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1. Context

1.1. Introduction

The concept of the greenhouse effect originated in 1896 when Arrhenius established a correlation
between atmospheric carbon dioxide concentration and ground temperature [1]. In the past 40
years, the CO2 content of the atmosphere has increased from 315 to 360 parts per million, with
its present world production reaching 7 billions tons per year (5.4 of which are due to the use
of fossil fuels) [2, 3].

Growing concerns in climate changes pressure to reduce CO2 emissions (as well as end-
user energy demand). Immediate transition to nuclear, wind or solar energy is economically
unsound, and since global hydrocarbon reserves can sustain energy demands well through the
21st century [4], the possibility of CO2 capture and sequestration is being thoroughly studied.

For such a process to significantly affect worldwide emissions, carbon sequestration must be
examined at a very large scale (hundreds of billions of tons throughout the century). Since
leakage rates, which are proportional to storage size and inversely proportional to storage
lifetime, have to be taken into account, for the quantities mentioned, the chosen sequestration
type should be very stable, with a lifetime of tens of thousands of years [5].

For this reason, certain methods seem unpropitious: terrestrial sequestration through the
biomass is too marginal and oceanic sequestration has too short a lifetime (oceans have a
natural turnover times of centuries). The most cost-efficient alternative seems to be geological
sequestration, i.e. injection underground in porous sedimentary formations, either in depleted
oil reservoirs or deep saline aquifers [6]. Because this method still presents uncertainties (seismic
activity, contaminant mobilisation, ecosystem impact, . . . [7]), integrity of each site should be
studied beforehand. This is the main objective of the PICOREF (PIégeage du CO2 dans les
Réservoirs Géologiques En France) programme: evaluation of potential French CO2 injection
sites.

Underground injection in porous alkaline mineral strata is likely to lead to carbonation, i.e.
dissolution of the CO2 in pore water, creating carbonic acid and raising the acidity of the
solution, which would in turn erode the mineral (calcites or silicates) to form carbonates and
bicarbonates. Although this mineral trapping permanently captures CO2 in stable products, it
can also weaken the injection site (leading to fractures in the caprock) or encourage CO2 mi-
gration, both resulting in possible gas leakage [8]. The dynamics of the reaction must therefore
be fully characterised before such solutions can be implemented. Predictive reaction-transport
models for mineral sequestration are as of yet inaccurate and require more experimental mea-
surements for their validation.

5



Context 1.2. QUANTIFICATION OF SAMPLE EVOLUTION

1.2. Quantification of sample evolution

1.2.1. Objectives

Another objective of the PICOREF programme is to continue the fundamental research from
the previous PICOR programme, which studied the fluid-rock interaction to validate cur-
rent reaction-transport models and thus the feasibility of massive CO2 injection. The 3-year
study, started in 2004 and conducted at the ISTEEM (Institut des Sciences de la Terre, de
l’Environnement et de l’Espace de Montpellier), experiments on the percolation of porous or
fractured reservoir rocks by supercritical fluids (fluids at pressures and temperatures above
their critical values, i.e. values for vapourisation) containing CO2, under conditions varying
from 100°C and 9MPa to 150°C and 13MPa.

Evolution of the samples’ properties during the percolations is recorded via X-ray micro-
tomography (see appendix A for an overview of X-ray tomographic imaging). X-ray tomography
being non-invasive, images are taken at different stages of the percolation, but before any
quantification of the samples’ properties’ evolution can be calculated, the images must first be
registered (i.e. have the position (i,j,k) in each of the images correspond to the same location
in the sample).

1.2.2. Hypotheses

Because the experiments described in the previ-

Figure 1.1.: Cross-section of one of the to-
mographies of the processed sample

ous section have not yet been completed, the im-
ages presented in this report are of porous reservoir
rocks (specifically crinoidal limestone), 9 millimetres
in diametre and 20 mm high (dimensions are cho-
sen according to the field of view of the acquisition
equipment, in this case the line ID-19 at the ESRF
(European Synchrotron Radiation Facility)) being
percolated under ambient temperature and pressure
conditions with CO2-enriched water. Specifications
of this percolation can be found in [9]. The sam-
ple consists in a cylinder of limestone encased in a
resin to direct the percolation flow and prevent the
sample from disaggregating. This sample, for which
the registration has been developed, has the same
characteristics as the ones studied in the PICOREF
programme (shape, dimensions, resin-encasing, and
percolation procedure), which implies that it should give equally accurate results for these.

The percolation obviously affects the geometric features inside the sample: the micrite (a sort
of carbonate mud found in the porosities) can be moved or washed out, the pores become larger
and their connectivity can change, the mineral is eroded in a non-uniform manner. This makes
iconic or intensity-based registration (i.e. using the information of all the pixels without prior
segmentation, as opposed to geometric or feature-based) unsuitable. Therefore, this process
must first extract pertinent features that remain invariant throughout the percolation. This
leaves several alternatives: the unseemly ones consist in using information from only one phase,
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1.2. QUANTIFICATION OF SAMPLE EVOLUTION Context

i.e. the mineral or the porosity, but directional percolation and complex pore structure might
shift the phases’ features in an unpredictible way. Intrinsic information from the mineral itself,
such as its texture, could be used, this information is at best as important as the noise level,
thus cannot be the basis of an accurate registration. The reasonable choice is to use the resin’s
interface with the sample, firstly because the resin is not affected by the percolation, therefore
remains invariant (although sample manipulation in between the percolation stages results in
minimal variations), and secondly because the interface presents conspicuous geometric features
(since it moulds the polycrystalline heterogenous sample structure), i.e. provides sufficient
information for precise registration1.

An extensive literature exists on the subject of registration (almost entirely devoted to med-
ical imaging), and compared to most registration applications, this one seems particularly easy
(for an introduction to image registration, see [10]). Using classification terms described in [11],
the type of registration required here can be characterised as: rigid (it involves computing only 6
parameters: a rotation and a translation (3 parameters each), compared to cases where scaling,
shearing (or worse) is needed), instrinsic (the process does not involve the use of information
outside of the sample, like exterior markers) and automatic (as opposed to interactive, for which
the user has to manually steers the program towards the solution). A particularity of the micro-
tomographies on which this project focuses, which proves to be a major hindrance in the choice
of the procedure, is their size: the images contain around 6 billions pixels (2000×2000×1500),
therefore brute force approaches, or even algorithms of quadratic complexity are inapplicable
(see [12] for an exhaustive introduction to algorithm analysis and computational complexity
theory).

1.2.3. Overview of the registration

For this reason the choice of the developed algorithm, summarised by the following steps,
is not only linear in time, but decomposes the process for further acceleration and potential
parallelisation :

Extract pertinent and invariant features (chapter 2) No matter the specificities of this
application, the first step in feature-based registration is to select the points or features of the
image that contain information pertinent to the registration. In this case, the set of points P
of the interior edge of the resin (figure 1.2(b)) is selected: the resin remains intact during the
percolation (invariance), and the interior edge presents all the irregularities of the limestone
(pertinence).

Find a reference tube T that most closely matches P (chapter 3) Due to the sample’s
cylindrical shape and the fact that the extracted points are near the sample’s surface, a tubular
approximation (i.e. determining the tube that best fits on these points, figure 1.2(c)) would
allow for a very simple calculation of half of the solution, i.e. by registering the tomographies’
reference tubes. The rest of the process would then consist of a translation along the cylinder’s
axis and a rotation around it. The decomposition in itself does not accelerate the registration
whatsoever, but it allows a subsequent data reorganisation that will.

1A sensible question would be why not simply use the outside of the encasing resin. The answer is that it is
not visible in the tomographies. Since reconstruction is very time-consuming, all pixels of the final image
outside the region of interest are ignored and set to 0.
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Context 1.2. QUANTIFICATION OF SAMPLE EVOLUTION

Reorganise the data (chapter 3) A distance map D(P , T ) can then be calculated, which
results in a two-dimensional image (in polar coordinates) that still contains all the information
pertinent to the registration without any loss of accuracy (figure 1.2(d)). The rest of the
registration boils down to an alignment of the tomographies’ distance maps (horizontal and
vertical alignments are respectively equivalent to rotation around and translation along the
tube’s axis).

Align the distance maps (chapter 4) Through a search for the global minimum of a cus-
tomised cross-correlation function of the distance maps, the horizontal and vertical translations
that aligns the distance maps is computed. With the data reorganised in two-dimensional
images, the computation time for this part is minimal.

Compute the result (chapter 5) From the transformation that registered the reference tubes
and the translation that aligns the distance maps, the final transformation matrix that registers
the tomographies can be calculated.
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1.2. QUANTIFICATION OF SAMPLE EVOLUTION Context
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(a) Sample tomography (for the acquisition, the sample is placed vertically,
i.e. the sample’s axis is roughly aligned with the z-axis of the image)

(b) Set of pertinent points P (c) Approximated cylinder T

θ-

z′?

(d) Distance map D(P, T ) (since this 2D image is in polar coordinates, the horizontal and vertical
axes are respectively the angle around and the distance along the sample’s axis (and not the z-axis of
the tomography))

Figure 1.2.: Illustration of how the registration data is extracted and reorganised for each image
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2. Extracting the invariant features

2.1. Direct approach

2.1.1. Overview

Unrec
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ted
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(a) Zoom on a portion of the to-
mography

Resin

Mineral

Background and 
porosities

number 
of pixels

intensity

(b) Histogram of the tomography

(c) Porosities and background (d) Resin (e) Mineral

Figure 2.1.: From the original image and its histogram ((a) and (b)), a simple thresholding can be
used for segmentation ((c)–(e), where the points in black belong to the desired phase).

The tomographies have three distinguishable phases: the mineral, the resin and the porosity
(in decreasing intensity), as shown in figure 2.1. There are indeed three distinct peaks on
the histogram (c.f. 2.1(b)), which could correspond to those phases, in which case a simple
thresholding filter would be reasonable means to extract the points P of the interior edge of
the resin. Unfortunately, separation of the background and the resin is mediocre due to the
noise level, so this type of filter as a basis for finding P is not ideal, but it is still useable: the
vast majority of P belongs to the interface between the resin and the mineral (i.e. the interface
between the resin and the porosity is only a small fraction of P , for obvious physical reasons),
so the essential segmentation would be of the mineral (as in 2.1(e)). In other words, a good
approximation of P is the outer edge of the mineral phase. The difference between the two is
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2.1. DIRECT APPROACH Extracting the invariant features

illustrated in figures 2.4(b) and 2.4(d), and can be seen in the top-right portion of figure 2.1(a).
It will introduce errors on the distance map D(P , T ) (not on the definition of the reference tube
itself), but in an negligible range. The resulting pixels extracted with this method is illustrated
in figure 2.2.

Figure 2.2.: A subset of P

2.1.2. Technical details

Basic notions of digital topology have been put into practise in order to find P . Understand-
ing the technical aspects require a few prior definitions, such as neighbourhood relations and
connected components. For a more thorough introduction to digital topology, consult [13].

Preliminaries

Let I be a binary image, i.e. an application Zk −→ {0, 1} (we will introduce the notions with the
case k = 2, but they can be intuitively extended to any k ∈ N). A point (or pixel) p is defined
by its indices (p1, p2) ∈ Z× Z, and its intensity is noted I(p). We consider two neighbourhood
relations Γ4 and Γ8, defined, for every point p, by Γ4 = {p′ = (p′1, p

′
2); |p′1 − p1|+ |p′2 − p2| 6 1}

and Γ8 = {p′ = (p′1, p
′
2); max(|p′1 − p1|, |p′2 − p2|) 6 1}, and denote by Γ∗4(p) and Γ∗8(p) the

sets Γ4(p) \ p and Γ8(p) \ p. A point p′ is said to be n-adjacent to p (with n = 4 or 8) if
p′ ∈ Γ∗n(p). Let X ⊂ Z2, X the complementary set of X, and {p, p′} ⊂ X (X is often referred
to as the object or the foreground, and X the background). We say that there is a n-path
between p and p′ if there exists a sequence of points {p1, p2, . . . , pm} such that p1 = p, pm = p′,
and ∀i ∈ [1;m− 1], pi is n-adjacent to pi+1. We say that X is n-connected (or an n-connected
component) if ∀{p, p′} ∈ X, ∃ an n-path between p and p′.

11



Extracting the invariant features 2.1. DIRECT APPROACH

Extracting the correct outer edge of the mineral phase

These notions are used on the tomographies binarised with a thresholding method, as in 2.1(e)
(the black points being the foreground), where all pixels with intensity strictly lower than
the threshold value belong to the background (supposably only the porosity and resin phases
(and the unreconstructed portion of the image)). They are presented for two-dimensional
images because the algorithm will be applied on each axial cross-section (i.e. the cross-sections
perpendicular to the z-axis, which roughly corresponds to the sample’s axis). This simplification
is done for several reasons explained in the next section.

The process is divided in two parts: the first will identify the 4-connected components of
the background which are connected to the image’s border (here the image refers to an axial
cross-section of the tomography), and mark the pixels of the foreground that are 4-connected to
those components as the outer edge. The result of this is illustrated in figure 2.3(b). The object
(or foreground) of these binary images should intuitively consist of one connected component,
but it is hardly ever true, for several reasons:

� the binarisation with a simple thresholding filter is not perfect due to the noise in the im-
age, so points from the porosity or the resin can be wrongfully classified in the foreground

� during the creation of the sample, limestone fragments can detach and sink in the resin,
leading to another connected component (like the one that disappeared between 2.3(b)
and 2.3(c))

� since the physical object is defined in three-dimensions (excluding string theory), there
can exist discontinuities from one cross-section to another, i.e. mineral protrusions or
protuberances extending along the z-axis in the resin, leading to, when looking at a
horizontal cross-section, another connected component

This implies that the result contains several outer edges (which, in light of the way an outer
edge was defined, are 8-connected components), therefore the correct one needs to be selected.
Fortunately, the desired component has an ostentatious particularity: it’s the biggest one,
which is what the second part consists of, extracting the outer edge’s 8-connected component
containing the most number of points, as in figure 2.3(c).

(a) Portion of a cross-section of a
tomography of the sample

x

y

z -

?

gq

(b) Outer edge of the mineral
phase

(c) Biggest connected compo-
nent of the outer edge

Figure 2.3.: Illustration of the outer edge extraction
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2.2. CLASS OF ALTERNATIVES Extracting the invariant features

Method justification

Using such a thresholding technique yields acceptable results with a fixed threshold value for
all tomographies of a given sample because the final post-processing of the reconstruction of
the tomographies, which involves transtyping the pixels’ intensities from real to integer values
coded in one byte (i.e. 256 levels of grey), overlays the histograms’ maxima, so that their shape
and position on the [0; 255] interval corresponds. This means that the mineral phase is found
in the same intensity range in all tomographies, for a given sample.

Even though all the notions used for this method are extensible to three dimensions, the
process is still applied on each axial cross-section independently, most importantly because
finding the biggest connected component is a global operation impossible to implement for very
large data structures without a time-consuming block-decomposition scheme, but also because
it slightly lessens the imprecision of the method. The reason for this is explained with the
figure 2.4, which shows that the result of the three-dimensional algorithm would include all the
points of the edges of the porosities in contact with the resin (figure 2.4(d)), porosities which are
likely to evolve during the percolation and thus give inaccurate information for the registration.
When applied on axial cross-sections independently, (only) for porosities of similar shape and
orientation as depicted in 2.4, the points of the mineral-porosity interface cannot be reached
(c.f. figure 2.4(c)) so will not be used for the registration1.

y

x

z

Porosity

Mineral

R
es

in

U
nreconstructed zone

(a)

Resin-porosity
interface

Resin-mineral
interface

(b) (c) (d)

Figure 2.4.: A situation where independent processing of the axial cross-sections is less inaccurate.
Illustrations of coronal cross-sections of : (a), a portion of the original tomography, (b), the corre-
sponding ideal set P, (c), the outer edge of the mineral phase for every axial cross-section (the method

used), and (d), the outer edge of the mineral phase.

2.2. Class of alternatives

2.2.1. More preliminaries

The most important flaw of the method described is that, by construction, it will miss all
the pixels from the resin-porosity interface. All the attempts made to solve this needed four

1It creates a discontinuity in the extracted surface, but is in no way relevant to the process’s accuracy
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Extracting the invariant features 2.2. CLASS OF ALTERNATIVES

more digital topology definitions. We call an dilation of an image I (using n-connectivity)
the application: I(p) 7−→ Γ(I(p)) = max

p′∈Γn(p)
I(p′) The complementary definition, a erosion, is

defined in a dual way: I(p) 7−→ Γ−1(I(p)) = min
p′∈Γn(p)

I(p′). Dilation and erosion are defined in

such a way as to be naturally applicable to greyscale images.
We call an opening of an image I (using n-connectivity) the application consisting of an

erosion followed by a dilation, i.e. Γ−1 ◦ Γ. The dual application, a closing, is the inverted
sequence Γ◦Γ−1. We define an opening (or closing) of size i as i erosions followed by i dilations
(or vice-versa).

2.2.2. Failed alternatives

All tested alternatives were similar in design and failed for the same reason. One example of
such a method is depicted in figure 2.5 which describes the process and shows two different
situations, the upper one leading to the desired result, and the lower one demonstrating its
uselessness. The main problem that arises when trying to segment only the resin phase, which
has an intensity in between that of the pores and the mineral, is that a thin layer of pixels
in between the mineral and the pores will be considered as part of the resin. If a pore is in
contact with the resin, then this layer of pixels will be connected to the ones from the resin, as
in figure 2.5(c). The easiest way to remove this connection is with an opening, which removes
thin features. Unfortunately, because air bubbles appeared in the resin during the fabrication
of the sample, some areas in the resin show up darker in the tomography. This leads to a
fragile segmentation of that phase, as most of the pixels in those areas are considered as not
belonging to it2. Thus while the opening disconnects the undesired mineral-pore interface pixels
from the resin, it also creates breaches in the resin (lower half of figure 2.5(d)), which results
in taking pixels from the inside of the resin phase and even pixels from the boundary of the
unreconstructed zone (figure 2.5(f)) instead of the desired ones.

2.2.3. Other paths to investigate

Other possibilities for extracting the ideal set P , which are theoretically promising, can be
described in two distinct steps: first, remove as much noise as possible in order to have clearly
separate intensities for each phase (good results seemed to be achieved by combining a strong
gaussian blur, a median filter, and a conditional diffusion3); secondly, by using notions of cross-
section topology such as lower levelling kernels of upper regularisation on the gradient of the
image [15] (the use of filtered leveling might bypass the need for the first step) to conserve the
crests, from which P could easily be extracted. Nevertheless, supposing it does extract the
ideal set of points sought, its effect on the accuracy of the registration is not at all certain.

2lowering the lower threshold of this segmentation leads to incorporating points of the porosities
3inappropriately named anisotropic diffusion by [14]
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2.2. CLASS OF ALTERNATIVES Extracting the invariant features

(a)

Successive opening and closing
-

of size 2, using 8-connectivity

(b)

?

Select points with intensity in an interval that roughly

corresponds to that of the resin phase

(c)

Opening using 8-connectivity
-

(d)

?

Select biggest 4-connected component

of the background

(e)

Outer edge using 4-connectivity
-

(f)

Figure 2.5.: A failed alternative method for selecting P, illustrated by two extracts from the tomog-
raphy, the top extract showing what was intended with this method. The first stage removes some
of the noise that corrupts the following thresholding step. The mineral segmentation step (a double
thresholding) that gives (c) also extracts a thin layer of pixels between the pores and the mineral,
so the following opening, which gives (d), is used to disconnect that layer from the set that actually
represents the resin. The biggest connected component of the background of (d) is supposed to cor-
respond to the inside of the sample, i.e. only the pore and the mineral, giving (e) whose outer edge

should be the inner edge of the resin phase. Except the bottom extract shows where it fails.
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3. Reorganising the data

The set P of points, considered as containing the necessary information to compute the reg-
istration, is now used in two interrelated ways: firstly, the set is approximated by a reference
tube T in the manner of a best-fit approach, and secondly, the set and the tube are used to
compute a distance map D(P , T ) (represented as a two-dimensional image) of one from the
other. Using both T and D(P , T ) from each tomography of a given sample, the complete
registration transformation can be determined.

3.1. Description

Three essential hypotheses are used to prove the validity the registration process and justify its
efficacy in terms of computational complexity:

1. the sample is almost cylindrical

2. P represents the edge of the sample

3. the sample’s axis is almost aligned with the z-axis of the tomography

The first suggests the help of the shape in the registration: if the sample’s image in each tomog-
raphy was approximated by a reference cylinder, then the registration problem can be reduced
to two simpler subproblems: determining the transformation from one cylinder to another, and
finding the rotation around and translation along one’s axis. The second hypothesis implies
that P and only P is necessary for determining the reference tube T and thus a cylindrical
approximation of the sample.

The tube T and the distance map D(P , T ) can be used to represent the positions of the
points of P . Instead of using a set of triplets (i, j, k) (defined in the Euclidean space of the
tomography) of all the points of P , an image defined in the tubular plane (O, θ, z′) (z′ being the
height along the cylinder’s axis and θ the angle around it) containing the distances of the points
of P from T (a simple example is shown in figure 3.1, where the sample is a hexagonal cylinder)
can be used for the latter subproblem, so that it is reduced to an alignment of distance maps,
the horizontal translation (on θ) from this alignment corresponding to the rotational part, and
the vertical translation (on z′) to the translational part of the subproblem.

The approach first requires that the reference tube be determined. From the first hypothesis
and from the fact that the outer edge of the coat of resin is not visible on the tomography,
the best definition of T is the tube with the smallest radius and containing P1. In light of
the amount of data to use to determine such a cylinder, a local method (one allowing the
parallelisation of the problem) should be used. Knowing that the intersection of a tube and a

1Note that only the axis of the reference tube is essential for the registration, its radius just changes a global
offset on the projection. Nevertheless, it is impossible to determine an axis without having previously found
the tube, since its axis is corollary.
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3.2. FINDING THE CIRCLES Reorganising the data

(a) Determination of the reference tube

θ-

z′?

(b) Projection on the tube

Figure 3.1.: Example illustrating the use of a reference tube and polar coordinates: the sample is a
hexagonal cylinder and the pixels of P are on its rectangular facets. The determined tube surrounds
the sample, in contact with its six edges. Figure (b) shows the resulting projection on the tube,
starting (on the left), arbitrarily, from the edge joined by the radius drawn in (a), and moving around
clockwise (again, chosen arbitrarily) until the angle θ reaches 2π. The light zones of (b) correspond
to the facets of the hexagonal cylinder, whose centres are farthest from the tube (thus whitest in the
image), and the dark areas correspond to the edges (there are seven vertical dark zones while the

hexagon has six edges because the first and last zones in (b) originate from the same edge).

plane is an ellipse (supposing that tube and plane are infinite and not parallel), a local method
would consist firstly in finding the smallest ellipse surrounding the points of P in each plane,
and secondly in finding the cylinder that best fits this set of ellipses.

The third hypothesis not only means that the reference tube is not parallel to an axial plane
but also allows a further simplification with a negligeable loss of accuracy: since the sample’s
axis is almost perpendicular to the axial plane, and knowing the shape of the intersection
between a tube and a perpendicular plane, a set of circles would be determined instead of
ellipses.

3.2. Finding the circles

Let Pi ∈ P be the points contained in the ith axial cross-section (this means that
⋃
i∈[1,d]

Pi = P ,

d being the number of axial cross-sections in the tomography).

3.2.1. Geometric optimisation: the discrete 1-centre problem

Let Pi be a finite set of points in a Euclidean plane.

What is the smallest circle containing all points in Pi ?
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Reorganising the data 3.2. FINDING THE CIRCLES

This seemingly easy problem first appeared in 1857 [16], and has been thoroughly studied,
solved and generalised since.

3.2.2. The implemented solution

The chosen solution implements the Elzinga-Hearn algorithm [17]:

1. Choose two points {p1, p2} ∈ Pi

2. Construct the circle C with centre c and radius r whose diameter is [p1p2]

If ∀p ∈ Pi, ‖−→pc‖ 6 r, then C is the smallest circle �

Otherwise, choose a point p3 ∈ Pi, ‖−→p3c‖ > r

3. If the triangle p1p2p3 is right or obtuse, then rename the two points opposite the
right/obtuse angle as p1 and p2, ang go to step 2.
Otherwise, construct the circle C ′ with centre c′ and radius r′ circumscribing the acute
triangle p1p2p3

If ∀p ∈ Pi, ‖
−→
pc′‖ 6 r′, then C ′ is the smallest circle �

Otherwise, choose a point p4 ∈ Pi, ‖
−→
p4c
′‖ > r′

4. Let s = max
p∈{p1,p2,p3}

‖−→p4p‖ and t ∈ {p1, p2, p3} such as ]tp4[∩(sc′) 6= ∅ (e.g. figure 3.2).

Rename the points {s, t, p4} as {p1, p2, p3} and go to step 3.

p1=s

p2

p3=t

p4

c'

C'

Figure 3.2.: Illustration of the fourth step of the Elzinga-Hearn algorithm: p1 is farthest from p4 and
is therefore s, p3 is the point on (sc′)’s side opposite to p4 and is therefore t.

3.2.3. Alternatives

The worst-case scenario can give the Elzinga-Hearn algorithm a complexity of O(n2) [18].
Megiddo presented in [19] an linear-time algorithm for the unweighted 1-centre problem, but
apparently, in practical problems, the Elzinga-Hearn algorithm remains faster [20], although
this would have to be verified.
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3.3. APPROXIMATING PARALLEL CIRCLES BY A TUBE Reorganising the data

Avoiding the last simplification and determining a set of ellipses instead of circles is a ques-
tionable improvement because not only will it hinder computation speed, but its effect will be
negligible on the approximation and even more imperceptible on the registration.

3.3. Approximating parallel circles by a tube

3.3.1. Description

We suppose that we now have a set of circles parallel to the axial plane. From these, a tube
must be determined (see figure 3.3). Concerning the radius of this cylinder, an average of the
circles’ radii is taken, although it is unimportant, as explained in the footnote page 16. Axis-
wise, the problem is to find a line from a set of points, wich are the circles’ centres, problem
which is commonly called a linear regression.

Ox

y

z

Input circles

Approximated tube

Figure 3.3.: Approximation of a set of circles with a tube

3.3.2. Linear regression

Let S ⊂ R3 be a set of d points that represent the circles’ centres. We note S = {p1, p2, . . . , pd}

and ∀i ∈ [1; d], pi =

 xi
yi
zi

.

The problem is to project S on the one-dimensional Euclidean subspace (i.e. the line) that

minimises its distortion: if we define a line as a pair (a,
−→
b ) ∈ R3 × R3, where a is a point on

the line and
−→
b the vector which defines its direction, the line that best fits the points is defined

by min
(a,
−→
b )

∑
pi∈S

‖
−−−−−−−−−−−−−→
pi(a+ (

−→
Oa.
−→
b ).
−→
b )‖.

The solution that was implemented decomposes the problem: project S on two orthogonal
planes (coronal and sagittal), perform a linear regression of the two projected sets separately in
their respective planes, and back-project those lines in 3D space so as to obtain an intersection
of two planes, which is the result.

19



Reorganising the data 3.3. APPROXIMATING PARALLEL CIRCLES BY A TUBE

Let (S ′,S ′′) ⊂ R2 × R2 be the projections of S on the coronal and sagittal planes (Oxz)
and (Oyz) respectively2, as shown in figure 3.4, and note S ′ = {p′1, p′2, . . . , p′d} and S ′′ =

{p′′1, p′′2, . . . , p′′d}, i.e. ∀i ∈ [1; d], p′i =

(
xi
zi

)
and p′′i =

(
yi
zi

)
.

O
x

y

z

Set of points S

Set S" : projection of S
onto the plane (Oyz)

Set S' : projection of S
onto the plane (Oxz)

Linear regressions of
S' and S" on their
respective planes

Figure 3.4.: Decomposition of the linear regression

Let ∆, ∆′ and ∆′′ be the respective linear regressions of S, S ′ and S ′′. ∆′ and ∆′′ are
defined by the equations x = a1.z + b1 and y = a2.z + b2, both in R2, but if they are extended
to R3, these equations describe planes. If we now suppose that (∆′,∆′′) ⊂ R3 × R3, then
(∆′ ⊥ (Oxz)) ∧ (∆′′ ⊥ (Oyz)), and since (Oxz) ⊥ (Oyz), then ∆′ ⊥ ∆′′. This is to affirm that
the planes ∆′ and ∆′′ are not parallel, or that they are bound to intersect, and their intersection

is ∆, which is obviously defined by

{
x = a1.z + b1

y = a2.z + b2
.

The problem is therefore to find a1, b1, a2 and b2. Using the method of least squares, if we

note u = 1
d

d∑
i=1

ui the average of ui, Cuv = 1
d

d∑
i=1

(ui − u).(vi − v) the covariance between u and

v, and σ2
u = Cuu the variance of u, then a1 =

Cxz
σ2
z

, b1 = x− a1.z, a2 =
Cyz
σ2
z

and b2 = y − a1.z.

If the computation of (a1, b1, a2, b2) is implemented literally from the previous results, two
passes on S are necessary: a first pass to find (x, y, z), and a second pass for (σz, Cxz, Cyz),
dependent on the first pass’s result. The formulas for variance and covariance can be changed

2Regression, by definition, is the estimation of a conditional expected value of an output variable (also called
dependent or endogenous variable), given an input (or independent, or exogenous) variable. This concept
fits well for our problem, since the z-coordinates of the points of S are known in advance, the points being
evenly distributed along the z-axis. Therefore, it feels natural for the z-coordinates to serve as input variable
for the linear regressions.
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3.4. OBTAINING THE DISTANCE MAP Reorganising the data

so as to need only one pass on the points of S. The result (only shown for a1 and b1) is written:

a1 =

d
d∑
i=1

xi.zi −
d∑
i=1

xi.

d∑
i=1

zi

d
d∑
i=1

z2
i −

(
d∑
i=1

zi

)2 b1 =

d∑
i=1

z2
i .

d∑
i=1

xi −
d∑
i=1

zi.

d∑
i=1

xi.zi

d
d∑
i=1

z2
i −

(
d∑
i=1

zi

)2

3.4. Obtaining the distance map

In order to simplify the remaining processing, the reference cylinders will be defined as a triplet
(Q,R, r) ∈ R3 × R3 × R, where Q and R are the intersections of the cylinder’s and the planes
z = 0 and z = d respectively, and r is its radius.

3.4.1. Overview

Once the reference tube T has been determined, D(P , T ) can be calculated. The intensities
of the pixels in this distance map, which represent the respective distances from the reference
tube of the points of P , are actually signed values, the sign indicating whether the pixel is
inside or outside T (negative was chosen arbitrarily to denote interior points)3. In the example
depicted in figure 3.5(a), M and M ′ belong to P , P and P ′ are their respective projections on
T and the grid drawn on the tube represents the pixels of the resulting 2D image. As is shown,
each point’s projection falls inside a pixel of the result, whose intensity will equal the signed
distance between the point and its projection (for the two pixels considered in the figure, their

intensities will be respectively −
f−−→
PM

f
and

f−−−→
P ′M ′ f).

Depending on the resolution of the resulting image, it is possible that more than one point
is projected in a given pixel, in which case an averaging of the distances is done.

3.4.2. Conditions for the consistency of the ensuing alignment

In order to be able to perform a meaningful alignment of the distance maps, two necessary
conditions must be met.

Distance coherency

This concerns the resolution of the projections. For example, if the image of an object in one
picture is twice the size of the same object’s image in another picture, then registering them
will require scaling. Dimensional coherency means that no scaling is needed. This implies that
for two points M1 and M ′

1 (belonging to P) in one tomography which correspond to two other

points M2 and M ′
2 in another, the distance ‖

−−→
P1P

′
1‖ of the first pair’s projection on T must

3Using the set of circles which surround all the points of P to find the tube does not imply that the tube
contains all the points of P.
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Reorganising the data 3.4. OBTAINING THE DISTANCE MAP

coincide with the distance ‖
−−→
P2P

′
2‖ of the second. This condition is implicitely met along the

θ-axis of the projection4, but asks for a judicious choice of vertical resolution of D(P , T ).
Let {M1,M

′
1} ⊂ P1 be two points of one tomography, {P1, P1} their projections, {M2,M

′
2} ⊂

P2 two points in a second tomography (not necessarily corresponding to the first pair) and
{P2, P

′
2} their projections. The condition can be written as follows:

‖
−−−−→
M1M

′
1‖

‖
−−→
P1P

′
1‖

=
‖
−−−−→
M2M

′
2‖

‖
−−→
P2P

′
2‖

Position coherency

This point underlines the importance of keeping track of the relation between z′-coordinates in
the distance map and the position along the tube’s axis. For instance, if the boundaries of the
distance map were chosen in such a way as to include, in the range they define, all projections
of the points of the sample’s image, then such boundaries would depend on the orientation of
the axis, in which case the relation would be lost. The simplest solution would be that Q (or
rather the plane perpendicular to T and that contains Q) corresponds to z′ = 0 and that R
corresponds to z′ = h, the height of the distance map, as illustrated in figure 3.5(b).

Tube axis

M'

M

P

P'

O

O'

Tube radius

Tu
be

 ra
di

us

(a) Construction

z'
θ

z'=
0

z'=
h

x

y

z

R

Q

(b) Condition for alignment consistency

Figure 3.5.: Definition of D(P, T )

4If the reference tubes of the tomographies to register are accurate, they have the same radius, and if the
resolution along the θ axis of the projections were chosen in the same way, then the widths of the projections
are equal, therefore no horizontal scaling is required. In practical cases, the width of the images varied by
almost 0.05%, in which cases they should be resized to have the same width before finding correlations
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4. Aligning the distance maps

4.1. Image alignment

Let the reference image be Ir : [0;w]× [0;hr] −→ R and the model image, i.e. the one on which
the alignment transformation will be applied, Im : [0;w]× [0;hm] −→ R.

4.1.1. Cross-correlation

The basic problem, which is in this case an intensity-based alignment is to find the maximum
correlation coefficient1 of the images when varying the translation, i.e.

max
(Tx,Ty)

∑
x,y

Ir(x, y).T (Im(x, y))−
∑
x,y

Ir(x, y)
∑
x,y

T (Im(x, y))

σIr .σT (Im)

where σI is the standard deviation of the image I, and T is the application:

T : R2 −→ R2

I(x, y) 7−→ T (I(x, y)) =


I(x− Tx, y − Ty) if (0 < x− Tx < w) ∧ (0 < y − Ty < hr)
I(w + (x− Tx), y − Ty) if (−w < x− Tx < 0) ∧ (0 < y − Ty < hr)
I(x− Tx − w, y − Ty) if (w < x− Tx < 2w) ∧ (0 < y − Ty < hr)
∅ otherwise

This special translation application has two traits specific to this registration process: it has
no output outside the vertical bounds of Ir (there is no correlation where the two images do
not overlap), and the translation repeats Im along the x-axis, since the x-coordinate represents
the angle around the reference tube’s axis, which is periodic.

The implementation of the cross-correlation function calculates the correlation coefficient
for integral translations, and locates the maximum, which is not optimal since only integral
translations were tested. To refine this maximum, a non-linear interpolation is performed in its
4-neighbourhood. More precisely, a natural cubic spline interpolation was chosen.

4.1.2. Natural cubic splines

A spline is a piecewise polynomial function that locally has a simple form and presents globally
a good flexibility and smoothness. A cubic spline has n third-order polynomial functions which
pass through n+ 1 control points. Since a third-order plynomial is defined by four coefficients
{a, b, c, d} such that Y (t) = at3 + bt2 + ct + d, the interpolation consists in finding the 4n
coefficients necessary to define all the piecewise functions.

1The Pearson product-moment correlation coefficient was used
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Aligning the distance maps 4.1. IMAGE ALIGNMENT

To find the maximum correlation, two splines are used, along each axis. We describe the
process along the x-axis, but the same is implicitely applied along the other direction. Let
ρ1, ρ2 and ρ3 be the correlations between Ir and respectively T(Tx−1,Ty)(Im), T(Tx,Ty)(Im) and
T(Tx+1,Ty)(Im). They are the control points which define the two third-order polynomials Y1(t) =
a1t

3 + b1t
2 + c1t+ d1 and Y2(t) = a2t

3 + b2t
2 + c2t+ d2 (c.f. figure 4.1). To find eight unknowns,

eight equations are needed:

Y1(0) = ρ1

Y1(1) = ρ2

Y2(0) = ρ2

Y2(1) = ρ3

Y ′1(1) = Y ′2(0)
Y ′′1 (1) = Y ′′2 (0)
Y ′′1 (0) = 0
Y ′′2 (1) = 0

=⇒



d1 = ρ1

a1 + b1 + c1 + d1 = ρ2

d2 = ρ2

a2 + b2 + c2 + d2 = ρ3

c1 + 2b1 + 3a1 = c2

6a1 + 2b1 = 2b2

2b1 = 0
6a2 + 2b2 = 0

The first four lines of the system indicates that the curves must contain the control points, the
two next lines forces the first and second derivative of the curves at the middle control point to
be equal, and the two last lines are the constraints that make these cubic splines natural, i.e.
having a null second derivative at the exterior control points. Solving this system of equation
gives the curves’ coefficients:

(a1, b1, c1, d1) = (ρ1−2ρ2+ρ3
4

, 0, −5ρ1+6ρ2−ρ3
4

, ρ1)
(a2, b2, c2, d2) = (ρ1+2ρ2−ρ3

4
, 3ρ1−6ρ2+3ρ3

4
, −ρ1+ρ3

2
, ρ2)

Figure 4.1.: The simplest practical case of the natural cubic splines interpolation: three control points
define the two polynomials to find. If the centre control point is the maximum integral correlation

coefficient found, then it does not correspond with the maximum of the interpolated function.

The coefficients define the curves but do not give the maximum on the interval [Tx−1;Tx+1].
To find it, it must first be determined on which side of Tx it lies. If the signs of the derivative
of one polynomial at its control points does not change, then the maximum is on the other
polynomial2. Once the correct polynomial Y has been chosen, the equation Y ′(t) = 0 is solved,

i.e. t =
−bi±
√
b2i−4aici

2ai
, and the maximum sought is the solution tc that lies in the interval [0; 1]3.

The best translation will thus equal either Tx− 1 + tc or Tx + tc, depending on which side of Tx
the maximum lies.

2The other polynomial’s signs of the derivative at its control points change, therefore the intermediate value
theorem states that there exists a point in between where the derivative equals 0, i.e. where the extremum
lies

3By construction, there is a solution and the extrema in [0; 1] cannot be a minimum.
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4.1. IMAGE ALIGNMENT Aligning the distance maps

4.1.3. Improvements

The computation of the cross-correlation uses a brute force approach, that is it calculates the
correlation coefficient independently for every translation possible. This is very time-consuming,
but can be accelerated using the cross-correlation theorem, which states, for f(t) and g(t) the
functions to correlate : (f

⊗
g)(t) = FT [FT [f ]FT [g]](t), where FT [] is the Fourier transform,

and x is the conjugate of x.
Of course, this modification does not influence the result. On the other hand, the choice of

the interpolation does: the result can gain in accuracy if a bigger neighbourhood was inspected,
i.e. having more control points to define the spline. Another limitation is the fact that the
correlation coefficient is a value between -1 and 1, but interpolations tend to ignore such con-
straints. For example, in our case, if (ρ1, ρ2, ρ3) = (−0.9, 0.9, 0.8), then the interpolation finds
a maximum correlation coefficient of 1.19, which is an impossible value. Fortunately this is an
extreme case which never occurs in practical examples, considering the resolution of the images
compared to the geometric features of the sample.
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5. Solution and results

5.1. Obtaining the transformation

The transformation that registers a model tomgoraphy to a reference uses the previous results,
which consist of two items:

� Am = (Qm, Rm) and Ar = (Qr, Rr) the axes of Tm and Tr, defined by their extremities.

� (Tx, Ty) ∈ R2 the optimal translation that aligns Dm(Pm, Tm) with Dr(Pr, Tr), which are
to be interpreted as a rotation around and a translation along Tm’s axis.

5.1.1. Registering the axes

Let
−→
Vm =

−−−−→
QmRm

‖
−−−−→
QmRm‖

and
−→
Vr =

−−−→
QrRr

‖
−−−→
QrRr‖

.

The first transformation to calculate is the rotation matrix Rp such that Rp(
−→
Vm) =

−→
Vr

1. If we
define the unit vector −→r as the direction of the rotation axis, and θ the angle, then:

−→r =

 rx
ry
rz

 =

−→
Vm ∧

−→
Vr

‖
−→
Vm ∧

−→
Vr‖

θ = cos−1

( −→
Vm.
−→
Vr

‖
−→
Vm‖.‖

−→
Vr‖

)

=⇒ Rp =

 r2x + cos(θ)(1− r2x) rxry(1− cos(θ)) + rz sin(θ) rxrz(1− cos(θ))− ry sin(θ)
rxry(1− cos(θ))− rz sin(θ) r2y + cos(θ)(1− r2y) ryrz(1− cos(θ)) + rx sin(θ)
rxrz(1− cos(θ)) + ry sin(θ) ryrz(1− cos(θ))− rx sin(θ) r2z + cos(θ)(1− r2z)

 (5.1)

Note that this transformation does not register the reference cylinders’ axes, but makes them
parallel (the rotation axis was only defined by its direction, not its position, so it was supposed
that it passes through the origin of the coordinate system). To register Am with Ar, the model
is first translated by −Qm (noted T−Qm) so as to have Tm’s axis pass through the origin, then
rotated by Rp, and finally translated by Qr (noted TQr).

5.1.2. Axis-dependent transformations

The two following transformations, i.e. translation and rotation along and around the model’s
axis, can be applied in any order (as long as Am passes through the system’s origin, which

means before TQr). The angle of rotation θc around T−Qm ◦Rp(
−→
Vm) is simply 2π Tx

w
(w being

the width in pixels of the projections). The subsequent rotation matrix RA can be developed

1For an overview of rotation matrices, consult [21]
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in the same way as in 5.1. The translation TA along T−Qm ◦Rp(
−→
Vm), in the same way, equals

‖
−−−−→
QmRm‖ Ty

hm
.

5.1.3. Complete transformation

To summarise, the complete transformation is the following sequence of five operations: T−Qm ◦
Rp◦RA◦TA◦TQr . The displacement of the model’s axis during this transformation is illustrated
in figure 5.1.

(a)

T−Qm -

(b)

Rp -

(c)

?

RA

(d)

TA -

(e)

TQr -

(f)

Figure 5.1.: Sequence of transformations of the registration: (a) shows the original positions of the
axes Am and Ar; the first operation centres the model’s cylinder by placing Qm on the system’s origin
to obtain (b), the second makes the axes parallel as in (c), then the rotation around Am is applied,
but this does not affect Am, which is why (d) is identical to (c); afterwards, translation along Am is
applied, as shown in (e); the last translation completes the registration, shown in (f), as both axes

overlap.

5.2. Results

5.2.1. Application

Once the tomographies have been registered, operations such as substractions between the
images is possible, so as to view the portions that have evolved in the sample, as in figure 5.2.
This also allows quantitative characterisation of the reaction, such as evolution of permeability,
reactive surfaces, or pore network.

5.2.2. Implementation and timing

The different steps of the registration were developed using the C++ language, in separate
modules (outer edge of an object, biggest connected component, alignment of 2D images, . . . )
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(a)

- ���
��

?

(b)

(c)

Figure 5.2.: Example of a registered sample: (b) is the same sample as (a) but after further perco-
lation, and (c) is the difference between the two, highlighting the modified portions.

integrated in the visualisation program Amira from Mercury Computer Systems. The entire
process was launched through an Amira script, which uses Tool Command Language. Tests
were run on a PC with a Pentium 4 processor at 3.4 gigahertz, 2 gigabytes of DDR-RAM, and
an Ultra ATA hard drive (on which the tomographies were stored). In average, registration of
two tomographies takes about 45 minutes, counting between 17 and 20 minutes to extract T
and D(P , T ) for each tomography. In those 20 minutes, each axial cross-section is processed in
about 0.7 seconds, 22 % for mineral segmentation and finding its outer edge, 9 % for finding
the biggest connected component and 27 % for finding the smallest surrounding circle. The
remaining 58 % is taken by the interface with Amira and the Tcl interpreter.
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5.2.3. Conclusion

The experiments of the PICOREF programme on the percolation of porous sedimentary min-
erals by CO2-enriched water result in a series of micro-tomographies showing the sample at
different stages of percolation, for the purpose of acquiring experimental measurements for
fluid-rock interaction model validation. The first step, once the tomographies have been recon-
structed, is to register these 3D images. The registration is simple in theory, as the sample
is rigid (i.e. there is no scaling or shearing involved). In practice, due to the number of pix-
els in the tomography (several billion), serious attention must be paid to the computational
complexity of the process.

Since the percolation alters the microstructure of the sample, feature-based registration is
favoured. The most pertinent feature or information which remains invariant during the perco-
lation and visible on the tomographies is the interior edge of the coat of resin which holds the
mineral together. The registration is based on this feature and on the cylindrical shape of the
sample, and can be summarised as follows:

Reference
tomography

Model
tomography

-

-

Invariant points
Pm

Invariant points
Pr

��*
Reference tube Tm

HHj
Reference tube Tr

�
�* T−Qm ,Rp,TQr

HHj
�
��>

HHHj

- Distance map
D(Pm, Tm)

- Distance map
D(Pr, Tr)

�
�
�
���

B
B
B
BBN Translation

(Tx, Ty)
- RA,TA

The final transformation is the sequence of rotations and translations T−Qm ◦Rp◦RA◦TA◦TQr .
Although this method seems to yield correct results, appreciation of its accuracy is, for the

time being, only subjective. For a more impartial appreciation, an idea would be to calculate
the covariance between the reference tomography and the registered model, vary slightly the
rotational and translational parameters of the registration transformation individually, and
verify that the new covariances are greater than the original value.

Finally, it is difficult to say which changes in the method can improve the quality of the
result, but improvement of the computation’s speed is definitely more tangible. Although
algorithmic changes, such as using the fast Fourier transform with the cross-correlation theorem
for the alignment of the distance maps (section 4.1.3), might help save a few minutes, the most
significant acceleration would be achieved by avoiding the integration in Amira and the use of
a scripting language, as they take up more than half the total computation time.
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A. Principles of parallel-beam X-ray
tomography

Tomography is the non-invasive process of generating images of cross-sections from a series of
transmission or reflection data acquired by illuminating the object from different directions.
In the case of X-ray tomography, for each direction of illumination, the process is similar to a
radiography: the acquired transmission data gives an attenuation map of the rays. Figure A.1
illustrates this: the centre object, consisting of an ellipse and a circle, is illuminated from two di-
rections, the acquired images are called projections, which are used to reconstruct cross-sections
of the object. In reality, many more projections are needed for an accurate reconstruction (it
depends of course on the number of pixels in the reconstructed image).

The problem of tomographic imaging is to find a

Figure A.1.: Illustration of the principle for
parallel beam X-ray tomography

way to reconstruct the cross-sections from the pro-
jections, problem which has been solved by Radon
in 1917 [22], giving his name to the projection
transformation as well as demonstrating the re-
versibility of the process.

The theory of X-ray tomographic imaging was
first applied for clinical purposes with the inven-
tion of the X-ray computed tomographic scanner
by Godfrey Hounsfield, for which he received a
Nobel Prize in 1972, shared with Allan Cormack
who found some of the reconstruction algorithms.
Hounsfield used algebraic techniques for the recon-
struction, but another method, called convolution-
backprojection, developed by Ramachandran and
Lakshminarayanan in 1971 and later by Shepp and
Logan in 1974, has a better accuracy and shorter
computation time [23]. For more details on this subject, a complete bibliography is compiled
in [24].

Tomography has numerous uses in the medical field, but it also has promising industrial
applications (defect detection, local characterisation). Progress in this field now allows for
enhanced spatial resolution (under the micron, thus the prefixe micro in micro-tomography)
with better image quality, especially with the use of a modern synchrotron radiation source with
a monochromatic beam [25]. It is therefore possible to study the microstructure of objects, and
furthermore, since tomography is a non-destructive technique, their evolution.
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B. Useful geometric properties

These properties are helpful when implementing the Elzinga-Hearn algorithm presented in
3.2.2, they present certain ways of obtaining the necessary geometric characterisations, and can
prove crucial for two reasons: these properties can be verified very rapidly, which is important
when large amounts of data need to be processed, and especially when this specific part of
the registration (the 1-centre problem) is one of the most time-consuming; and secondly, they
avoid operations that can be inaccurate in certain situations, e.g. using the standard inverse
sine function for angles very close to π

2
.

Let ABC be a triangle as shown in the following diagram:
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where a, b and c are the lengths of the edges, α, β and γ are the angles, and the vertices A, B
and C are respectively defined in R2 as

(
Ax

Ay

)
,
(
Bx

By

)
and

(
Cx

Cy

)
. We note A′, B′ and C ′ the centres

of the triangle’s edges, α′, β′ and γ′ the angles of the triangle A′B′C ′, and A1, B1 and C1 the
altitudes of this triangle. We also suppose c > a and c > b.
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B.1. ACUTENESS Useful geometric properties

B.1. Acuteness

Law of cosines ⇐⇒ c2 = a2 + b2 − 2ab cos γ (B.1a)

(B.1a) ⇐⇒
(

0 < γ <
Π

2
⇔ 2ab cos γ > 0

)
(B.1b)

(B.1b) ⇐⇒
(
c2 < a2 + b2 ⇔ the triangle ABC is acute

)
�

This allows, in step 3, to very effectively test whether a triangle is acute or not, since a2, b2

and c2 are easily computed (a2 = A2
x + A2

y).

B.2. Circumcentre

Property 1
The perpendicular bisectors of the triangle ABC are the altitudes of the triangle A′B′C ′.

Demonstration
Let ∆1 be the perpendicular bisector of [BC].

B′ and C ′ centres of [AC] and[AB] =⇒ AB′

AC
=
AC ′

AB
(B.2a)

(B.2a) ⇐⇒ (B′C ′) � (BC) (B.2b)
(B.2b) =⇒ ∆1 ⊥ (B′C ′) (B.2c)

(B.2c) ∧ (A′ ∈ ∆1) ⇐⇒ ∆1 perpendicular bisector of A′B′C ′�

The same applies to the two others perpendicular bisectors of ABC.

Property 2
The orthocentre of the triangle A′B′C ′ is the barycentre of the system
{(A′, tanα′), (B′, tan β′), (C ′, tan γ′)}

Demonstration
Let H be the barycentre of the system
{(A′, tanα′), (B′, tanβ′), (C ′, tan γ′)}.
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Useful geometric properties B.3. TANGENT

A1 ∈ [B′C ′] =⇒ 1
A1B′

−−−→
A1B

′ +
1

A1B′
−−−→
A1B

′ +
1

A1B′
−−−→
A1B

′ =
−→
0 (B.3a)

(B.3a)
(tanβ′ = A′A1

A1B′
)

(tan γ′ = A′A1
A1C′

)

 =⇒ tanβ′
−−−→
A1B

′ + tan γ′
−−−→
A1B

′ =
−→
0 (B.3b)

(B.3b) =⇒ A1 barycentre of {(B′, tanβ′), (C ′, tan γ′)} (B.3c)
idem for B1 =⇒ B1 barycentre of {(A′, tanα′), (C ′, tan γ′)} (B.3d)

(barycentre associativity)
(B.3c)

}
=⇒ H barycentre of {(A′, tanα′), (A1, tanβ′ + tan γ′)} (B.3e)

(barycentre associativity)
(B.3d)

}
=⇒ H barycentre of {(B′, tanβ′), (B1, tanα′ + tan γ′)} (B.3f)

(B.3e) ∧ (B.3f) =⇒ (H ∈ (A′A1)) ∧ (H ∈ (B′B1)) (B.3g)
(B.3g) =⇒ H orthocentre of A′B′C ′�

Property 3
(α′ = α) ∧ (β′ = β) ∧ (γ′ = γ)
Demonstration

(B.2b) ∧ (
AB′

AC
=

1
2

) ∧ (
AB′

AC
=
B′C ′

BC
) =⇒ B′C ′ =

BC

2
(B.4)

idem for A′C ′ and A′B′ =⇒ (A′C ′ =
AC

2
) ∧ (A′B′ =

AB

2
) (B.5)

(B.4) ∧ (B.5) =⇒ A′B′C ′ is a homothety of ABC (B.6)
(B.6) ∧ (scaling conserves angles) =⇒ (α′ = α) ∧ (β′ = β) ∧ (γ′ = γ)�

Properties 1,2 and 3 imply that the circumcentre of ABC is the barycentre of the system
{(A′, tanα), (B′, tan β), (C ′, tan γ)}

B.3. Tangent

For the determination of the circumcentre as described previously, the tangent of angles are
needed. The straightforward method would be first to find the angle, probably using the

identity ÂBC = cos−1
−→
BA.
−−→
BC

‖
−→
BA‖.‖

−−→
BC‖

, and then to use the tangent function provided by the system.

For angles very close to π
2
, its cosine is very close to 0, a slight imprecision in the inverse cosine

function can corrupt the resulting angle by a few degrees. The sensibility of the tangent function
is also important with angles approaching π

2
, bringing further imprecision. In the case of the

Elzinga-Hearn algorithm, the circumcentre’s inaccurate positionning can lead to considering
points theroetically inside the circumscribing circle to be outside, therefore selected for the
next steps, possibly leading to an infinite loop. Instead, the formula tan = sin

cos
cleverly avoids

calculating the value of the angle, which gives tan(ÂBC) =

√
1−
( −−→

BA.
−−→
BC

‖
−−→
BA‖.‖

−−→
BC‖

)2

−−→
BA.
−−→
BC

‖
−−→
BA‖.‖

−−→
BC‖

.

iv


