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Daniele Marulli, Sébastien Mathieu, Antonio Sutera, Damien Ernst
Department of Electrical Engineering and Computer Science

University of Liège, Belgium

Abstract—This work addresses the problem of reconstructing
topology and line parameters of three-phase low-voltage networks
when no a priori information about them is provided and not all
the nodes in the grid are equipped with smart meters. We present
a methodology to obtain an estimation of the electrical model
of each phase of the network, analyzing voltage and current
time-series measurements provided by the available meters. The
proposed methodology involves an iterative algorithm developed
to tackle the network reconstruction problem when unmetered
nodes are located reasonably far from each other. The algorithm
has been tested on a 30-node network with different sets of
metered nodes, providing relevant solutions in most of the
scenarios with more than 80% of metered nodes.

I. INTRODUCTION

With an ever-increasing penetration of distributed energy
resources and electric vehicles, the efficient management of
distribution networks becomes more complicated and dis-
tribution system operators (DSOs) might encounter serious
difficulties in guaranteeing the safety of their network at
Low-Voltage (LV) levels. In order to implement effective
preventive or corrective measures, DSOs need to be able to
assess the system’s response to different realistic scenarios.
This analysis is usually performed through power flow studies
[1], but reliable solutions require accurate information about
the topology of the network and the physical characteristics
of the lines. At these voltage levels, networks are mostly
operated radially and most loads are connected to the feeder
through a single phase and the neutral wire. DSOs do not
always know how households, feeders and other appliances
are interconnected. LV networks topology can change over
time because of faults, maintenance and reconfiguration and
existing database can contain outdated or inaccurate informa-
tion. In other words, DSOs usually lack of a reliable electrical
model of their LV network. This lack of knowledge can hinder
therefore an efficient management and development of the
system. Network reconstruction is the mathematical process
that allows to deduce this information. Effective network
reconstruction methods for LV networks are thus essential for
the development of smarter grids [2]. The goal of this work is
to present a methodology that allows to infer the connections
between nodes and to assess line parameters of a LV network
from time-series measurements provided by a limited amount
of meters in the grid. An overview of existing methods is
now presented, followed by a clear description of the network
reconstruction problem.

II. LITERATURE REVIEW

In transmission systems, topology and line parameters are
usually known [2] and, thanks to a large number of mea-
surement devices, changes can be detected through well-
established state estimation methods [3]. Unfortunately, the
same does not apply to LV distribution networks. With the
increasing importance and complexity of distribution systems,
the reconstruction problem of LV networks has gained more
attention and it has been recently tackled adopting different
assumptions and approaches. Recent works in literature, such
as [2], [4], [5], focus on identifying the network topology
when limited information is available. Algorithms that aim,
as this work does, to identify both network topology and lines
parameters at the same time, are presented in [6]–[9]. Authors
of [6] use the evaluation of voltage sensitivities with respect to
active and reactive power injections and Prũfer sequences to
reconstruct the topology of small networks, assuming that only
specific cables types and lengths are used for the lines. The
identification problem in [7] takes the name of inverse power
flow problem, where the system admittance matrix is found by
solving an unconstrained least square problem. The case with
non-measured nodes in the grid, also referred as hidden nodes,
is also tackled, both for meshed and radial topologies, with the
assumption that these hidden nodes have zero net current in-
jections. The inverse power flow problem is extended to poly-
phase systems in [8], with the full-observability assumption.
Finally, an algorithm to jointly estimate both admittances and
topology, assuming that the measurements for all the non-zero
power injecting nodes are available, is presented in [9]. A
summary comparison table can be found in Table I. All the
methods that have been examined share the assumption that
every node in the network, or at least the power-injecting ones,
has a meter attached to it. This paper presents a methodology
to tackle the network reconstruction problem even when some
power-injecting nodes in the grid are not metered.

III. PROBLEM STATEMENT

Let us consider a three-phase four-wire LV radial distribu-
tion network. The three phases are denoted by a, b and c, the
neutral wire by d. Let P = {a, b, c}, N and B be the set
of phase indexes, the set of nodes and the set of branches
of the network, respectively. The system is observed over a
finite time period, which is discretised in T intervals with
time step ∆t. Accessing the value of a variable at certain time
t ∈ {1, . . . , T} is done using an additional subscript, e.g.:



Table I
COMPARISON OF THE MAIN METHODS TO RECONSTRUCT LV NETWORKS.

[2] [4] [5] [6] [7] [8] [9] [ * ]
Topology identification         
Line parameters estimation # # # G#     
Hidden non-injecting nodes # # #   #   
Hidden injecting nodes # # # # # # # G#
Required measurements V V E V, S V, I V, I V, S V,I
No assumptions on cables G#   #     
Unbalanced poly-phase systems # # # # #  #  

∗Proposed methodology
# = does not provide feature; G# = partially provides property;

 = provides property;
V = Voltage; I = Current; S = Power; E = Energy;

xi,t refers to the variable xi at time t. The absence of such
subscript denotes the entire time-series. Boldface characters,
e.g. x, are used to highlight complex values. To proceed in
the problem formulation, let us consider separately the three
phases of the network, as showed in Figure 1.

Figure 1. Graphical representation of Ga, Gb, Gc for a 8-node network.

Phase p ∈ P of the network is modeled as a rooted
tree Gp = (N p, Ep). N p represents the subset of nodes
connected to phase p of the substation while the set of edges
Ep represents the phase p of the lines connecting those nodes.
The root node of Gp is phase p of the MV/LV substation.
Let e = (i, j) ∈ Ep, with i, j ∈ N p, represent the branch
connecting i to j, where i is the parent node and j is the
child node. For every edge e = (i, j) ∈ Ep, let Dp

e be the set
of descendant nodes of j. Let Vp

n,t and Ipn,t be the complex
voltage and the complex current injection of node n ∈ N p

at phase p and time t ∈ {1, . . . , T}. Let Mp ⊆ N p be
the set of nodes in Gp for which a meter is available. We
assume that meters provide both voltage and current time-
series measurements of the nodes to which they are connected.
We refer to Hp = N p \Mp as the set of hidden nodes.

The voltage drop associated to an edge e = (i, j) ∈ Ep is:

∆Vp
e,t = Vp

i,t − Vp
j,t ∀t ∈ {1, . . . , T} (1)

Defining Zp
e as the branch self-impedance, the voltage drop

can be written as:

∆Vp
e,t = Zp

eIpe,t + εe,t ∀t ∈ {1, . . . , T} (2)

where Ipe,t is the current flowing in the branch and the term
εe,t is the contribution given by mutual and shunt impedances
to the voltage drop. We assume that |εe,t| � |Zp

eIpe,t|.

The problem we want to address is the inference of Ga, Gb
and Gc assuming that:
• no a priori information about how many nodes are in the

grid, how they are connected and cable characteristics is
given;

• the topology does not change during the observation
period;

• voltage and current injection time-series are known only
for the subset of nodes Ma, Mb, Mc;

• each phase of the substation is metered.
Obtaining an accurate estimation of Ga, Gb and Gc allows to
get, at the same time, information about the number of nodes
in the grid, the topology of the network and the impedance of
the lines.

IV. IDENTIFICATION ALGORITHM

The identification algorithm consists of three main parts
named topology estimation, topology validation and hidden
node detection, respectively, that are applied to each phase
p ∈ P independently. Let N̂ p ⊆ N p be the pool of nodes
made available to the identification algorithm. N̂ p initially
corresponds to the set of observed nodes Mp.

Topology Estimation: The first step of the algorithm
consists in the estimation of a rooted tree Ĝp = (N̂ p, Êp), the
topology of which aims to be as close as possible to that of
Gp = (N p, Ep). This operation is carried out using correlation
analysis on voltage measurements to infer proximity between
nodes. Correlation-based approaches have already been proved
successful both in phase [10] and topology [2] identification
methods. Load and production profiles at different nodes of
the LV network can present similar patterns due to comparable
residential occupancy profiles and weather conditions. To be
sure that this does not affect the results of the voltage corre-
lation analysis, voltage time-series are pre-processed applying
a high pass filter, as suggested in [2]. Let Rij be the Pearson
Correlation Coefficient between the filtered voltage time-series
of nodes i and j. Let Ĝpw be a weighted complete graph built
on N̂ p, where the edge weight of branch (i, j) is equal to Rij .
The estimated topology Ĝp = (N̂ p, Êp) is obtained computing
the maximum spanning tree on Ĝpw.

Topology Validation: The second process checks each
edge e = (i, j) ∈ Êp and suggests where, if any, miss-
ing nodes and wrong connections are. This process is per-
formed evaluating the estimated impedance time-series Ẑ

p

e =
{Ẑ

p

e,1, . . . , Ẑ
p

e,T } for each edge e ∈ Êp as:

Ẑ
p

e,t =
∆V̂

p

e,t

Î
p

e,t

t ∈ {1, . . . , T} (3)

∆V̂
p

e,t is the voltage drop associated to e. The estimated
current Î

p

e,t flowing in e is obtained as the sum of the
current injections of the set of nodes detected by the topology
estimation as D̂p

e :

Î
p

e,t =
∑
n∈D̂p

e

Ipn,t t ∈ {1, . . . , T} (4)



Exploiting Equation 2, we assume that, if edge e = (i, j) ∈ Êp
corresponds to a branch in the real network, the values in Ẑ

p

e

tend all to be close to the same constant value. Edge e is
labelled as valid if:

RSD(Ẑ
p

e) ≤ λ (5)

where RSD(Ẑ
p

e) is the relative standard deviation of time-
series Ẑ

p

e , while λ is an arbitrary threshold, e.g.: determined
by statistical tests, for the largest accepted relative standard
deviation. Let Ûp ⊆ Êp be the set of rejected edges for which
the inequality in (5) is not satisfied.

Hidden Node Detection: The third process of the algo-
rithm exploits the results provided from the previous steps to
find the location of hidden nodes. This step is based on the
assumption that unmetered nodes are far enough from each
other, formalized as follows:

Assumption 1: The distance on Gp, defined as the minimum
number of edges that connect two nodes, between any pair of
hidden nodes i and j is greater than three.
Assumption 1 allows to locate each hidden node in the
actual topology analyzing the metered nodes that surround
it. Consider a hidden node X ∈ Hp. If X is a node with
a non-zero net power injection, the current flowing through
the path that connects it to the root computed by the topology
validation step is not the correct one, since the contribution
of the unobserved IpX is missing. This causes the rejection
of the edges in that path, as showed in Figure 2. Note also
that, since node 5 is hidden and it is not a terminal node,
the algorithm mistakenly detects an edge connecting node 3
to node 6. This reasoning suggests that, whenever there is a
path of unvalidated edges in Ĝp, a missing node X is near the
leaf node of such path. The algorithm focuses on one of the

Figure 2. First two steps of the identification algorithm with node 5 as hidden
node. Dashed edges are rejected by the validation step.

hidden nodes at a time to estimate its location and, if possible,
its voltage and current injection. Then, we use these results
to add such node to N̂ p and to recompute again topology
estimation and validation steps.

Let A ∈ N̂ p be the node, among all the nodes that are
connected to a rejected edge, with the longest path to the root
(node 6 in Figure 2). Let B and C, with B,C ∈ N̂ p, be
the parent and grandparent node of A, respectively. Using the
previous reasoning, we assume that an unobserved node X ∈
Hp is adjacent to A in the original Gp. This can occur in three
topological configurations, as showed in Figure 3.

Figure 3. Possible locations for a hidden node X adjacent to A.

The hidden node detection step examines these three con-
figurations, named bridge, leaf and common parent, to assess
which suits best. Let Î

p

A+ and Î
p

B+ be defined as:

Î
p

A+ = Î
p

(AB) (6)

Î
p

B+ = Î
p

(AB) − Î
p

(BC) (7)

Î
p

A+ is the contribution to the estimated Î
p

(BC) flowing through
(BC) of A and its descendant nodes, while Î

p

B+ is the rest of
the current. In order to detect the correct location of X , the
algorithm solves three optimization problems:

Configuration “Bridge”:

minimize
ÎpX ,Ẑp

(XA),Ẑ
p
(BX),Ẑ

p
(CB)

δb =
T∑

t=0

|VC,t − VB,t − Ẑ
p

(CB)(Î
p

A+,t + Î
p

B+,t + Î
p

X,t)|

subject to VB,t − VA,t= Ẑ
p

(BX)(Î
p

A+,t + Î
p

X,t) + Ẑ
p

(XA)Î
p

A+,t t = 0, . . . , T

(8)
Configuration “Leaf”:

minimize
ÎpX ,Ẑ(BA),Ẑ(CB)

δl =

T∑
t=0

|VC,t − VB,t − Ẑ
p

(CB)(Î
p

A+,t + Î
p

B+,t + Î
p

X,t)|

subject to VB,t − VA,t= Ẑ
p

(BA)(Î
p

A+,t + Î
p

X,t) t = 0, . . . , T

(9)
Configuration “Common parent”:

minimize
Ẑp
(AX),Ẑ

p
(BX)

δcp =
T∑

t=0

|(Vp
A,t − Ẑ

p

(AX)Î
p

A+,t)− (Vp
B,t − Ẑ

p

(BX)Î
p

B+,t)|

(10)
Such problems are formulated by exploiting the currents and
voltages relationship occurring in each configuration. Once
problems (8 - 10) have been solved, the algorithm selects
the configuration associated to the smallest δ ∈ {δb, δl, δcp}.
Depending on the predicted location of X , the pool of nodes
N̂ p is updated accordingly.

If the algorithm picks configuration “Bridge”, an additional
node X̂ is added to N̂ p . The estimated current injection Î

p

X is
extracted from solution of (8), along with the values of Ẑ

p

(XA)

and Ẑ
p

(BX). The estimation of the voltage time-series Vp
X is

computed as:

V̂
p

X,t = Vp
A,t − Ẑ

p

(XA)Î
p

A+,t ∀t ∈ {1, . . . , T} (11)

If configuration “Leaf” is selected, the current injection Î
p

X

is extracted from solution of (9), while the voltage time-series
of X can not estimated. To proceed with the identification
process, node A ∈ N̂ p is substituted by an auxiliary node X ′

with the same voltage of A. The current injection is given by:

Î
p

X′ = Î
p

A + Î
p

X (12)



This allows to correct the current flowing in the path to
root of A for the next validation step and to proceed in the
identification process.

When configuration “Common parent” is selected, the esti-
mation of V̂

p

X is constructed using the values of Ẑ
p

(XA) and
Ẑ
p

(XB) obtained from solution of (10). We have:

V̂
p

X,t =

{
Vp

A,t − Ẑ
p

(XA)Î
p

A+,t if Ẑ
p

(XA)Î
p

A+,t ≤ Ẑ
p

(XB)Î
p

B+,t

Vp
B,t − Ẑ

p

(XB)Î
p

B+,t if Ẑ
p

(XA)Î
p

A+,t > Ẑ
p

(XB)Î
p

B+,t

t ∈ {1, . . . , T}

(13)
A node X̂ is added to N̂ p with voltage V̂

p

X and a zero net
current injection, since (10) does not provide an estimation
of the missing current injection. If X is indeed a net zero-
power injecting node, edge (CX) is accepted in the topology
by the validation step. Otherwise, the correct Î

p

(CX) is obtained
solving (9) in the next iteration.

Whenever Assumption 1 is not valid, the hidden node
detection step might fail to find a node X that corresponds
to a hidden node in the actual network, since none of the
topological configurations exploited to formulate (8 - 10)
may be correct. Before updating the node pool with X , the
algorithm checks if this makes the edge connecting C to its
child node satisfy Equation (5). If not, the wrong X is not
added to the network, since it would compromise the rest of
the identification process. In this case, the algorithm proceeds
considering the edge connecting A to B as a valid branch.

Once the pool of nodes N̂ p has been updated, topology
validation and estimation steps are processed again. The
algorithm is performed until all the edges in Ĝp are labeled as
valid. Finally, the estimation of line impedances is given by the
mean value of Ẑ

p

e in Equation (3). The complete identification
algorithm is detailed in Algorithm 1.

V. CASE STUDY

The developed algorithm is tested on a three-phase four-
wire 30-node network whose topology is showed in Figure
4. Node S0 is the MV/LV substation, nodes from H1 to H24

Figure 4. Topology of the test network used as the case study. Gray dots
represent hidden nodes in the main test case.

are single-phase customers and nodes from F1 to F6 are their
connection point to the main feeder. Household active power
profiles are constructed from time-series measurements of
residential Belgian smart-meters. Reactive power consumption

Algorithm 1 Identification algorithm for phase p ∈ P
Input:
• Set of nodesMp, time-series synchronized measurements

of Vp
n and Ipn, ∀n ∈Mp.

Output:
• A rooted tree Ĝp = {N̂ p, Êp} with a set of impedances

associated to Êp.
Procedure:

1: Let N̂ p =Mp and Ûp = Ø.
2: Apply an high pass filter on |Vp

i | to obtain a filtered time
series Vp,f

n , ∀n ∈ N̂ p.
3: Evaluate the Pearson correlation coefficient Ri,j , ∀i, j ∈
Mp with i 6= j.

4: Let Ĝpw be the weighted complete graph on N̂ p where
each branch (i, j) has Rij as its weight.

5: Let Ĝp = {N̂ p, Êp} the maximum spanning tree computed
on Ĝpw.

6: Let Ûp = {e ∈ Êp | RSTD(Ẑ
p

e) > λ}.
7: while Ûp 6= Ø:

a: Let A be the node in with the maximum depth Ĝp
among the nodes connected to an edge e ∈ Ûp.

b: Let B and C be the parent and grandparent node of A,
respectively.

c: Find δb, δl, δcp from (8) — (10).
d: if argmin{δb, δl, δcp} = δb:

(i) Evaluate V̂
p

X from (11), Î
p

X from (8).
elif argmin{δb, δl, δcp} = δl:
(i) Let V̂

p

X = Vp
A, evaluate Î

p

X from (9).
(ii) N̂ p = N̂ p \ {A}.
elif argmin{δb, δl, δcp} = δcp:
(i) Evaluate V̂

p

X from (13), let Î
p

X = 0.
e: Update N̂ p = N̂ p ∪ {X} and repeat steps 2 — 6.

8: Evaluate Zp
e as the mean value of Ẑ

p

e = {Ẑ
p

e,1, . . . , Ẑ
p

e,T }
from Equation (3), ∀e ∈ Êp.

is obtained associating a different power factor ranging from
0.93 to 0.97 to each of the households. Some of the households
are also equipped with PV units. Peaks and time patterns
in power profiles vary widely from a household to another,
therefore unbalanced conditions are expected in the network.
Two different cable types and various cable length have been
selected for the modeling of the main feeder and the laterals.
Voltages and currents in the grid are computed through a
detailed unbalanced load flow algorithm. The dynamics of
the network are evaluated over 15 days, with a resolution of
one simulation every 15 minutes, resulting in 1440 time steps.
Time-series of voltage and current injection at each node and
phase of the network are extrapolated from the solutions of
the load flow analysis to create pseudo-measurements data.
The tolerated relative standard deviation for impedances in
Equation (5) is arbitrarily set to 0.1.

To assess the performances of the algorithm, a total of



830 configurations have been examined, each of which is
associated to a different set of hidden nodes. Among them,
30 configurations represented the cases with one hidden node.
The remaining 800 configurations were equally divided in 8
groups with an increasing number of hidden nodes that ranges
from 2 to 9. Note that when a a node is considered as hidden,
the identification process is provided with no information
about their presence, voltages and current injections in the
input. If an hidden node is a feeder node, e.g.: F1, none
of the measurements for three phases is provided to the
algorithm. The sets of hidden nodes have been randomly
selected, having the effect that Assumption 1 is not valid in
most of configurations. In particular, none of the scenarios in
with more than 7 hidden nodes satisfied such assumption.

Let us first focus on a main test case to analyze the results
provided by the algorithm in configurations where Assumption
1 is satisfied. The configuration where nodes F1, H7, H13,
H15, H17, H21 and H23 are hidden nodes has been selected.
In this scenario the algorithm was able to produce an exact
representation of the network topology for each phase, as can
be seen in Figure 5. All the missing nodes have been correctly
detected and placed in the right location. The three single-
graphs can be merged together to obtain the topology of the
three-phase network.

As for the assessment of impedances, they are evaluated
for all the lines except for F6-H21, F5-H17 and F4-H13. The
estimation of the impedance for branches F6-H21, F5-H17
and F4-H13 is not determined because nodes H21, H17 and
H13 were hidden leaf nodes and therefore the voltage drop
of such edges can not be computed. The estimated impedance
for some of the branches is showed in Table II. The estimated
resistive part is close to the exact value for all the branches,
while the evaluation of the reactive part is less precise for
branches connecting the feeder to the households. This error
is probably due a stronger influence of the modeled shunt
admittances on the voltage drop on those connection. If the
ratio between the resistive and reactive part of the impedance
is known, e.g.: databases contain information on the type of
cables used, such error can be reduced.

Table II
IMPEDANCE ESTIMATION FOR SOME BRANCHES IN THE MAIN TEST CASE.

Branch Value (Ω) Estimated (Ω)

S0-F1 0.014 + 0.046j 0.013 + 0.042j

F1-F2 0.015 + 0.052j 0.015 + 0.048j

F1-H1 0.067 + 0.033j 0.066 + 0.003j

F2-H6 0.030 + 0.015j 0.029 + 0.002j

F3-H7 0.025 + 0.012j 0.024 + 0.002j

H8-H9 0.039 + 0.019j 0.038 + 0.002j

F4-H12 0.034 + 0.016j 0.033 + 0.002j

F4-F5 0.017 + 0.058j 0.017 + 0.053j

F5-H18 0.044 + 0.026j 0.043 + 0.003j

F6-H22 0.046 + 0.022j 0.045 + 0.003j

H23-H24 0.032 + 0.015j 0.031 + 0.002j

Figure 5. Estimated topology in the main test case.

Two metrics are considered to analyze the solutions pro-
vided by the algorithm in all 830 configurations. The first
metric is the percentage of the network branches that have
been correctly detected by the algorithm. This value provide
an assessment of the quality for the estimation of the network
topology. Note that for this evaluation, a three-phase branch is
considered as detected only if the nodes at its ends are directly
connected by an edge in all Ĝa, Ĝb and Ĝc.

Figure 6. Percentage of branches correctly detected by the algorithm.

As showed in Figure 6, the algorithm have identified the
correct topology in most of the configurations with less than
10% of hidden nodes nodes in the network. With sets of
hidden nodes corresponding from 10% to 20% of the entire
set of nodes, Assumption 1 is very likely to be not valid.
Nevertheless, the algorithm still performed well, accurately
detecting more than the 80% of network branches in most
of the cases. Test cases with 7 and 8 hidden nodes still
produced the exact topology in some of the configurations,
but the average accuracy decreases in the rest of the cases.
The algorithm was not able to find the exact topology in any
configuration with 9 hidden nodes, corresponding to the 30%
of the nodes, but it was still able to correctly identify more
than half of the network’s branches in most cases.



Figure 7. Mean absolute percentage error on the cumulative impedance of the path to the root of metered nodes.

To evaluate the quality of line parameters assessment, we
compared the estimation of the impedance between a metered
node and the substation, evaluated as the sum of the self
impedances in its path to the root, with its exact value.
The mean absolute percentage error, evaluated both on the
magnitude and on the real part of the impedance, has been
used as a second error metric. Results are presented in Figure
7. In all cases with less than 10% of hidden nodes, accuracy
in the assessment of the impedances was comparable to that
observed in the main test case. As already stated, the error
on the estimation of the self impedances that is observed in
these solutions is probably due to the approximation made for
Equation (2). For configurations with more hidden nodes, the
algorithm provided similar results only in few cases. However
it has been observed that, whenever Assumption 1 was not
satisfied, the algorithm was not able to identify location and
current injection of some of the hidden nodes. When this
happens, the estimated topology and currents flowing in some
sections of the network are miscalculated, and therefore the
error on the computation of the impedance largely increases.

VI. CONCLUSION

In this work, the problem of reconstructing a model for LV
networks, identifying topology and line parameters, has been
addressed. We propose an algorithm to tackle the network
reconstruction problem by analyzing available meter data
when some power injecting nodes in the network are not
metered, assuming that such nodes are located reasonably
far from each other. The algorithm detects the location of
hidden nodes from an approximate estimation of the topology
and branch impedances, then it reconstructs the variables
associated to hidden nodes, one node per iteration. A case
study on a 30-node network has been described to test the
algorithm in different scenarios. A main test case with 7
hidden nodes where the condition on the minimum distance
between such nodes was valid has been presented, showing
that the algorithm provided an accurate estimation of topology
and line parameters. Additional configurations have been then
investigated to analyze the performances of the proposed

methodology and highlight its limitations when the condition
on the minimum distance between hidden nodes is not satis-
fied. When applied to these test cases, the algorithm provided
relevant solutions in most of the scenarios with 20% or less of
hidden nodes. Future work could focus on the reconstruction
of networks where a larger section of the grid can not be
observed, exploiting additional information available to DSOs,
such as GIS data and cable characteristics. Additional effort
could be put into a more exhaustive estimation of the line
parameters, taking into account the evaluation of mutual and
shunt impedances. The case when meters provide only the
magnitude of the complex variables could also be considered.
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