Services. In
Vitek, J. and Jensen, C., editors, Secure Internet Programming - Security Issues for
Mobile and Distributed Objects, Springer LNCS 1603, pages 253–260.

Wen, S., Griffioen, J., and Calvert, K. L. (2001). Building Multicast Services from Uni-
cast Forwarding and Ephemeral State. In Proceedings of IEEE OPENARCH 2001,
Anchorage, Alaska, USA.

Wetherall, D. J., Guttag, J. V., and Tennenhouse, D. L. (1998). ANTS: A Toolkit for
Building and Dynamically Deploying Network Protocols. In Proceedings of IEEE
OPENARCH’98, San Francisco, CA, USA.

Wittmann, R., Krasnodembski, K., and Zitterbart, M. (1998). HeterogeneousMulticasting
based on RSVP and QoS Filters. In SYBEN’98, Zürich, Switzerland.

Yamamoto, L. and Leduc, G. (2000a). An Active Layered Multicast Adaptation Protocol.
In Proceedings of IWAN 2000, Springer LNCS 1942, pages 180–194, Tokyo, Japan.

Yamamoto, L. and Leduc, G. (2000b). An Agent-Inspired Active Network Resource
Trading Model Applied to Congestion Control. In Proceedings of the MATA 2000
Workshop, Springer LNCS 1931, pages 151–169, Paris, France.

Yamamoto, L. and Leduc, G. (2001a). Autonomous Multicast Reflectors over Active
Networks. In AISB’01 Symposium on Software Mobility and Adaptive Behaviour,
pages 40–49, York, UK.

Yamamoto, L. and Leduc, G. (2001b). Autonomous Reflectors: Note on the Merge Op-
eration. Technical report, University of Liège.

http://www.aisb.org.uk

