# Combined use of finite volume and network modelling for Stokes flow and permeability tensor computation in porous media

N. Combaret<sup>1,2</sup> D. Bernard<sup>1</sup> E. Plougonven<sup>1</sup>

<sup>1</sup>ICMCB-CNRS University of Bordeaux 1

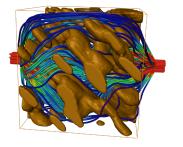
<sup>2</sup>VSG - Visualization Sciences Group

2nd Conference on 3D-Imaging of Materials and Systems 2010



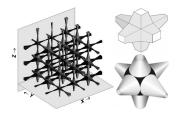
#### From 3D image to permeability computation

- 3D image: direct numerical processing
- Network modeling:
  - Structured network model
  - Unstructured network model



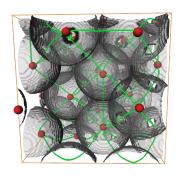
#### From 3D image to permeability computation

- 3D image: direct numerical processing
- Network modeling:
  - Structured network model
  - Unstructured network model



#### From 3D image to permeability computation

- 3D image: direct numerical processing
- Network modeling:
  - Structured network model
  - Unstructured network model



#### From the Stokes equations to a linear system

- Electric resistances network equivalence?
- Stokes equations

$$\begin{cases} \vec{\nabla} \cdot \vec{v} = 0 \\ \nabla^2 \vec{v} - \vec{\nabla} p = 0 \end{cases}$$

B.C.:  $\vec{V} = 0$  on  $A_{fs}$ 

• Linear system:

$$\begin{cases} \sum_{j=0}^{M} Q_{ij} = 0 \\ P_i - P_j = \lambda_{ij}.Q_{ij} \end{cases}$$



#### From the Stokes equations to a linear system

- Electric resistances network equivalence?
- Stokes equations

$$\begin{cases} \vec{\nabla} \cdot \vec{v} = 0 \\ \nabla^2 \vec{v} - \vec{\nabla} \rho = 0 \end{cases}$$

B.C.: 
$$\vec{v} = 0$$
 on  $\mathcal{A}_{fs}$ 

• Linear system:

$$\begin{cases} \sum_{j=0}^{M} Q_{ij} = 0 \\ P_i - P_j = \lambda_{ij} . Q_{ij} \end{cases}$$



#### From the Stokes equations to a linear system

- Electric resistances network equivalence?
- Stokes equations

$$\begin{cases} \vec{\nabla} \cdot \vec{v} = 0 \\ \nabla^2 \vec{v} - \vec{\nabla} p = 0 \end{cases}$$
B.C.:  $\vec{V} = 0$  on  $\mathcal{A}_{fs}$ 

Linear system:

$$\left\{egin{array}{l} \sum_{j=0}^{M}Q_{ij}=0\ P_{i}-P_{j}=\lambda_{ij}.Q_{ij} \end{array}
ight.$$



#### **Outline**

- Graph construction: from the pore space to a graph relating pores
  - Pore positioning: what is a pore?
  - Pores separation: where are the pores?
- Network equations and parameters: what are the relations between the pores?
  - Stokes equations equivalence on a graph
  - Direct numerical computation of the resistances
- Conclusion & future work



#### **Outline**

- Graph construction: from the pore space to a graph relating pores
  - Pore positioning: what is a pore?
  - Pores separation: where are the pores?
- Network equations and parameters: what are the relations between the pores?
  - Stokes equations equivalence on a graph
  - Direct numerical computation of the resistances
- Conclusion & future work

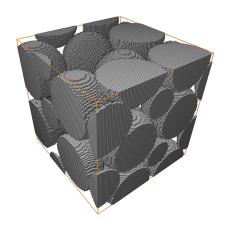


#### **Outline**

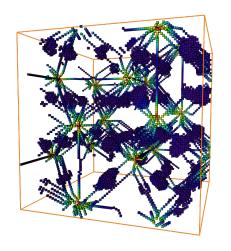
- Graph construction: from the pore space to a graph relating pores
  - Pore positioning: what is a pore?
  - Pores separation: where are the pores?
- Network equations and parameters: what are the relations between the pores?
  - Stokes equations equivalence on a graph
  - Direct numerical computation of the resistances
- Conclusion & future work



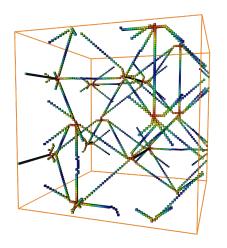
- Skeletonisation: homotopic thinning
  - Digitisation artefact removal method
  - Boundary conditions
- Skeleton points characterisation: curves and intersection points
- Nodes fusion criterion: relative volume overlapping



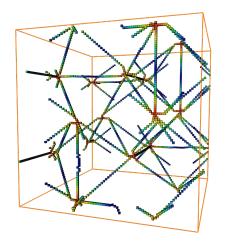
- Skeletonisation: homotopic thinning
  - Digitisation artefact removal method
  - Boundary conditions
- Skeleton points characterisation: curves and intersection points
- Nodes fusion criterion: relative volume overlapping



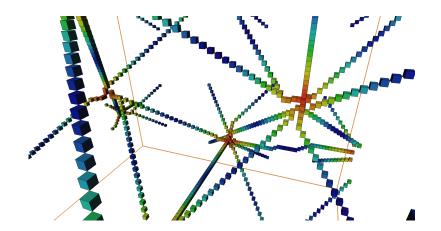
- Skeletonisation: homotopic thinning
  - Digitisation artefact removal method
  - Boundary conditions
- Skeleton points characterisation: curves and intersection points
- Nodes fusion criterion: relative volume overlapping

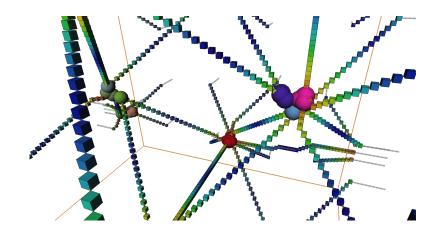


- Skeletonisation: homotopic thinning
  - Digitisation artefact removal method
  - Boundary conditions
- Skeleton points characterisation: curves and intersection points
- Nodes fusion criterion: relative volume overlapping

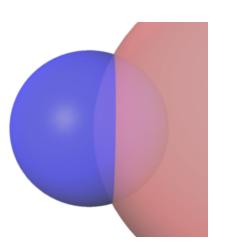


- Skeletonisation: homotopic thinning
  - Digitisation artefact removal method
  - Boundary conditions
- Skeleton points characterisation: curves and intersection points
- Nodes fusion criterion: relative volume overlapping



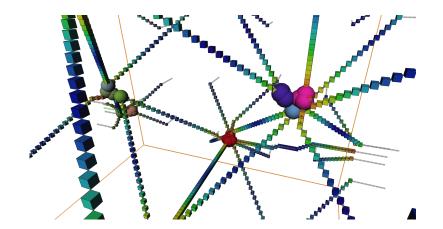


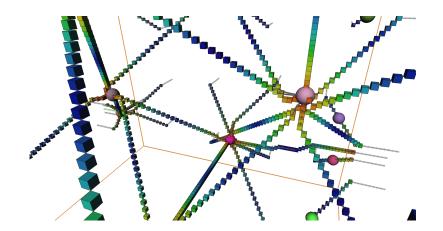
- Skeletonisation: homotopic thinning
  - Digitisation artefact removal method
  - Boundary conditions
- Skeleton points characterisation: curves and intersection points
- Nodes fusion criterion: relative volume overlapping



- Skeletonisation: homotopic thinning
  - Digitisation artefact removal method
  - Boundary conditions
- Skeleton points characterisation: curves and intersection points
- Nodes fusion criterion: relative volume overlapping







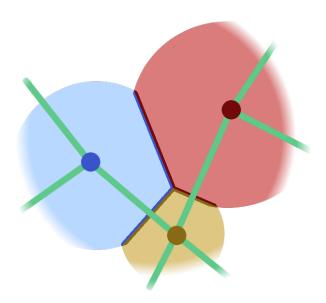
#### Pore delimitation:

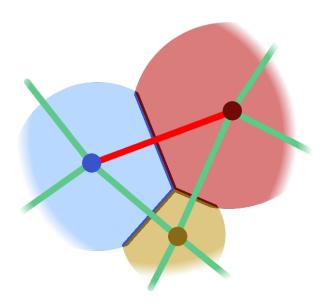
- Pore throats positioning
- Pore volume invasion: watershed
- Unexpected configurations
- Skeleton: good for positioning the pores, bad for representing their interconnexions

- Pore delimitation:
  - Pore throats positioning
  - Pore volume invasion: watershed
- Unexpected configurations
- Skeleton: good for positioning the pores, bad for representing their interconnexions

- Pore delimitation:
  - Pore throats positioning
  - Pore volume invasion: watershed
- Unexpected configurations
- Skeleton: good for positioning the pores, bad for representing their interconnexions

- Pore delimitation:
  - Pore throats positioning
  - Pore volume invasion: watershed
- Unexpected configurations
- Skeleton: good for positioning the pores, bad for representing their interconnexions





- Pore delimitation:
  - Pore throats positioning
  - Pore volume invasion: watershed
- Unexpected configurations
- Skeleton: good for positioning the pores, bad for representing their interconnexions

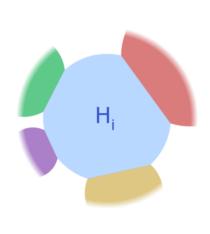
$$\int_{\mathcal{V}_{H_{i}}} \overrightarrow{\nabla} \cdot \overrightarrow{v} \, dV = 0$$

$$\int_{\mathcal{A}_{H_{i}}} \overrightarrow{v} \cdot \overrightarrow{n_{H_{i}}} dS = 0$$

$$\int_{\mathcal{A}_{H_{i}H}} \overrightarrow{v} \cdot \overrightarrow{n_{H_{i}H}} dS = 0$$

$$\sum_{j=1}^{M} \left[ \int_{\mathcal{A}_{H_{i}H_{j}}} \overrightarrow{v} \cdot \overrightarrow{n_{H_{i}H_{j}}} dS \right] = 0$$

$$\sum_{j=1}^{M} Q_{jj} = 0$$



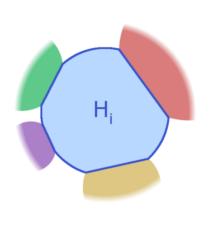
$$\int_{\mathcal{V}_{H_{i}}} \overrightarrow{\nabla} \cdot \overrightarrow{v} \, dV = 0$$

$$\int_{\mathcal{A}_{H_{i}}} \overrightarrow{v} \cdot \overrightarrow{n_{H_{i}}} dS = 0$$

$$\int_{\mathcal{A}_{H_{i}H}} \overrightarrow{v} \cdot \overrightarrow{n_{H_{i}H}} dS = 0$$

$$\sum_{j=1}^{M} \left[ \int_{\mathcal{A}_{H_{i}H_{j}}} \overrightarrow{v} \cdot \overrightarrow{n_{H_{i}H_{j}}} dS \right] = 0$$

$$\sum_{j=1}^{M} Q_{ii} = 0$$



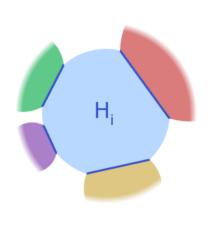
$$\int_{\mathcal{V}_{H_{i}}} \overrightarrow{\nabla} \cdot \overrightarrow{V} \, dV = 0$$

$$\int_{\mathcal{A}_{H_{i}}} \overrightarrow{V} \cdot \overrightarrow{n_{H_{i}}} dS = 0$$

$$\int_{\mathcal{A}_{H_{i}H}} \overrightarrow{V} \cdot \overrightarrow{n_{H_{i}H}} dS = 0$$

$$\sum_{j=1}^{M} \left[ \int_{\mathcal{A}_{H_{i}H_{j}}} \overrightarrow{V} \cdot \overrightarrow{n_{H_{i}H_{j}}} dS \right] = 0$$

$$\sum_{j=1}^{M} Q_{ij} = 0$$





$$\int_{\mathcal{V}_{H_{i}}} \vec{\nabla} \cdot \vec{v} \, dV = 0$$

$$\int_{\mathcal{A}_{H_{i}}} \vec{v} \cdot \overrightarrow{n_{H_{i}}} dS = 0$$

$$\int_{\mathcal{A}_{H_{i}H}} \vec{v} \cdot \overrightarrow{n_{H_{i}H}} dS = 0$$

$$\sum_{j=1}^{M} \left[ \int_{\mathcal{A}_{H_{i}H_{j}}} \vec{v} \cdot \overrightarrow{n_{H_{i}H_{j}}} dS \right] = 0$$

$$\sum_{j=1}^{M} Q_{ij} = 0$$



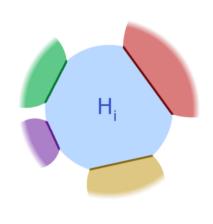
$$\int_{\mathcal{V}_{H_{i}}} \overrightarrow{\nabla} \cdot \overrightarrow{v} \, dV = 0$$

$$\int_{\mathcal{A}_{H_{i}}} \overrightarrow{v} \cdot \overrightarrow{n_{H_{i}}} dS = 0$$

$$\int_{\mathcal{A}_{H_{i}H}} \overrightarrow{v} \cdot \overrightarrow{n_{H_{i}H}} dS = 0$$

$$\sum_{j=1}^{M} \left[ \int_{\mathcal{A}_{H_{i}H_{j}}} \overrightarrow{v} \cdot \overrightarrow{n_{H_{i}H_{j}}} dS \right] = 0$$

$$\sum_{j=1}^{M} Q_{ij} = 0$$





#### What did we learn?

- We need something on the network to support the flow rate through the surfaces
- ⇒ one edge per surface separating two pores

#### What did we learn?

- We need something on the network to support the flow rate through the surfaces
- ⇒ one edge per surface separating two pores

Integration along a path  $C_{ij}$  between two pores  $H_i$  and  $H_j$ 

$$\underbrace{\int_{C_{ij}} \vec{\nabla} \rho. \vec{c} dC}_{\mathbb{Q}} - \underbrace{\int_{C_{ij}} \nabla^2 \vec{v}. \vec{c} dC}_{\mathbb{Q}} = 0$$

$$\int_{C_{ij}} \vec{\nabla} p.\vec{c} dC = p(H_i) - p(H_i)$$

- independent from the path (see ①)
- $Q \propto \overrightarrow{V} \propto \nabla^2 \overrightarrow{V}$   $\Rightarrow \int_{G_{ii}} \nabla^2 \overrightarrow{V} . \overrightarrow{c} dC = \lambda_{ij} Q$

$$\rho\left(H_{j}\right)-\rho\left(H_{i}\right)-\lambda_{ij}Q_{ij}=0$$



Integration along a path  $C_{ij}$  between two pores  $H_i$  and  $H_j$ 

$$\underbrace{\int_{C_{ij}} \vec{\nabla} p. \vec{c} dC}_{\mathbb{Q}} - \underbrace{\int_{C_{ij}} \nabla^{2} \vec{v}. \vec{c} dC}_{\mathbb{Q}} = 0$$

1:

$$\int_{C_{ij}} \overrightarrow{\nabla} \rho . \overrightarrow{c} dC = \rho \left( H_{j} \right) - \rho \left( H_{i} \right)$$

- independent from the path (see ①)
- $Q \propto \vec{V} \propto \nabla^2 \vec{V}$   $\Rightarrow \int_{C_{ij}} \nabla^2 \vec{V} \cdot \vec{C} \, dC = \lambda_{ij} Q_{ij}$

$$\rho(H_{j}) - \rho(H_{i}) - \lambda_{ij}Q_{ij} = 0$$



Integration along a path  $C_{ij}$  between two pores  $H_i$  and  $H_j$ 

$$\underbrace{\int_{C_{ij}} \vec{\nabla} \rho. \vec{c} dC}_{\mathbb{Q}} - \underbrace{\int_{C_{ij}} \nabla^2 \vec{v}. \vec{c} dC}_{\mathbb{Q}} = 0$$

1):

$$\int_{C_{ij}} \overrightarrow{\nabla} p. \overrightarrow{c} dC = p(H_j) - p(H_i)$$

2:

independent from the path (see ①)

$$Q \propto \vec{V} \propto \nabla^2 \vec{V}$$

$$\Rightarrow \int_{C_{ij}} \nabla^2 \vec{V} \cdot \vec{c} \, dC = \lambda_{ij} Q_{ij}$$

$$p(H_{j}) - p(H_{i}) - \lambda_{ij}Q_{ij} = 0$$



Integration along a path  $C_{ij}$  between two pores  $H_i$  and  $H_j$ 

$$\underbrace{\int_{C_{ij}} \vec{\nabla} p. \vec{c} dC}_{\mathbb{Q}} - \underbrace{\int_{C_{ij}} \nabla^{2} \vec{v}. \vec{c} dC}_{\mathbb{Q}} = 0$$

1):

$$\int_{C_{ij}} \vec{\nabla} p. \vec{c} dC = p(H_j) - p(H_i)$$

- independent from the path (see ①)
- $Q \propto \vec{v} \propto \nabla^2 \vec{v}$

$$\Rightarrow \int_{C_{ij}} \nabla^2 \vec{v} . \vec{c} dC = \lambda_{ij} Q_{ij}$$

$$\rho\left(H_{j}\right)-\rho\left(H_{i}\right)-\lambda_{ij}Q_{ij}=0$$



Integration along a path  $C_{ij}$  between two pores  $H_i$  and  $H_j$ 

$$\underbrace{\int_{C_{ij}} \vec{\nabla} p. \vec{c} dC}_{\mathbb{Q}} - \underbrace{\int_{C_{ij}} \nabla^{2} \vec{v}. \vec{c} dC}_{\mathbb{Q}} = 0$$

1):

$$\int_{C_{ij}} \vec{\nabla} p. \, \vec{c} \, dC = p \left( H_{j} \right) - p \left( H_{i} \right)$$

- independent from the path (see ①)
- $\bullet \ \ Q \propto \vec{V} \propto \nabla^2 \vec{V}$  $\Rightarrow \int_{C_i} \nabla^2 \vec{V} \cdot \vec{c} \, dC = \lambda_{ij} Q_{ij}$

$$p(H_{j}) - p(H_{i}) - \lambda_{ij}Q_{ij} = 0$$



Integration along a path  $C_{ij}$  between two pores  $H_i$  and  $H_j$ 

$$\underbrace{\int_{C_{ij}} \vec{\nabla} p. \vec{c} dC}_{\mathbb{Q}} - \underbrace{\int_{C_{ij}} \nabla^{2} \vec{v}. \vec{c} dC}_{\mathbb{Q}} = 0$$

1:

$$\int_{C_{ij}} \vec{\nabla} p. \vec{c} dC = p(H_j) - p(H_i)$$

- independent from the path (see ①)
- $Q \propto \vec{v} \propto \nabla^2 \vec{v}$

$$\Rightarrow \int_{C_{ij}} \nabla^2 \vec{v} . \vec{c} dC = \lambda_{ij} Q_{ij}$$

$$\rho(H_{j}) - \rho(H_{i}) - \lambda_{ij}Q_{ij} = 0$$



#### What did we learn?

- We need something on the network to support the flow rate through the surfaces
- ⇒ one edge per surface separating two pores
  - We need something on the pores to support the pressure values
- ⇒ one node per pore

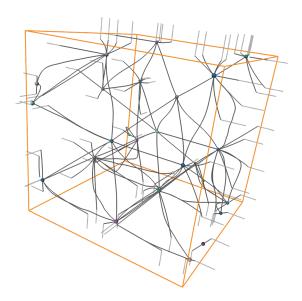
#### What did we learn?

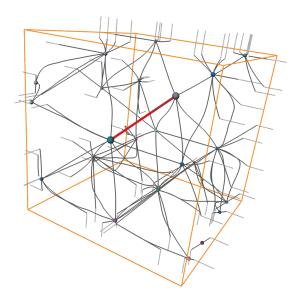
- We need something on the network to support the flow rate through the surfaces
- ⇒ one edge per surface separating two pores
  - We need something on the pores to support the pressure values
- ⇒ one node per pore

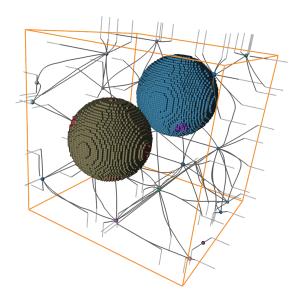
- Extracting the pores connected to a surface (⇔ an edge)
- Finite volume computation of local Stokes flow
- Resistance determination from the second Stokes equation in a linear system:

$$\lambda_{ij} = \frac{P_i^{local} - P_j^{local}}{Q_{ij}^{local}}$$

 Linear system solution: pressure value at nodes, flow rate through edges



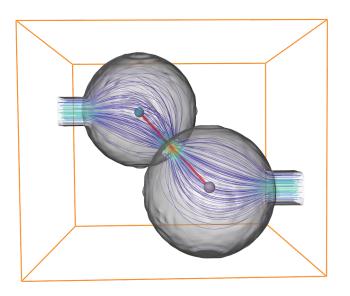




- Extracting the pores connected to a surface (⇔ an edge)
- Finite volume computation of local Stokes flow
- Resistance determination from the second Stokes equation in a linear system:

$$\lambda_{ij} = \frac{P_i^{local} - P_j^{local}}{Q_{ij}^{local}}$$

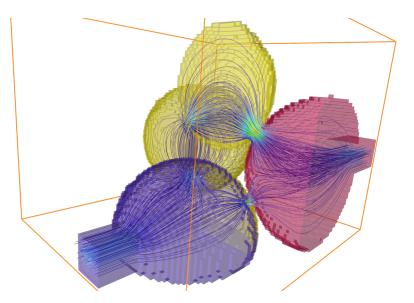
 Linear system solution: pressure value at nodes, flow rate through edges



- Extracting the pores connected to a surface (⇔ an edge)
- Finite volume computation of local Stokes flow
- Resistance determination from the second Stokes equation in a linear system:

$$\lambda_{ij} = \frac{P_i^{local} - P_j^{local}}{Q_{ij}^{local}}$$

 Linear system solution: pressure value at nodes, flow rate through edges



- Extracting the pores connected to a surface (⇔ an edge)
- Finite volume computation of local Stokes flow
- Resistance determination from the second Stokes equation in a linear system:

$$\lambda_{ij} = \frac{P_i^{local} - P_j^{local}}{Q_{ij}^{local}}$$

 Linear system solution: pressure value at nodes, flow rate through edges

#### Strong graph construction method

- Digitisation artefacts removal prior to skeletonisation
- Nodes merging criterion
- Pores delimitation methods comparison
- Network settings
  - Linear system construction
  - Direct local computation of the resistance

- Strong graph construction method
  - Digitisation artefacts removal prior to skeletonisation
  - Nodes merging criterion
  - Pores delimitation methods comparison
- Network settings
  - Linear system construction
  - Direct local computation of the resistance

- Strong graph construction method
  - Digitisation artefacts removal prior to skeletonisation
  - Nodes merging criterion
  - Pores delimitation methods comparison
- Network settings
  - Linear system construction
  - Direct local computation of the resistance

- Strong graph construction method
  - Digitisation artefacts removal prior to skeletonisation
  - Nodes merging criterion
  - Pores delimitation methods comparison
- Network settings
  - Linear system construction
  - Direct local computation of the resistance

- Strong graph construction method
  - Digitisation artefacts removal prior to skeletonisation
  - Nodes merging criterion
  - Pores delimitation methods comparison
- Network settings
  - Linear system construction
  - Direct local computation of the resistance

- Strong graph construction method
  - Digitisation artefacts removal prior to skeletonisation
  - Nodes merging criterion
  - Pores delimitation methods comparison
- Network settings
  - Linear system construction
  - Direct local computation of the resistance

- Strong graph construction method
  - Digitisation artefacts removal prior to skeletonisation
  - Nodes merging criterion
  - Pores delimitation methods comparison
- Network settings
  - Linear system construction
  - Direct local computation of the resistance

### Future work

- Compare the linear system solution to the real numerical computation
- Finalise the implementation of the permeability tensor computation

$$\begin{cases} \vec{\nabla}.\vec{D_k} = 0\\ \vec{\nabla}^2\vec{D_k} - \vec{\nabla}d_k = -\vec{I_k} \end{cases}$$

B.C.:  $\overrightarrow{D_k} = 0$  on  $\mathcal{A}_{fs}$ 

B.C.:  $\overline{D_k}$  and  $d_k$  are periodic

### Future work

- Compare the linear system solution to the real numerical computation
- Finalise the implementation of the permeability tensor computation

$$\begin{cases} \vec{\nabla}.\vec{D_k} = 0\\ \vec{\nabla^2 D_k} - \vec{\nabla} d_k = -\vec{I_k} \end{cases}$$

B.C.:  $\overrightarrow{D_k} = 0$  on  $\mathcal{A}_{fs}$ 

B.C.:  $\overrightarrow{D_k}$  and  $d_k$  are periodic

