A trial of metoclopramide vs sumatriptan for the emergency department treatment of migraines
Steven R. Brenner, Marta Allena, Delphine Magis, Jean Schoenen, B.W. Friedman, J. Corbo, R.B. Lipton, P.E. Bijur, D. Esses and E.J. Gallagher
Neurology 2005;65;1339-1340

This information is current as of September 25, 2009

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.neurology.org/cgi/content/full/65/8/1339
A trial of metoclopramide vs sumatriptan for the emergency department treatment of migraines

To the Editor: Friedman et al.1 compared metoclopramide vs sumatriptan for the emergency department (ED) treatment of migraine with interest. Utilizing diphenhydramine in combination with metoclopramide may have affected the results of the comparison since diphenhydramine has been used independently as a treatment for migraine. The suggested treatment is one to three doses daily (25 to 50 mg) either intramuscularly or intravenously and is used essentially as an abortive agent.2 Diphenhydramine has also been recommended for severe attacks of migraine during pregnancy, with metoclopramide being restricted to the third trimester.3

There has been a recent study comparing IV diphenhydramine vs IV dihydralazine (DHE)-45 in the treatment of severe migraine headache.4 Combination treatment may provide benefit for patients who don’t respond to individual agents, such as combining metoclopramide with a triptan in triptan-nonresponsive migraineurs.5

Used alone, diphenhydramine may have therapeutic effectiveness for headaches in addition to preventing akathisias and other dystonic reactions for which it was utilized in the present study. It has been also used independently as a treatment for migraine and could have some potential for enhancing the effect of triptans in triptan nonresponders if used in combination therapy. However, the combination of metoclopramide and diphenhydramine appears to be a reasonable treatment based on the favorable outcome on headache noted in the comparison with sumatriptan.

Steven R. Brenner, MD, Saint Louis, MO

Reply from the Authors: We thank Dr. Brenner for his relevant and informative summary of the role of diphenhydramine in migraines.

We agree that we tested the efficacy of metoclopramide combined with diphenhydramine in our study.1 We recommend using the combination of metoclopramide and diphenhydramine for ED patients with acute migraines. Although some data exist supporting a role for diphenhydramine alone as migraine treatment,4 this is not yet established.

We agree that there might be a role for combination therapy in ED patients with severe migraines. As yet, there is no treatment paradigm for ED care comparable to the stratified care plan developed for inpatient migraine management.5 Thus, we do not know which ED patients with acute migraines require multidiagnosis therapy initially and which patients will be satisfactorily treated with a single agent.

To the Editor: In their recent article, Friedman et al.1 conclude that metoclopramide 20 mg IV may be preferable to sumatriptan 6 mg subcutaneous for the acute treatment of migraine attacks in the ED.

In the protocol of this study it appears that, in the metoclopramide arm, patients received 20 mg IV infusions every 30 minutes (average 2.2 infusions) of which the first and third contained 25 mg diphenhydramine, while the infusions in the sumatriptan arm only contained saline. If this is correct, it introduces considerable bias because diphenhydramine may have antimigraine properties. Diphenhydramine is commonly used IV to treat migraine attacks alone or combined with analgesics.7 Histamine may trigger a migraine attack by increasing NO via H1 receptors.8 At best, the authors can conclude that the association of repeated high dose IV metoclopramide and diphenhydramine has (at 2 hours) comparable efficacy to a single subcutaneous sumatriptan injection in severe migraine attacks. Another recent study9 suggested that metoclopramide alone may not be sufficient to interrupt a migraine attack showing that it was not better than placebo. However, in contrast to Friedman et al.’s study,1 metoclopramide was given as a single 10 mg injection and the primary outcome measure was pain relief at 30 minutes.

Marta Allena, Delphine Magis, Jean Schoenen, Liege, Belgium

Reply from the Authors: We thank Allena et al. for their review of the role of metoclopramide and diphenhydramine in the treatment of acute migraines. We agree that we tested the efficacy of metoclopramide combined with diphenhydramine in our study.1 We recommend using the combination of metoclopramide and diphenhydramine for ED patients with acute migraines.

Allena et al. hypothesize that the reason our antimigraine regimen was effective was the unrecognized benefit of diphenhydramine. Although some data suggest efficacy of diphenhydramine alone as migraine treatment,9 we believe this is still unclear.

However, metoclopramide has been demonstrated to be more effective than placebo and other comparators in multiple studies (table). A recent metaanalysis similarly concluded that metoclopramide was an effective antimigraine treatment.10 We disagree with Allena et al.’s interpretation of the study by Cete et al.9 In this study, 65% of subjects randomized to placebo required rescue medication at 30 minutes, while only 38% of subjects randomized to metoclopramide required rescue medication. At 30 minutes, placebo patients had improved on the VAS by 25 while metoclopramide patients had improved by 40. This difference of 15 in the VAS point estimates suggests a clinically relevant difference,11 even if the study was not sufficiently powered to achieve statistical significance for this finding.

Perhaps the dose of metoclopramide is relevant. Of the trials listed in the table, the two that used more aggressive dosing of metoclopramide (similar to our design) had excellent results. Dose-finding studies are needed to evaluate this hypothesis.

B.W. Friedman, MD, MS, J. Corbo, MD, R.B. Lipton, MD, P.E. Bijur, PhD, D. Esses, MD, E.J. Gallagher, MD, Bronx, NY

Table Dosing of previous metoclopramide studies

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Metoclopramide dose</th>
<th>Comparator</th>
<th>Metoclopramide results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corbo, 2001</td>
<td>MCP 20 mg × 3 IV</td>
<td>MCP + magnesium</td>
<td>96% with >50% reduction in pain by 45 min</td>
</tr>
<tr>
<td>Esteban-Morales, 1999</td>
<td>MCP 10 mg IV</td>
<td>Sumatriptan 6 mg</td>
<td>Relief: 60% at 30 min, 100% at 60 min</td>
</tr>
<tr>
<td>Jones, 1996</td>
<td>MCP 10 mg IM</td>
<td>Prochlorperazine, placebo</td>
<td>48% with relief at 1 h</td>
</tr>
<tr>
<td>Coppola, 1995</td>
<td>MCP 10 mg IV</td>
<td>Prochlorperazine, placebo</td>
<td>48% with relief at 30 min</td>
</tr>
<tr>
<td>Cameron, 1995</td>
<td>MCP 0.1 mg/kg × 3 IV</td>
<td>Chlorpromazine</td>
<td>66% with >70% relief at 1 h</td>
</tr>
<tr>
<td>Ellis, 1993</td>
<td>MCP 10 mg IV</td>
<td>Ibuprofen, placebo</td>
<td>Change in median VAS: 30 min–3.5, 60 min–7.5</td>
</tr>
<tr>
<td>Tek, 1990</td>
<td>MCP 10 mg IV</td>
<td>Placebo</td>
<td>67% with sufficient relief at 1 h</td>
</tr>
</tbody>
</table>

October 2 (2) 2005 NEUROLOGY 1339

Downloaded from www.neurology.org at UNIV MEDECINE LEIG 22827242 on September 25, 2009
Chronic inflammatory demyelinating polyradiculoneuropathy: MRI study of brain and spinal cord

To the Editor: We read with great interest the recent article by Laura et al.1 concerning cervical spinal cord atrophy in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). They reported that the mean cervical cord area was significantly smaller in patients with CIDP compared to controls. We would like to report our experience regarding spinal cord findings in CIDP.

We had five cases with definite CIDP2 and evaluated other demyelinating lesions than peripheral nerves. In our experience, no lesions were found in the intracranial, cervical, thoracic, and lumbar spinal cords. No spinal cord atrophy was seen.

We would be interested to find out the authors’ responses to some issues:

Firstly, they reported that cord atrophy was confirmed in the cervical lesion. Were the thoracic cords normal?

Secondly, they demonstrated cervical and thoracic cords which seem to show cervical spondylotic lesions and seven cases were more than 50 years old in their series. In our cases, all of the cases were more than 50 years old, and all of our cases had spondylotic lesions in the cervical or lumbar cord. It is possible that spondylotic lesions may contribute to cord atrophy.

Thirdly, they wondered what factors contributed to the cord atrophy in our series. We were not able to identify any specific contributing factors which may in part reflect our small sample size but we speculated that a dying back mechanism may be important as has been suggested for diabetic neuropathy.3

We agree that further study of this finding is needed.

Mary M. Reilly, MD, Matilde Laurá, MD, London, UK

References

Long-term outcome of endovascular stenting for symptomatic basilar artery stenosis

To the Editor: We read with great interest the article by Yu et al.1 demonstrating the effectiveness of stenting symptomatic basilar artery (BA) stenosis for reducing the risk of recurrent stroke and death. We would like to request clarification of specific issues so that readers, particularly those skilled in neurointerventional procedures, could be aided in decision-making.

The method section inaccurately described the type of wire used to cross the lesion. It is unlikely that high-grade stenosis would be crossed using a 0.035-inch wire instead of the standard 0.014-inch microwire. The balloon types that are used for predilatation and the specific coronary stent types are known to affect procedural outcome but were not mentioned. Under, over, or nominal inflation of the stent-mounted balloon were not described. It is unclear how long heparin was administered or the combination of clopidogrel and aspirin following the procedure.

Prior to stenting, there was no description of the presenting TIs. Two patients were not treated with any type of medical therapy but there are no details about the type of antiplatelet treatment in the others. After the procedure, there is no mention

References

Copyright © 2005 by AAN Enterprises, Inc.

References
of in-hospital length-of-stay after the procedures or worsening of pre-existing deficits and TIAs. Some patients may require neurocritical care for several days with blood pressure and fluid augmentation to maintain adequate cerebral perfusion.

In the legends of the selected images, there was no mention of jailing perforating arteries; including loss of the left anterior inferior cerebellar artery in case B. In the long-term outcome, five cases with “dizzy spells” were not counted as possible vertigo or TIAs.

In the Discussion section, the authors conclude that the BA stenting appeared to be safe and effective. This study has many limitations to validate this conclusion. The cases where BA stenting failed are not mentioned which makes it difficult to interpret the success of current techniques.

We agree with the authors that further trials are needed to better understand this controversial subject. However, prior to further studies (involving the BA in particular), newer stents and delivery systems designed for intracranial arteries are needed. This is vital to avoid future setbacks in neurointerventional procedures. Given the current available data and techniques, BA stenting may be reserved for those patients with high-grade symptomatic stenosis who did not respond to combined aspirin and clopidogrel therapy.

Osama O. Zaidat, MD, MSc, Tony P. Smith, MD, Michael J. Alexander, MD, Durham, NC

Reply from the Authors: We thank Zaidat et al. for their interest in our work. The Discussion section mentioned the major periprocedural complications that occurred in patients with acute stroke and tandem stenosis. Although different types of coronary stents and balloon angioplasty with a nominal pressure of 8 to 14 atm were used in this case series, there was no correlation between types of balloon or stents and periprocedural complications. Fifteen patients received IV heparin for 24 hours followed by combination therapy with clopidogrel and aspirin. Three patients were placed on oral anticoagulation and 6 months of long-term clopidogrel therapy. Lesions were crossed using 0.014-in microwire instead of 0.035-in microwire as Zaidat noted. We appreciate the identification of this error in our article.

Presenting TIAs, individual patient medications, length-of-stay and neurointensive care management after the procedures were not found to be associated with long-term outcome and therefore not detailed in our article. Our figure was used to show the feasibility of stenting for different types of stenotic lesions. The left anterior inferior cerebellar artery (AICA) in case B was visible distal to the verteobasilar junction in the post-stenting image.

Zaidat et al might have misidentified the loop between basilar artery and left AICA in the prestenosing image as AICA. The loop was actually part of the left posterior inferior cerebellar artery. Consistent with other report, our study also demonstrated that symptomatic occlusion of pontine perforating arteries were very uncommon. During follow-up, five patients reported transient symptoms, including dizziness (2), sensation of head congestion (1), neck pain (1), and hand incoordination (1).

It is well known that patients often experience nonspecific symptoms after endovascular procedures that are not TIAs. We identified no basilar artery stenting failure in our study, confirming other series reporting more than 95% success rate of stenting for basilar artery stenosis and other intracranial atherosclerotic lesions. Despite the limitations in retrospective study, our data showed that with a mean 26.7 ± 12.1-month follow-up, 83.3% of patients had an excellent long-term outcome without vascular death. Therefore, endovascular stenting for symptomatic basilar artery stenosis appeared to be safe and effective in reducing stroke risk and death, and should be further evaluated by randomized clinical trial.

W. Yu, MD, PhD, W.S. Smith, MD, PhD, V. Singh, MD, N.U. Ko, MD, S.P. Cullen, MD, C.F. Dowd, MD, V.V. Halbach, MD, R.T. Higashida, MD, San Francisco, CA

Copyright © 2005 by AAN Enterprises, Inc.

References

NINDS AIREN neuroimaging criteria do not distinguish stroke patients with and without dementia

To the Editor: Ballard et al. report that in a group of stroke patients, the neuroimaging component within the National Institute of Neurological Disorders and Stroke (NINDS) Internationale pour la Recherche et l’Enseignement en Neurosciences (AIREN) criteria for vascular dementia did not distinguish between patients with and without post-stroke dementia. In addition, groups did not differ in number or size of infarcts. However, patients with dementia had greater hippocampal atrophy. The authors conclude that the NINDS AIREN neuroimaging criteria may need to be revised because they do not distinguish between stroke patients with and without dementia. Although we agree with the authors that the criteria may need revision, we would like to make some critical comments concerning the research question of their study.

The NINDS AIREN criteria describe the clinical syndrome of vascular dementia (VaD). Like in any other subtype of dementia, clinical characteristics define whether or not a patient is demented. The neuroimaging component of the criteria only serves to determine the probability that the observed dementia is of vascular origin. In the present sample of patients who all suffered a cerebrovascular event, it was to be expected that the neuroimaging criteria did not reveal any difference between dementia-groups in terms of vascular burden. The authors merely show that a patient may fulfill the radiologic criteria for VaD as defined by the NINDS AIREN, and still not be demented. This is a reversal of the diagnostic process, and reminds us that an MRI scan may never be used in isolation to diagnose VaD. Furthermore, excluding patients who were demented prior to the stroke may have introduced a selection bias, while this group has the highest probability of suffering VaD.

Moreover, the greater hippocampal atrophy of the demented subgroup suggests that these patients may suffer from Alzheimer disease (AD) rather than VaD, or have combined pathology. As the authors propose, vascular pathology such as a stroke may interact with preexisting subclinical Alzheimer pathology, resulting in clinical dementia of the Alzheimer type. As the NINDS AIREN criteria were not developed to detect AD, there is no reason to expect that these criteria would be sensitive to detect patients with AD.

Finally, it has been shown that the neuroimaging component of the NINDS AIREN criteria has insufficient reliability, and this might partly account for the inability to discriminate between groups. Operational criteria have been put forward and tested, resulting in a considerably improved reliability in experienced readers.

W.M. van der Flier, PhD, E.C.W. van Straaten, MD, F. Barkhof, MD, PhD, P. Scheltens, MD, PhD, Amsterdam, The Netherlands

Copyright © 2005 by AAN Enterprises, Inc.

References

Copyright © by AAN Enterprises, Inc. Unauthorized reproduction of this article is prohibited.
A trial of metoclopramide vs sumatriptan for the emergency department treatment of migraines

Steven R. Brenner, Marta Allena, Delphine Magis, Jean Schoenen, B.W. Friedman, J. Corbo, R.B. Lipton, P.E. Bijur, D. Esses and E.J. Gallagher

Neurology 2005;65;1339-1340

This information is current as of September 25, 2009

<table>
<thead>
<tr>
<th>Updated Information</th>
<th>including high-resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>& Services</td>
<td>http://www.neurology.org/cgi/content/full/65/8/1339</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org/misc/Permissions.shtml</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org/misc/reprints.shtml</td>
</tr>
</tbody>
</table>