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Open foam materials and numerical models

• Metallic open foams 

– Low density

– Novel physical, mechanical and 

acoustic properties.

– Offer potential for lightweight 

structures, with high stiffness and 

energy absorption capability.

– With advancing manufacturing 

capabilities, they are becoming more 

affordable.

• Ability to model 3D foams based on 

actual foam samples

– Helps in characterization

– Stochastic approaches and multi-

scale mechanics used to simulate the 

behavior 

Jung & Diebels 2014

• Microstructure → Plateau’s law 

(Sonon et al 2015)

– Soap bubble → Plateau’s law, 

Surface energy minimization

• Tessellations of sphere packing 

distribution – Laguerre tessellations

– Sphere packing generation

– Tessellation generated by methods 

like convex hull (QHull, Barer et al 

1996)

– Morphological parameters like face-

by-cell count, edge-by-face count, 

interior angles match very well

• DN-RSA: Distance neighbor based 

random sequential packing algorithm 

for arbitrary shaped inclusions 

(Sonon et al 2012)

• Multiscale approaches → High cost, 

leads us to data driven solvers
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DN-RSA Notation

• Inclusions from desired 

distribution/shape are generated and 

placed in the domain.

– Each grid point assigned a 𝐷𝑁𝑘(𝒙) value, 

k - the kth nearest inclusion to the given 

point. 

• 𝐷𝑁𝑘(𝒙)

– negative inside the inclusion 

– positive outside.

• With addition of more inclusions, the 

𝐷𝑁𝑘(𝒙) value gets updated, depending 

on the k-th nearest inclusion and this 

inclusion mapping is stored as 𝑁𝑁𝑘(𝒙).

𝐷𝑁1 𝒙 plot with only 1 inclusion
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Open foam morphology

• Implicitly extracted in DN-RSA by 

“Voronoï” level set function:

– 𝑂𝑉 𝒙 = 𝐷𝑁2 𝒙 − 𝐷𝑁1(𝒙)

• A closed cell geometry can be 

extracted using a quasi-constant 

thickness, t:

– 𝑂𝑣 𝒙 − 𝑡 = 0

• “Plateau” Level set function 

– 𝑂𝑃 𝒙 =
𝐷𝑁3 𝒙 +𝐷𝑁2(𝒙)

2
− 𝐷𝑁1(𝒙)

• Function consists of triangles with 

vertex lying on the tessellation cell 

boundaries.

• Thus, we can extract plateau border 

like geometry through

– 𝑂𝑃 𝒙 − 𝑡 = 0

– Parameter 𝑡 used to control thickness 

of extracted borders
i ΦΘ𝑖
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Sharp edge extraction

• Plateau borders present sharp edges due 

to their triangular prism shape

– Origin is due to steep discontinuity of 

𝐷𝑁𝑘(𝒙) derivatives on ΦΘ

• Single level set function can not 

represent this with discrete level set 

functions, and we need multiple level set 

function strategy

• Solved by extracting individual modified 

level sets for each inclusions

𝑡 Level Set 𝐷𝑁1(𝒙) 𝐷𝑁2(𝒙) 𝐷𝑁3(𝒙)

ΦΘ𝑖

Clipping of the triangular section at grid positions and the presence of discontinuities in 𝐷𝑁1 𝒙 and 

𝐷𝑁2(𝒙) across ΦΘ. 𝐷𝑁3(𝒙) is continuous.
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Sharp Edge extraction

Intersection of 𝑡
level sets of 

inclusion 𝑖 and 𝑗 by 

surface Boolean tool 

𝐶𝑜𝑟𝑘

Extract, re-mesh and 

fix the line of 

intersection

Slice-off the elements 

lying in the domain 
𝐼𝑂𝑃𝑗 𝒙 > 0, 𝑗 ≠ 𝑖

Similarly, slice-off the 

elements of 𝑡 level set 

of inclusion 𝑗 lying in 

the domain 𝐼𝑂𝑃𝑖 𝒙 >
0, 𝑖 ≠ 𝑗

𝑖 𝑗

𝑗

𝑖

𝑖

𝑗

Iteratively done, leaving 

only the plateau border 

part of the inclusion.

Traditional isosurface

operations result in ill-

formed elements.

Inclusions are then refined by 

level set based mesh conforming 

approach designed by [Karim et 

al (under preparation)] using 

analogy of equilibrium of 3D truss 

system (Persson and Strang, 

2004) before assembling. 3D 

mesh is generated using Tetgen

(Hang Si 2015)

𝑡 level set of inclusion 𝑖
extracted in MATLAB using 

𝒊𝒔𝒐𝒔𝒖𝒓𝒇𝒂𝒄𝒆 function
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Strut cross section variation

Strut cross section variation and 

mid-span cross-sectional area of a 

polyurethane foam; Gong et al 

2004

DN-RSA is able to incorporate these variations by 

modifying the “Plateau” function 𝑂𝑃 according to 

the domain using 𝐷𝑁3 and 𝐷𝑁4.

𝑂𝑆1(𝐱) = 𝐷𝑁4(𝐱)−𝐷𝑁3(𝐱)

Value of the function increases from 0 at the 

intersection of struts to half the length of the 

strut at mid-span along the axis.

Ω𝑖𝑗𝑘 = 𝑁𝑁1 𝐱 = 𝑖 & 𝑁𝑁2 𝐱 = 𝑗 & 𝑁𝑁3 𝐱 = 𝑘

Tetrahedral domain joining the center of the 

inclusion I, center of the common face between 

I and j, and the two ends of the strut formed by 

I, j, and k 
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Strut cross section variation

𝜉′ =
𝑂𝑆1(Ω𝑖𝑗𝑘)

max(𝑂𝑆1(Ω𝑖𝑗𝑘))

The final operator and the equation that 

enables to generate variation in strut cross-

section

𝑂𝑆 𝐱 =
𝐴(𝜉′)

𝐴0

𝑂𝑃 𝐱 − 𝑡𝑂𝑠 𝐱 = 0

• Dotted line – strut cross section area data 

from 20ppi foam sample from Jung and 

Diebels 2017

• Bold line – data from a simulated 20ppi 

foam using DN-RSA

An RVE simulating a 

20ppi foam with 25 

inclusions
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Numerical Simulation – RVE

Jung & Diebels 2017

• Larger RVE with 25 inclusions completely 

inside the domain.

• Uniaxial compression test comparison 

with experimental values; contact criteria 

not implemented.
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Further advantages of DN-RSA

• Periodic RVEs and RVEs with free 

boundary

• Strut cross-section concavity and 

convexity using concavity operators 

based on distance function

• Generation of RVEs with layers of 

coatings with non-smooth coatings 

using distance functions Concavity control

Layers of coatings
Free boundary 

RVE with minus 

sampling

Periodicity in RVE
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DN-RSA with ellipsoids

• Generate ellipsoids based on pores 

extracted from CT scans of physical foam 

samples (Leblanc et al, under 

preparation)

• Statistical validation for pore placement

• DN-RSA to extract foam morphologies 

using package made of ellipsoids –

statistical validation of pore placement

• Sample made of 600 voxels in each 

dimension with each voxel = 24um

Relative Density

Voxel data 7%

DN-RSA 6.8%
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Data driven models - Motivation

• Complexity in analysing open-foam materials by including all the relevant 

information in the extracted models

• Time consuming results – hierarchical coupling in classical multiscale methods

• Meso scale models not efficient in accounting for the complex loading

conditions

• Non-uniformity of the microstructure

• High computational cost to run micro-mechanical simulations for full scale 

problems

• Difficulty to store, post-process and analyse large amount of data
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Data driven models - Motivation

• Complexity in analysing open-foam materials by including all the relevant 

information in the extracted models

• Time consuming results – hierarchical coupling in classical multiscale methods

• Meso scale models not efficient in accounting for the complex loading

conditions

• Non-uniformity of the microstructure

• High computational cost to run micro-mechanical simulations for full scale 

problems

• Difficulty to store, post-process and analyse large amount of data

• Neural networks – capability to directly incorporate the micro-mechanical data

and direct numerical simulations on the microstructure

• Generation of datasets – offline implementation – significant reduction in

computational cost
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• Artificial neural network – inspired from biological counterpart

• Input layers -> Hidden layer(s) -> Output layer

Data driven models using neural networks

 
 0
1 

 0
𝑁 

 0
𝑁 1  

 

• Weights assigned to each artificial inner nodes

• Combination of input signals and activation functions used, neurons can 

activate, de-activate or change
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Data driven models using neural networks

• 2D solution data preparation with 

around 400 sample simulations 

for training the neural network

• Modify deformation tensor while 

applying periodic boundary 

conditions

• Apply final values for 

𝑢𝑥𝑥, 𝑢𝑦𝑦, 𝑢𝑥𝑦, 𝑢𝑦𝑥
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Data driven models using neural networks
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Activation functions for Neural Network

• Transfer function used to get output 

of node

• Used to determine the output of 

neural network and maps the 

resulting values

• Some examples of non linear 

activation functions
– Sigmoid

– Tanh (= 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑 2𝑥 − 1)

– Rectified Linear Unit (ReLU) 

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
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Layers for NN

• Use of feedforward nets to 

accurately classify sequential 

inputs

• Sequential layers are added 

piecewise

• More layers → deeper the model

• Epochs → Number of times the 

dataset is passed to the NN 

forward and backward

• Batch size → Number of training 

samples in a single batch

• Optimizers → Adaptive moment 

estimation (adam, combining 

adaptive gradient algorithm and 

root mean square propagation), 

stochastic gradient descent 

(SGD)

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
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Data driven models using neural networks

• Solution
– 400 training samples

– 100 validation samples

– 500 epochs

– 1 sequential input layer with 200 nodes

– 1 sequential hidden node with 100 nodes

– 1 sequential hidden node with 20 nodes

– 1 output node with 4 nodes

– All layers activated with ReLU and 

optimized with adam

– Prediction made on a new sample
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Towards the future with data science

• Implementation of contact on all 

simulation series to be trained with neural 

networks

• Back propagation through time models 

and long short memory units models 

implementation to predict history 

dependant behaviour

• Develop models that take into account 

porosity and material behaviour 

parameters

• Use the NN models developed to train 3D 

material model for numerical simulations

History dependant behaviour of 2D open foam
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Limitations and Advantages

• Higher discretization of the grid 

required to capture higher sphere 

packing 

• Laguerre tessellations are known to 

have higher number of small struts 

and triangular faces that are 

skewed, 
– captured by DN-RSA in the limit of 

vanishing discretization size.

• Representation of foams with RVE 

having high dispersion rate of the 

inclusion size is difficult with this 

model due to the necessary 

discretization grid.

• Easy access to the signed distance 

functions allows us to implement 

variations in the morphology
– strut cross-section variation at the mid-

span and along the axis of the strut

– combination of open-closed faces of 

tessellated cells

– Coating of the RVE to represent realistic 

engineering applications

• A balance of discretization size 

allows us to model the foam without 

the issues of small/skewed faces as 

they are implicitly enveloped by the 

extracted 𝑡 level set.

• Extracted mesh can be easily 

utilized for a data-driven multi-

scale study and understand the 

effects of upscaling the model to 

study the elastic-plastic properties of 

such foams


