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Abstract

For many models of solids, we frequently assume that the material parameters do not vary in space, nor that they
vary from one product realization to another. If the length scale of the application approaches the length scale
of the micro-structure however, spatially fluctuating parameter fields (which vary from one realization of the field
to another) can be incorporated to make the model capture the stochasticity of the underlying micro-structure.
Randomly fluctuating parameter fields are often described as Gaussian fields. Gaussian fields however assume that
the probability density function of a material parameter at a given location is a univariate Gaussian distribution. This
entails for instance that negative parameter values can be realized, whereas most material parameters have physical
bounds (e.g. the Young’s modulus cannot be negative). In this contribution, randomly fluctuating parameter fields are
therefore described using the copula theorem and Gaussian fields, which allow different types of univariate marginal
distributions to be incorporated, but with the same correlation structure as Gaussian fields. It is convenient to keep
the Gaussian correlation structure, as it allows us to draw samples from Gaussian fields and transform them into
the new random fields. The benefit of this approach is that any type of univariate marginal distribution can be
incorporated. If the selected univariate marginal distribution has bounds, unphysical material parameter values will
never be realized. We then use Bayesian inference to identify the distribution parameters (which govern the random
field). Bayesian inference regards the parameters that are to be identified as random variables and requires a user-
defined prior distribution of the parameters to which the observations are inferred. For the homogenized Young’s
modulus of a columnar polycrystalline material of interest in this study, the results show that with a relatively wide
prior (i.e. a prior distribution without strong assumptions), a single specimen is sufficient to accurately recover the
distribution parameter values.

Keywords: Bayesian inference, Bayes’ theorem, copula, Gaussian fields, Gaussian processes, Gaussian copula,
copula processes, Gaussian copula processes

1. Introduction

Explicitly representing the micro-structural grains in predictive models is computationally expensive due to the
large number of degrees of freedom required. To omit the explicit representation of the grains in a direct numerical
simulation of an RF MEMS, Lucas et al. [1] have developed an approach in which random fields of the effective
stiffness tensor are determined, which are used to identify the parameters of a spectral representation [2] that can
generate a random field from which the effective material properties random field is obtained by introducing a lower
bound and a Cholesky decomposition [1] and possibly a non-Gaussian mapping [3]. Each random field of the effective
stiffness tensor forms the input for a single application-scale simulation in which the explicit representation of the
grains is omitted (since they are homogenized).

In the framework of Lucas et al. [1], a field of the effective stiffness tensor is determined for each micro-structure
by locally probing the micro-structure. This is accomplished by extracting homogenized properties of small-scale
statistical volume elements (SVEs) to which a few deformation modes are applied. Many small-scale SVE computa-
tions are thus required for a single micro-structure and as many micro-structures must be considered to identify the
parameters of the spectral representation, the number of necessary SVE computations is substantial.
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This contribution aims at tackling this problem so that substantially less SVE computations are required, whilst
the accuracy remains the same. In contrast to the approach of [1], each field of the effective stiffness tensor is assumed
to be a realization from a random field constructed using the copula theorem [4] and Gaussian fields. The questions
we aim at answering are thus “how can we describe a random field in a mathematically rigorous way?” and “how
can we identify the distribution parameters that govern the random field with a minimum of SVE computations?”
The parameters governing the random field based on the copula theorem and Gaussian field are identified using
the Bayesian paradigm which may be regarded as a natural way to identify parameters with uncertainty. In this
case SVE computations are only necessary to be performed for a single micro-structure, instead of for hundreds of
micro-structures.

In order to introduce the proposed methodology relatively gently, we do not focus on a spatial field in two
dimensions of the effective stiffness tensor (21 parameters) as [1] have done, but on a spatial field in one dimension
of the Young’s modulus (one parameter). This can be useful for two dimensional Euler-Bernoulli beams to model
slender RF MEMS products in-plane.

To explain our approach of modeling random fields, we first need to discus Gaussian processes (GPs). GPs! are
well-known and they are elaborately covered in standard text books [5-10]. In the field of mechanics furthermore,
GPs have been used in various studies to model data [11-14]. In a GP, the marginal univariate distribution for
each data point is a Gaussian distribution (i.e. each observation is a realization from a univariate marginal Gaussian
distribution). This assumption is not valid in numerous physical problems. In this contribution for instance, we
consider Young’s moduli as our observations, which obviously cannot be lower than zero (if a Young’s modulus is
realized from a Gaussian distribution after all, there is always a possibility that a negative value is generated, no
matter how large the mean and how small the standard deviation). A GP can be considered as a generalization of
multivariate Gaussian distribution over an infinite dimensional function space [6] (see Subsection 4.1). This entails
that a finite dimensional realization of a GP is a realization of a multivariate Gaussian distribution. A generalization
of GPs accommodating non-Gaussian features can be accomplished using the copula theorem.

The question is now how we can use the correlation structure of GPs, but include different marginal univariate
distributions. To do so, we need to use the concept of copulas. A copula allows one to describe the dependencies
between several random variables, regardless of the types of marginal univariate distributions used for the random
variables [4]. It accomplishes this by linking the marginal univariate cumulative distribution function (CDF) of
each random variable to a single, joint cumulative distribution function. We can also model a multivariate Gaussian
distribution using the Gaussian copula [15] and Gaussian univariate distributions as univariate marginal distributions.
The Gaussian copula thus merely dictates the correlation structure between the random variables. If one chooses
different marginal univariate distributions (instead of the Gaussian one), the resulting joint distribution will have a
Gaussian correlation structure with non-Gaussian univariate marginal distributions. Jaimungal and Ng [16] employed
this concept in order to introduce kernel-based copula processes. In [16] kernel functions [5] are used to define the
dependency structure of a Gaussian copula. Wilson and Ghahramani [17] presented a general definition for random
processes based on the copula theorem, in which the employed copula is not necessarily Gaussian.

Similar to [16] and [17] we use the copula theorem to model our observations (i.e. the field of Young’s moduli)
as beta-Gaussian copula random fields (i.e. the univariate marginal distributions are beta distributions and the
dependency is modeled using a Gaussian copula). In order to identify the parameters of the random field, we use
Bayesian inference.

We not only introduce this relatively novel way of modeling random fields to the computational mechanics com-
munity, but we also employ Bayesian inference (BI) to identify the random field parameters based on the observations
of a single field. The probabilistic framework based on Bayesian inference enables us to quantify the modeling uncer-
tainties as well as identifying the parameters. In the Bayesian paradigm the user’s uncertainty about the parameters is
described by a probability distribution, which merely describes the user’s uncertainty and is not an intrinsic/inherent
distribution of the parameters (after all, the random field parameters that we identify are measures for the material
randomness). In this paradigm the user’s a-priori knowledge and/or assumptions about the unknown parameters,
which is represented by the probability distribution, is updated by observations through Bayes’ theorem (formula).

The concept of BI is employed to identify parameters in different fields, amongst which in mechanics. One can
for instance recognize the works of Isenberg [18], Alvin [19], Beck and Katafygiotis [20], Marwala and Sibusiso [21],
Gogu et al. [22], Lai and Ip [23], Daghia et al. [24], Nichols et al. [25] and Gogu et al. [26] for applications in elasticity,
the studies of Most [27] and Rappel et al. [14, 28] in elastoplasticity and the studies of studies of Muto and Beck [29],
Liu and Au [30], Fitzenz et al. [31], Hernandez et al. [32] and Rappel et al. [33] for other types of history-dependent
material descriptions.

INote that in this contribution a random field is a stochastic process that is defined in (Euclidean) space.
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Bayesian inference is also employed for the identification of material parameter distributions (material random-
ness). Rappel and Beex [34] developed a framework based on BI to identify material parameter distributions with a
limited number of observations. A similar framework is used by Mohamedou et al. [35] for the identification of the
resin’s Young’s modulus in non-aligned short fiber composites.

Koutsourelakis [36] provided a Bayesian framework to identify spatially varying parameters for perfect plasticity.
The framework of [36] is based on a representation of GPs in terms of basis functions [6, 7]. In another study,
Koutsourelakis [37] provided a Bayesian framework to identify spatially varying material properties in elasticity. The
framework of [37] applies BI directly on the finite element (FE) discretization in which the stiffness tensor (i.e the
spatially varying properties) over each element is constant. These constant tensors over each element appear in the
posterior as parameters to be inferred (i.e. the dimensions of the posterior equal the number of FEs). Uribe et al. [38]
employed Bayesian inference for the identification of a hydraulic conductivity field, which research is represented as
a GP with a Karhunen-Loéve expansion. Furthermore, Vigliotti et al. [39] recently employed Bayesian inference
to identify spatial (non-random) fields of Young’s moduli and Poisson’s ratios. In their work, the spatial fields are
constructed using B-splines and model selection based on Bl was employed to identify the order of the B-splines.

The outline of this paper is as follows. Section 2 discusses the concept of this study in more detail from a
mechanics point of view. In Section 3 a general description of Bayesian inference is provided. In Section 4, we
discuss the construction and identification of our random fields in detail. In Section 5 we present our results. Finally,
we offer our conclusions in Section 6.

2. General concept of the study

In this short section, we discuss the general concept of our study in slightly more detail. The discussion here is
based on the illustration in Fig. 1. On the left, we can observe n; columnar micro-structures, which are all realizations
of the same RF MEMS. Elastic simulations of these polycrystalline columnar micro-structures (e.g. to determine the
distribution of resonance frequencies) are computationally costly because each grain requires to be discretized with
numerous FEs.

Alternatively, one could model them with beam elements if random fields of effective material parameters can
be generated. Although we do not perform the actual beam simulations, we refer the reader again to [1] for more
detailed information. The results of [1] only show small differences between the homogenized and direct numerical
simulations as long as the spatial correlation is correctly captured, which requires to use stochastic finite elements
of size lower than the latter.

In order to generate random fields of effective Young’s moduli, we first need a mathematically rigorous way to
model the random fields. Subsequently, we need to identify the parameters that govern the random fields. For the
identification, we first need measurements of the fields of effective Young’s moduli. For this purpose, 10 statistical
volume elements (SVEs) are extracted from each micro-structure, which are numerically deformed (second column
from the left in Fig. 1). The results of these SVE computations are fields of 10 effective Young’s moduli in space per
polycrystalline realization (third column from the left in Fig. 1).

In [1], many micro-structures were required to train a spectral field generator. In the current work, the random
fields are considered as realizations of a stochastic process/field (beta-Gaussian copula process, 7(p|z) in Fig. 1) and
Bl is used (1) as a natural way to identify parameters with uncertainty, and (2) to ensure that the identification can
be based on a limited number of observations (i.e. a single polycrystalline realization is sufficient). In order to verify
that the characterized random field generates similar fields of Young’s moduli, we finally compare the generated
realizations of our model to the n, — 1 validation realizations (see Fig. 1).
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Figure 1: Illustration of the general concept of the study.

3. Bayesian inference

Bayesian inference is a probabilistic framework that fits a probability model to a set of observations. The results of
the inference are summarized as a probability distribution in terms of the parameters of the probability model (i.e. the
model of the observations) and a probability distribution for unobserved quantities such as new observations [7]. The
employed probability distributions in this approach address the uncertainties. In this framework furthermore, the
probability distribution that represents the user’s initial belief (about a parameter or model) is updated with the
information of the measurements according to Bayes’ rule [7].

Let z = [zl ‘e zno]T be the vector of n, observations and p the vector of n, parameters of the mathematical
model to describe our observations. According to Bayes’ formula we have:

w(pla) = ") Lap)n(alp) m

In this equation 7 (p) denotes the prior PDF (i.e. the PDF that represents one’s assumed prior knowledge about
the parameters, e.g. the fact that the Young’s modulus cannot be negative), 7(z|p) denotes the likelihood function
(i.e. the PDF that measures the likelihood of observations z, for a given set of parameter values p), 7(p|z) denotes the
posterior PDF (i.e. the PDF that describes the plausibility of parameter set p, for the given set of observations, z) and
7(z) is called evidence. Since the values for vector z are known, the evidence is a constant number (7(z) = ¢ € RT)
which is thus independent of the parameters (i.e. the variables of interest). In other words it suffices to write Eq. (1)
as follows:

7(p|z) < 7(p)m(z|p). (2)

Note that the statistical summaries of the posterior, such as the mean, the MAP (i.e. the ‘maximum-a-posteriori-
probability’ or the parameter values at which the posterior is maximal) and the covariance matrix (i.e. the matrix
that measures the correlation between the parameters), are independent of scaling factor +.

In order to calculate the statistical summaries, numerical frameworks are generally required. Markov chain Monte
Carlo (MCMC) techniques [40] are frequently employed to draw samples from the posterior PDF. The drawn samples
can be used to approximate statistical summaries and predict new observations. Readers are referred to [28, 41] for
more details.

4. Construction of the random fields and their identification

In order to model random parameter fields, it is essential to first discuss the Gaussian processes and the copula
theorem. Finally we introduce the Gaussian copula processes concept, their formulation and their identification based
on BI (see Section 3). Note that random fields are the same as stochastic processes which take spatial variables as
their index (input) set. Below, we stick to the term process to explain the basic concepts.
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4.1. Gaussian processes
In this subsection a practical description of Gaussian processes is presented. Readers who are interested in more
details are referred to [5]. Rasmussen [42] defines a Gaussian process as a collection of an infinite number of random
variables, which has a Gaussian joint distribution for any subset of these random variables. In other words, a Gaussian
process is an extension of a multivariate Gaussian distribution to an infinite dimensional Gaussian distribution [7].
A Gaussian process is fully characterized by its mean function m(z) and covariance function k(z,z’). Note that
x and 2’ are inputs (here, the spatial coordinates). Now one can write:

f(z) ~ GP(m(x), k(z,2")). 3)

Note that the mean function m(x) is in fact the mean of the function f(z), i.e. E[f(x)], at point z. k(x,z") specifies
the covariance of the process at two points z and 2/, i.e. E[(f(x) — m(z))(f(z") — m(2’))]. For a finite set of points
we have:

f ~ N(m,K), (4)

T T
where m = [m(z1) -+ m(z,)| , Kij = k(z;,2;) and £ = [f(z1) -+ f(z.)] .

Often, as in our study, the assumption m(z) = 0 is used [10]. A frequently chosen covariance function is the
squared exponential covariance function:

’ 2 ({E _ x/)Q
k(z,2") = Nexp( 50 ) (5)
where A controls the magnitude and 1) the smoothness of the function. As x is defined in space for us, 9 is a length
scale parameter in our work. Note that if a Gaussian process is used for regression (or modeling) A and ¢ are
unknown parameters that should be identified. In this study we set A equal to 1.
The concepts given in this subsection will be used in Subsection 4.3 to construct the Gaussian copula processes.

4.2. Copulas

A copula is defined as a function that joins one dimensional marginal distributions to their multivariate distri-
bution [4]. Using copulas one can model the dependencies between several random variables. In the next subsection
we will use this feature in combination with the correlation structure of Gaussian processes to construct Gaussian
copula processes. In the current subsection, we elaborate on copulas.

LetP =[P --- P,] " be a vector of n, random variables with joint cumulative distribution function (CDF') IT
and II; be the marginal univariate CDF for each random variable. Sklar’s theorem [43] states that an n-dimensional
copula C' exists such that:

M(py, -+, pn,) = CMa(p1), -+ 1, (Pn,)- (6)
The equation above can be used to obtain the joint PDF as follows:
p
ﬂ—(pla e upnp) = C(Hl(p1)7 e 7an(pnp)) Hﬂ—’t(pl)v (7)
i=1
where c(uy, -+ ,up,) = 90Cur, ) with u; = IT;(p;) and 7;(p;) denotes the i*" marginal PDF.

6u1~-8unp

Various types of copulas exist to model dependencies between random variables, see e.g. [44]. Since we base our
work on GPs to create copula processes however, we restrict ourselves to the Gaussian copula [15]. The density of a
Gaussian copula is written as [15]:

exp(_l[cpfl(ul) o 07N )] X (OG =D x [0 ) e 07w ), (8)

c(ullg) = 5

Tol
where u; = II;(p;), T'c € [—1,1]"*" denotes the covariance matrix containing the Pearson correlation coefficient
(i.e. Pearson’s p a measure for the linear relationship between two random variables, see e.g. [45]), ®(p) denotes the

-2
standard Gaussian CDF (i.e. p ~ N(0,1) = \/%exp(—%)), | - | denotes the determinant and I the n, x n, identity
matrix. Substituting the Gaussian copula density given in Eq. (8) and selected univariate marginal PDFs in Eq. (7)
one can construct the multivariate PDF for modeling the data. In the next subsection we will combine the concept
of copulas with Gaussian processes in order to explain Gaussian copula processes.
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4.8. Gaussian copula processes

In this subsection we discuss the basic idea of Gaussian copula processes. In other words, here we describe the
construction of the random fields characterized by non-Gaussian univariate marginal distributions that are joined
in a single distribution using Gaussian copulas. We actually use beta distributions for the univariate marginal
distributions.

The advantage of this approach is that samples can still be generated from GPs (multivariate Gaussian distri-
butions in practice), which are then, via the CDF of the univariate Gaussian distribution and the inverse CDF of
the beta distribution, transformed to samples generated from the new random field (which is governed by univari-
ate, marginal beta distributions coupled with Gaussian copulas). A pseudo-algorithm to generate a sample from a
beta-Gaussian copula distribution process is presented below.

Algorithm 1 Pseudo-algorithm to generate a sample from a beta-Gaussian

1: Generate a sample from GP with given covariance function (in practice the sample is generated from a multi-
variate Gaussian distribution with given covariance matrix)

2: Transform each of the values in line 1 through a univariate Gaussian CDF to a uniformly distributed value.

3: Transform the values in line 2 through a inverse beta CDF.

Note that the pseudo-algorithm presented here can also be used to generate samples from stochastic processes
with other types of univariate marginal PDFs/CDFs. The only requirement is that the CDF (and its inverse) must
be changed.

4.8.1. Formulation and identification of the Gaussian copula process

Let z again be the vector of our n, observations of the Young’s modulus. Our goal is to model these observations
using the beta-Gaussian copula process. This means that we assume the univariate marginal distributions to be
four-parameter beta distributions:

(E—a1)* Yay — E)P1 9
(a2 — a1)**#=1B(a, ) ’ ©)
where E denotes the Young’s modulus, o and [ denote the shape parameters of the univariate PDF, a1 and ao
denote the lower and upper bounds, respectively and B(-,-) denotes the beta function.

We model the dependency structure using the Gaussian copula for which the correlation matrix components (see
Eq. (8)) are computed as:

m(E) =

(Te)y = exp(— 220, (10

where z; and x; denote two locations (which may be the same). The parameters that we need to identify are «, 3
and v, since bounds a; and ay are known for a given crystal structure. Rewriting the Bayesian formula for these
three parameters (see Eq. (2)) we obtain:

(e, B, ¢|z) o w(a)m(B)m ()7 (2], B, 1)), (11)

where (), 7(8) and 7 () together form uncorrelated prior 7 (e, 3, ¢) = m(a)w(8)w(¢) and w(z|a, 8, 1) denotes the
likelihood. Based on the assumption that the observations for a single polycrystalline bar are a realization from a
beta-Gaussian copula process, the likelihood function reads:

w2, B, ) = elua Tc) [ (0, (12)

i=1

where c(uy) is given in Eq. (8), m(2;) is given in Eq. (9) and u,, is the value of the four parameter beta CDF at z;.

5. Results

This section presents the results for the identification of the beta-Gaussian copula process to the model the
random fields of effective Young’s moduli. The results are compared to the validation results of Fig. 1 in order to
show how similar the identified random fields are to the real ones.
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5.1. Identification of the beta-Gaussian copula process parameters

In this subsection we employ the identification procedure to identify the parameters of the beta-Gaussian process
that models our observations. We consider a columnar polysilicon micro-structure of average grain diameter of 0.2 pm
and of random grain orientation making the homogenized properties in-plane isotropic. The set of observations are
10 evenly distanced Young’s moduli (their distance is 0.2 pm) that are computed by homogenization of 10 SVE
which are 0.4 pm long (in the direction in which the sampling is performed) and 0.5 pm wide.

For the identification, we first construct our priors (i.e. 7(«), 7(8) and 7(¢)) in Eq.(11)). Note that since we
have a clear knowledge about the bounds of the Young’s modulus (i.e. a; and ag in Eq. (9)), they do not appear
in our inference as unknowns (see Eq. (11)). We choose the following priors for the shape parameters of the beta
distribution (i.e. @ and j):

(puni_mprior)z) 3

exp( — ~funi—tuni if puni >0

7(Puni) X 255t ey (13)
0 otherwise

where pun; refers either to a or 8, PumP"°" denotes the prior mean value and sgfl’n‘fr denotes the prior standard
deviation. Note that the shape parameters of a beta distribution can not be lower than zero, which is explicitly
incorporated in our prior. The chosen values are reported in Table 1. Note that we have chosen @™ " and Bpnor
based on the mean value and standard deviation of the observations (having mean value and standard deviation of
our observations we can get a rough estimation for @’ and Bpmr). The prior for 1 is furthermore chosen to be
a uniform distribution between 0.2 pm and 3.2 pm. This minimum is used as it is unphysical to consider a length
scale parameter lower than the minimum distance between two Young’s modulus sampling points. The maximum is

used as we assume that the length scale parameter will not be larger than the bar.

Table 1: The chosen values for the parameters that define our priors.

arrior  19.9829  a; (GPa) 130
sbrior 99915 ay (GPa) 188

BT 187793 2how (um) 0.2

sPrier 93896 by, (um) 3.2

We use the adaptive Metropolis method [46] to draw samples from the posterior and hence, to obtain the statistical
summaries such as the MAP. 500 x 10? are drawn from the posterior whilst burning the first 30% of the samples.
The statistical summaries are reported in Table 2 and Eq. (14). TPosterior denotes the numerically approximated
covariance matrix of the posterior.

Table 2: The statistical summaries of identified posteriors

a 6 Y (pm)

MAP estimates
18.1184 17.9530 2.0002 x 10~ 1
Mean values

17.5591 17.3137 0.2171
, 28.1458  23.7931 —0.022
pposterior _ 26.9678 —0.0209 | . (14)
symmetric 1.5817 x 1074

The marginal posteriors as well as some realizations of the identified beta-Gaussian process are shown in Fig. 2.
It is important to note that here we are not using the beta-Gaussian copula process to perform a regression but the
idea is to identify the parameters of the beta-Gaussian copula process from which our (and new) observations are

2Lower and upper bounds for the uniform distribution which is assigned as prior for .
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drawn. Any realization of this beta-Gaussian copula process is thus a field of Young’s moduli. Furthermore, in this
figure we have presented the observations as well as two verification sets. Note that the verification points are not
used in the identification procedure. At first sight, it indeed seems that the identified beta-Gaussian copula process
can generate fields that are similar to our observations and verification point sets.

0 10 20 30 40 0 10 20 30 10
o 5
(a) (b)

175 T T

T
Sample realisations

- % - Observations
- ©-First verification points set
- B -Second verification points set |4

0.2 0.22 0.24 0.26 0.28
¢ (pm)

(c) (d)

Figure 2: Marginal posteriors, some realizations from the identified process, observations and two verification fields. (a) «, (b) 8, (¢) ¥
and (d) samples realization from the identified process. The marginal probability density functions are not normalized. Note that the
verification points are not used in the identification process. Once the parameters are inferred, random fields can be generated for more
locations than the 10 that we have considered, as we have done for the sample realizations in (d).

5.2. Performance of the beta-Gaussian process modeling approach

In this section we check the performance of our modeling and identification approach more rigorously. This is
achieved by comparing our model outputs with 417 fields of 10 Young’s moduli which are obtained through the SVE
computations. These fields are not used in the identification procedure. Note that we only focus on accuracy and
not on computational performance. The reason for this is that we only focus on a single field of 10 Young’s moduli
and the MCMC approach has to be employed only once. This is negligible compared to the empirical approach of
[1].

First, we compare the univariate marginal distributions of our modeling framework with the univariate marginal
distribution of SVE computations. Fig. 3(a) shows both the simulated and the SVE computations’ univariate
distributions. The simulated results in Fig. 3(a) were created using the following steps:

(1) draw a sample for @ and § from the posterior (Fig. 2, these are available through MCMC),
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(2) use the values of the previous step to draw 4170 Young’s moduli from the corresponding beta distribution and
plot the histogram,

(3) repeat the previous steps 50 times.

A comparison of the SVE computations’ univariate marginal distribution and the distribution corresponding to
the mean values of a and S is presented in Fig. 3(b). The univariate marginal distributions based on parameter
values in 95% credible region (i.e. the region that contains 95% of the posterior [28]) are also presented in this figure.
The graphical test in [7] shows that the modeling approach in this contribution generates samples that are in a
reasonable agreement.

Although we have chosen beta distribution as univariate marginal distributions, Fig. 3 shows that the univariate
marginal distributions are similar to Gaussian distributions. Apparently, these polycrystalline microstructures prob-
abilistically behave in Gaussian manner, although the beta distribution does intrinsically include bounds (given in
Table 1).

T T T T
——SVE computation ——SVE computation
Simulation 95% credible region

- - -Mean

140 150 160 170 180
E (GPa)

(a) (b)

Figure 3: Comparison of univariate marginal distributions (a) SVE computations and simulated univariate distributions and (b) SVE
computations, univariate marginal distribution based on the mean of the posterior and univariate marginal distributions based on
parameter values in the 95% credible region (i.e. the region that contains 95% of the posterior [28]). This graphical test [7] shows a
reasonable agreement between our modeling and test data.

Next, we compare the correlation matrix of our validation sets with the ones from our modeling approach. Our
goal is to see if the realizations of our modeling approach have similar correlation coeflicients as our validation sets
(417 fields of 10 Young’ moduli in each field). In order to perform the comparison, we use the MCMC samples of 1
(i.e. the samples that approximate the posterior, see Fig. 2(c)) to create many possible correlation matrices. Next
we draw 417 10-dimensional realizations from a Gaussian distribution with zero mean and the covariance matrix
constructed with the identified value for ¢ (the 10-dimensional Gaussian distribution is a marginalization of GP).
Now we can calculate the Pearson correlation coefficients of 417 realizations for each MCMC sample. It is important
to note that we can not directly compare the correlation matrices that each MCMC (posterior) sample creates (i.e. we
can not directly compare the first correlation matrix). This is due to the fact that the samples from any distribution
represent the true characteristic values (e.g. mean, variance, correlation coefficients,...) if the number of samples is
infinite (or large enough). Fig. 4 shows the resulting distributions for correlation coefficients as well as the validation
correlation coefficients. Note that the correlation matrix is symmetric and all its diagonal components equal to 1. We
therefore do not compare those ones. One can see that all the PDFs resulting from our modeling approach contain
the correlation coefficient of the entire validation sets (dashed line). Eq. (15) furthermore shows the spatial position
of the correlation coefficients. Ax = 0.2 um and xy denotes the location of the first component of our 10 Young’s
moduli field.
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It is important to note that from a probabilistic perspective, the distributions in Fig. 4 show the plausible values
for the correlation coefficients. In an ideal case, we would like all dashed lines to be close to the center, because the
closer an observation is to center, the more plausible the observation. Although not all dashed lines are in the center
of the distributions of Fig. 4, they are clearly well inside the distributions. This means that our framework is able
to predict the observations.
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6. Conclusions

In this contribution, a framework based on Gaussian fields, the copula theorem and Bayesian inference is proposed
to model and identify random fields of Young’s moduli. One field of Young’s moduli was sufficient to identify the
random field parameters.

Gaussian fields are widely used in various researches and are well covered in standard text books. However,
the assumption of the Gaussian distribution for the univariate marginal distribution in Gaussian fields is often
not valid to model random parameter fields, as many material parameters have well-defined physical bounds. We
therefore propose a framework that combines Gaussian fields with the copula theorem. This framework allows us to
create random fields with a Gaussian correlation structure and non-Gaussian univariate marginal distributions. Its
advantage is that each field can be generated using Gaussian fields, but then, via two standard transformations, is
morphed in a new field that originates from a Gaussian correlation structure and non-Gaussian univariate marginal
distributions.

To identify the parameters of the aforementioned random field we use Bayesian inference as a natural way of
identifying parameters with uncertainty. Moreover, Bayesian inference allows the identification to be performed with
a considerably small number of observations (a set of 10 Young’s moduli).

To validate the accuracy of the modeled random fields and the identification of its parameters, we have compared
the marginal univariate distributions and correlation coefficients that our framework produces with the ones of 417
validation sets, which were not used in the identification procedure. Our results show that the univariate marginal
distributions of the identified random fields are in good agreement with the univariate marginal distribution of the
validation sets. The results on the correlation coefficients show that the distributions of correlation coefficients
include the values of our validation sets. The probabilistic nature of the framework proposed in this contribution
enables us to predict the validation sets’ correlation coefficients and univariate marginal distributions as a plausible
value in our modeling.

The framework presented in this contribution is used to model scalar fields, i.e. the field of a single material
parameter. However, it is possible that one is interested in multi-output or vector fields, i.e. fields of more than one
type of material parameters. If the parameters of interest are independent, the proposed framework can directly be
applied (separately for each type of material parameter). If the types of parameters are on the other hand dependent
on each other, the correlation structure between the different types must be modeled (in addition to the spatial
correlation as considered in the current contribution). We aim to treat this issue in a future contribution.
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Figure 4: The correlation coefficients’ distributions and the correlation coefficients of the validation sets (dashed line). The distributions
for the correlation coefficients are obtained using the MCMC samples which approximate the posterior.
distributions include the validation sets’ correlation coefficients. This entails that the fields generated by the framework have similar
correlation coefficients to those of the validation sets. Eq. (15) shows the spatial position of the correlation coefficients. Az = 0.2 pum
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and x¢ is the spatial position of the first component of our 10 Young’s moduli set.
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Continued Figure 4: The correlation coefficients’ distributions and the correlation coefficients of the validation sets (dashed line). The
distributions for the correlation coefficients are obtained using the MCMC samples which approximate the posterior. One can see that all
the distributions include the validation sets’ correlation coefficients. This entails that the fields generated by the framework have similar
correlation coefficients to those of the validation sets. Eq. (15) shows the spatial position of the correlation coefficients. Az = 0.2 pum
and xg is the spatial position of the first component of our 10 Young’s moduli set.
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